HW #3

- 1.(*) We consider three properties of commutative rings.
 - a. A commutative ring R is called *noetherian* if it satisfies the following condition (called the *ascending chain condition* or ACC): Any chain of ideals

$$\mathfrak{A}_1 \subset \mathfrak{A}_2 \subset \cdots \subset \mathfrak{A}_n \subset \cdots$$

(countable) in *R* stabilizes, i.e., there exists an integer *N* such that $\mathfrak{A}_{N+i} = \mathfrak{A}_N$ for all $i \geq 0$. Equivalently, there exist no infinite chains

$$\mathfrak{B}_1 < \mathfrak{B}_2 < \cdots < \mathfrak{B}_n < \cdots$$

- b. An ideal \mathfrak{A} in a commutative ring R is called *finitely generated* or fg if there exist $a_1, ..., a_n \in \mathfrak{A}$ some n such that $\mathfrak{A} = Ra_1 + \cdots + Ra_n$.
- c. We say a commutative ring satisfies the maximal condition if any non-empty collection of ideals in R has a maximal element (under set inclusion). [Such a maximal element, of course, need not be a maximal ideal.]

Prove that the following are equivalent for a commutative ring R:

- i. R is noetherian.
- ii. Every ideal of R is finitely generated.
- iii. R satisfies the maximal condition.

[You may assume the Axiom of Choice.]

- 2. Let R be a noetherian domain. Let r be a non-zero non-unit in R. Prove that r is a product of finitely many irreducible elements.
- 3.(*) Let R be a domain satisfying the maximal condition. Show that any non-trivial ideal of R contains a finite product of non-zero prime ideals, i.e., if $0 < \mathfrak{A} < R$ is an ideal then there exist non-zero prime ideals $\mathfrak{p}_1, ..., \mathfrak{p}_n$ in R such that $\mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_n \subset \mathfrak{A}$.
 - 4. An ideal \mathfrak{C} in a commutative ring R is called *irreducible* if $\mathfrak{C} = \mathfrak{A} \cap \mathfrak{B}$ for some ideals \mathfrak{A} and \mathfrak{B} in R then either $\mathfrak{C} = \mathfrak{A}$ or $\mathfrak{C} = \mathfrak{B}$. Show if R has the maximal property then every ideal $\mathfrak{A} < R$ is a finite intersection of irreducible ideals of R, i.e., $\mathfrak{A} = \mathfrak{C}_1 \cap \cdots \cap \mathfrak{C}_n$, for some irreducible ideals \mathfrak{C}_i in R.
 - 5. We shall see that $\mathbf{Z}[t]$, the ring of polynomials with coefficients in \mathbf{Z} , is a UFD. It is not a PID. Show this by finding a non-principal maximal ideal in $\mathbf{Z}[t]$. Also find a non-zero prime ideal in $\mathbf{Z}[t]$ that is not maximal and prove it is such.
 - 6. Rngs may not have maximal ideals. This problem constructs one. Let p be a prime number. Let $\mathbf{Z}_{p^{\infty}}$ be the (additive) subgroup of \mathbf{Q}/\mathbf{Z} consisting of all elements having order some power of p, i.e., $x = \alpha + \mathbf{Z}$, $\alpha \in \mathbf{Q}$, lies in $\mathbf{Z}_{p^{\infty}}$ if and only if $p^r x = 0$ in \mathbf{Q}/\mathbf{Z} , i.e., $p^r \alpha$ is an integer, for some positive integer r.

i. Show that the set $\{\frac{1}{p^r} + \mathbf{Z} | r \text{ a non-negative integer } \}$ generates $\mathbf{Z}_{p^{\infty}}$.

ii. Show the subgroup $\left\langle \frac{1}{p^r} + \mathbf{Z} \right\rangle$ of $\mathbf{Z}_{p^{\infty}}$ is isomorphic to $\mathbf{Z}/p^r \mathbf{Z}$.

- iii. Show that any proper subgroup of $\mathbf{Z}_{p^{\infty}}$ is $\left\langle \frac{1}{p^{r}} + \mathbf{Z} \right\rangle$ for some non-negative integer r and the subgroups of $\mathbf{Z}_{p^{\infty}}$ form a chain under set inclusion. iv. Make $\mathbf{Z}_{p^{\infty}}$ into a rng by defining $x \cdot y = 0$ for all $x, y \in \mathbf{Z}_{p^{\infty}}$. Show that $\mathbf{Z}_{p^{\infty}}$ has
- no maximal ideals.