HW \#3

1. (*) We consider three properties of commutative rings.
a. A commutative ring R is called noetherian if it satisfies the following condition (called the ascending chain condition or ACC): Any chain of ideals

$$
\mathfrak{A}_{1} \subset \mathfrak{A}_{2} \subset \cdots \subset \mathfrak{A}_{n} \subset \cdots
$$

(countable) in R stabilizes, i.e., there exists an integer N such that $\mathfrak{A}_{N+i}=\mathfrak{A}_{N}$ for all $i \geq 0$. Equivalently, there exist no infinite chains

$$
\mathfrak{B}_{1}<\mathfrak{B}_{2}<\cdots<\mathfrak{B}_{n}<\cdots .
$$

b. An ideal \mathfrak{A} in a commutative ring R is called finitely generated or $f g$ if there exist $a_{1}, \ldots, a_{n} \in \mathfrak{A}$ some n such that $\mathfrak{A}=R a_{1}+\cdots+R a_{n}$.
c. We say a commutative ring satisfies the maximal condition if any non-empty collection of ideals in R has a maximal element (under set inclusion). [Such a maximal element, of course, need not be a maximal ideal.]
Prove that the following are equivalent for a commutative ring R :
i. R is noetherian.
ii. Every ideal of R is finitely generated.
iii. R satisfies the maximal condition.
[You may assume the Axiom of Choice.]
2 . Let R be a noetherian domain. Let r be a non-zero non-unit in R. Prove that r is a product of finitely many irreducible elements.
3. $\left.{ }^{*}\right)$ Let R be a domain satisfying the maximal condition. Show that any non-trivial ideal of R contains a finite product of non-zero prime ideals, i.e., if $0<\mathfrak{A}<R$ is an ideal then there exist non-zero prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ in R such that $\mathfrak{p}_{1} \mathfrak{p}_{2} \cdots \mathfrak{p}_{n} \subset \mathfrak{A}$.
4. An ideal \mathfrak{C} in a commutative ring R is called irreducible if $\mathfrak{C}=\mathfrak{A} \cap \mathfrak{B}$ for some ideals \mathfrak{A} and \mathfrak{B} in R then either $\mathfrak{C}=\mathfrak{A}$ or $\mathfrak{C}=\mathfrak{B}$. Show if R has the maximal property then every ideal $\mathfrak{A}<R$ is a finite intersection of irreducible ideals of R, i.e., $\mathfrak{A}=\mathfrak{C}_{1} \cap \cdots \cap \mathfrak{C}_{n}$, for some irreducible ideals \mathfrak{C}_{i} in R.
5. We shall see that $\mathbf{Z}[t]$, the ring of polynomials with coefficients in \mathbf{Z}, is a UFD. It is not a PID. Show this by finding a non-principal maximal ideal in $\mathbf{Z}[t]$. Also find a non-zero prime ideal in $\mathbf{Z}[t]$ that is not maximal and prove it is such.
6. Rngs may not have maximal ideals. This problem constructs one. Let p be a prime number. Let $\mathbf{Z}_{p^{\infty}}$ be the (additive) subgroup of \mathbf{Q} / \mathbf{Z} consisting of all elements having order some power of p, i.e., $x=\alpha+\mathbf{Z}, \alpha \in \mathbf{Q}$, lies in $\mathbf{Z}_{p^{\infty}}$ if and only if $p^{r} x=0$ in \mathbf{Q} / \mathbf{Z}, i.e., $p^{r} \alpha$ is an integer, for some positive integer r.
i. Show that the set $\left\{\left.\frac{1}{p^{r}}+\mathbf{Z} \right\rvert\, r\right.$ a non-negative integer $\}$ generates $\mathbf{Z}_{p^{\infty}}$.
ii. Show the subgroup $\left\langle\frac{1}{p^{r}}+\mathbf{Z}\right\rangle$ of $\mathbf{Z}_{p \infty}$ is isomorphic to $\mathbf{Z} / p^{r} \mathbf{Z}$.
iii. Show that any proper subgroup of $\mathbf{Z}_{p^{\infty}}$ is $\left\langle\frac{1}{p^{r}}+\mathbf{Z}\right\rangle$ for some non-negative integer r and the subgroups of $\mathbf{Z}_{p \infty}$ form a chain under set inclusion.
iv. Make $\mathbf{Z}_{p^{\infty}}$ into a rng by defining $x \cdot y=0$ for all $x, y \in \mathbf{Z}_{p^{\infty}}$. Show that $\mathbf{Z}_{p^{\infty}}$ has no maximal ideals.

