HW \#2

1. Let R be a domain with finitely many elements. Show that the characteristic of R is p for some (positive) prime p and R is a field.
2. (*) Let $\varphi: R \rightarrow S$ be a ring homomorphism of commutative rings. Show that if \mathcal{B} is an ideal (respectively, prime ideal) of S then $\varphi^{-1}(\mathcal{B})$ is an ideal (respectively, prime ideal) of R. Give an example, where \mathcal{B} is a maximal ideal of S but $\varphi^{-1}(\mathcal{B})$ is not a maximal ideal of R.
3. (**) Let R be a commutative ring and S a multiplicative set in R, i.e., a subset of R containing 1 satisfying whenever a and b are elements of S then so is $a b$. Let

$$
\mathcal{F}:=\{(r, s) \mid r \in R, s \in S\} .
$$

Define \sim on \mathcal{F} by $(r, s) \sim\left(r^{\prime}, s^{\prime}\right)$ if there exists an element $s^{\prime \prime} \in S$ such that

$$
s^{\prime \prime}\left(r s^{\prime}-s r^{\prime}\right)=0
$$

Do all of the following:
a. Prove that \sim is an equivalence relation on \mathcal{F}.

Denote the equivalence class of (r, s) under \sim by $\frac{r}{s}$ and let $S^{-1} R:=$ $\left\{\left.\frac{r}{s} \right\rvert\, r \in R, s \in S\right\}$ be the set of equivalence classes. Define

$$
\begin{aligned}
& \frac{r}{s}+\frac{r^{\prime}}{s^{\prime}}=\frac{r s^{\prime}+s r^{\prime}}{s s^{\prime}} \text { and } \\
& \frac{r}{s} \cdot \frac{r^{\prime}}{s^{\prime}}=\frac{r r^{\prime}}{s s^{\prime}}
\end{aligned}
$$

b. Prove that these operations make $S^{-1} R$ into a commutative ring.
c. Prove that the map $\varphi: R \rightarrow S^{-1} R$ by $\varphi(r)=\frac{r}{1}$ is a ring homomorphism. Determine the kernel of φ.
d. Suppose that $0 \notin S$. Show that the kernel of φ above does not contain any element of S.
e. Prove that every element of the form $\frac{s}{s^{\prime}}$ with $s, s^{\prime} \in S$ is a unit in $S^{-1} R$.
4. Let R be a commutative ring and S a multiplicative set in R. Let $\varphi: R \rightarrow S^{-1} R$ be given by $r \mapsto \frac{r}{1}$. Show that this satisfies the following universal property. If $\psi: R \rightarrow R^{\prime}$ is a ring homomorphism with R^{\prime} commutative and $\psi(S)$ a subset of the unit group of R^{\prime},
then there exists a unique ring homomorphism $\theta: S^{-1} R \rightarrow R^{\prime}$ such that

5. Let \mathfrak{p} be a prime ideal of commutative ring R. Show that $S=R \backslash \mathfrak{p}$ is a multiplicative set. Write $R_{\mathfrak{p}}=S^{-1} R$ where $S^{-1} R$ is as in Problem 3. Determine all maximal ideals of $S^{-1} R$
6. If R is a non-commutative rng satisfying $x^{3}=x$ for all x in R then R is commutative.
7. Let R be a commutative ring of prime characteristic $p>0$. Prove that the map $R \rightarrow R$ by $x \mapsto x^{p}$ is a ring homomomorphism. It is called the Frobenius homomorphism.

