HW \#6

1. Let R be a UFD, F its quotient field. Let f, g be non-constant polynomials over R. Write $f=C(f) f_{1}$ and $g=C(g) g_{1}$ with f_{1} and g_{1} primitive polynomials in $R[t]$. Show a. If $f \mid g$ in $F[t]$ then $f_{1} \mid g_{1}$ in $R[t]$.

In particular, if f and g are primitive then $f \mid g$ in $F[t]$ if and only if $f \mid g$ in $R[t]$.
b. Suppose that f, g are primitive. Then f, g have a common factor over $F[t]$ if and only if they have a common factor over $R[t]$.
2. (*) Let $f=\sum_{i=0}^{n} a_{i} t^{i}$ be a polynomial with integer coefficients. Let $r=a / b$, with $b \neq 0$ and a and b relatively prime integers. If r is a root of f over \mathbf{Q} then $b \mid a_{n}$ and if $a \neq 0$ then $a \mid a_{0}$. In particular, if f is monic then all rational roots of f (if any) are integers.
3. Let F be a field and $f \in F[t] \backslash F$. Describe the nilradical, $\operatorname{nil}(F[t] /(f))$.
[Hint: You did this problem if \mathbf{Z} replaces $F[t]$.]
4. Show that the irreducible polynomials over $\mathbf{R}[t]$ are either linear polynomials or quadratic polynomials of the form $a t^{2}+b t+c \in \mathbf{R}[t]$ with $a \neq 0$ and $b^{2}-4 a c<0$. [You may assume that we have proved that every non-constant polynominal $f \in \mathbf{C}[t]$ factors into a product of linear polynomials in $\mathbf{C}[t]$.]
5. (*) (Eisenstein's Criterion) Let R be a UFD and K be the quotient field of R. Let $0 \neq f=\sum_{i=0}^{n} a_{i} t^{i} \in R[t]$. Let p be an irreducible element in R. Suppose the coefficients of f satisfy:
i. $p \mid a_{i}$ for all $0 \leq i<n$.
ii. $p \nmid a_{n}$
iii. $p^{2} \not \backslash a_{0}$.
then f is irreducible in $K[t]$. In particular, if, in addition, f is primitive (e.g., if f is monic) then f is irreducible in $R[t]$.

