HW #6

- 1. Let R be a UFD, F its quotient field. Let f, g be non-constant polynomials over R. Write $f = C(f)f_1$ and $g = C(g)g_1$ with f_1 and g_1 primitive polynomials in R[t]. Show a. If f|g in F[t] then $f_1|g_1$ in R[t].
 - In particular, if f and g are primitive then f|g in F[t] if and only if f|g in R[t]. b. Suppose that f, g are primitive. Then f, g have a common factor over F[t] if and only if they have a common factor over R[t].
- 2.(*) Let $f = \sum_{i=0}^{n} a_i t^i$ be a polynomial with integer coefficients. Let r = a/b, with $b \neq 0$ and a and b relatively prime integers. If r is a root of f over **Q** then $b|a_n$ and if $a \neq 0$ then $a|a_0$. In particular, if f is monic then all rational roots of f (if any) are integers.
 - 3. Let F be a field and $f \in F[t] \setminus F$. Describe the nilradical, $\operatorname{nil}(F[t]/(f))$. [Hint: You did this problem if **Z** replaces F[t].]
 - 4. Show that the irreducible polynomials over $\mathbf{R}[t]$ are either linear polynomials or quadratic polynomials of the form $at^2 + bt + c \in \mathbf{R}[t]$ with $a \neq 0$ and $b^2 - 4ac < 0$. You may assume that we have proved that every non-constant polynomial $f \in \mathbf{C}[t]$ factors into a product of linear polynomials in $\mathbf{C}[t]$.]
- 5.(*) (Eisenstein's Criterion) Let R be a UFD and K be the quotient field of R. Let $0 \neq f = \sum_{i=0}^{n} a_i t^i \in R[t]$. Let p be an irreducible element in R. Suppose the coefficients of f satisfy:

i. $p \mid a_i$ for all $0 \le i \le n$.

- ii. $p \not| a_n$ iii. $p^2 \not| a_0$.

then f is irreducible in K[t]. In particular, if, in addition, f is primitive (e.g., if f is monic) then f is irreducible in R[t].