1. (*) Let R be a commutative ring. Show that a polynomial $f=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ is a unit in $R[t]$ if and only if a_{0} is a unit in R and a_{i} is nilpotent for every $i>0$. Is the same result true for $R[[t]]$, the ring of formal power series defined by extending the operations of those on $R[t]$ (no convergence condition to worry)? Prove or give a counterexample.
2. Let F be a finite field with q elements. Then F is of characteristic p for some prime p, has $q=p^{n}$ elements for some positive integer n, and every element $\alpha \in F$ satisfies $\alpha^{q}=\alpha$.
3.(*) Let R be a commutative ring. If $f=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ is a polynomial in $R[t]$ define the formal derivative f^{\prime} of f to be $f=a_{1}+2 a_{2} t+\cdots+n a_{n} t^{n-1}$.
a. Show the usual rules of differentiation hold.
b. Suppose R is a field of characteristic zero. Show that a polynomial $f \in R[t]$ is divisible by the square of a non-constant polynomial in $R[t]$ if and only if f and f^{\prime} are not relatively prime.
3. Let F be a subfield of the complex numbers C. Let $f \in F[t]$ be an irreducible polynomial. Show that f has no multiple root in \mathbf{C}. [An element $a \in \mathbf{C}$ is called a multiple root of f if $f=(t-a)^{m} g$ for some g in $\mathbf{C}[t]$ and integer $m>1$.]
4. Let F be a field and $f \in F[t]$ a polynomial of degree $n \geq 1$. Let ${ }^{-}: F[t] \rightarrow F[t] /(f)$ be the canonical epimorphism.
(a) Show that $V=F[t] /(f)$ is a vector space over F of dimension n where $\alpha \bar{g}:=\overline{\alpha g}$ for all $\alpha \in F$ and $g \in F[t]$. In particular, if $f \in F[t]$ is irreducible then f has a root in a field K containing F that is an n-dimensional F-vector space.
(b) Show that there exists a field L containing F such that f factors into a product of linear polynomials in $L[t]$ and $\operatorname{dim}_{F}(L) \leq(\operatorname{deg} f)$!.
