## HW \#4

1. Let $f, g$ be polynomials with coeficients in a commutative ring $R$. Suppose the leading coefficient of $f$ is a unit (i.e., the coefficient of the highest term is a unit). Show that there are polynomials $q$ and $r$ with coefficients in $R$ such that $g=f q+r$ with either $r=0$ or the degree of $r$ is less than the degree of $f$. This says the Division Algorithm holds when dividing by a polynomial with unit leading term. (This problem was also given to you last quarter - more or less.)
2. Let $R$ be a domain. Show that $R[t]$, the ring of polynomials with coefficients in $R$ is a a euclidean domain if and only if $R$ is a field.
3. ${ }^{*}$ ) Let $R=\mathbf{Z}[\sqrt{-d}]=\{a+b \sqrt{-d} \mid a, b \in \mathbf{Z}\}$ a subring of $\mathbf{C}$ with $d$ a positive square-free integer. Let $N: R \rightarrow \mathbf{Z}$ by $\alpha=a+b \sqrt{-d} \mapsto \alpha \bar{\alpha}=a^{2}+d b^{2}$. Show all of the following.
a. The field of quotients of $R$ is $Q[\sqrt{-d}]=\{a+b \sqrt{-d} \mid a, b \in \mathbf{Q}\}$.
b. $N: R \backslash\{0\} \rightarrow \mathbf{Z}$ is a monoid homomorphism.
c. $R^{\times}=\{\alpha \in R \mid N(\alpha)=1\}$ and compute this group for all $d$.
d. The element $\alpha$ is irreducible in $R$ if $N(\alpha)$ is a prime. Is the converse true?
e. Suppose $d \geq 3$, then 2 is irreducible but not prime in $R$.
4. Show that $\mathbf{Z}[\sqrt{-2}]$ is a euclidean domain.
5. Let $R=\mathbf{Z}[\sqrt{-1}]$. Let $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ be a factorization of an integer $n>1$. Show that the following are equivalent:
a. $n$ is a sum of two squares.
b. $n=N(\alpha)$ for some $\alpha \in R$.
c. If $p_{i} \equiv 3(\bmod 4)$ then $e_{i}$ is even.
6. $\left.{ }^{*}\right)$ Let $R=\mathbf{Z}[\sqrt{-5}]$. Show the all of the following:
a. The elements $2,3,1+\sqrt{-5}$, and $1-\sqrt{-5}$ are all irreducible but no two are associates. In particular, $R$ is not a UFD.
b. None of the elements $2,3,1+\sqrt{-5}$, and $1-\sqrt{-5}$ are prime.
7. Let $R=\mathbf{Z}[\sqrt{-5}]$. Let $\mathfrak{P}=(2,1+\sqrt{-5})$. Show
a. $\mathfrak{P}^{2}=(2)$ in $R$.
b. $\mathfrak{P}$ is a maximal ideal.
c. $\mathfrak{P}$ is not a principal ideal.
8. Determine all prime elements, up to units, in $\mathbf{Z}[\sqrt{-1}]$.
