HW \#1

1. Let F be a field then $\mathbf{M}_{n}(F)$ is a simple ring. If $n>1$ then $\mathbf{M}_{n}(F)$ is not a division ring.
2. Let R be a (commutative) ring then every ideal of $\mathbf{M}_{n}(R)$ has the form $\mathbf{M}_{n}(\mathfrak{A})$ (obvious notation) where \mathfrak{A} is an ideal in R.
3. If R is a non-commutative ring satisfying $x^{2}=x$ for all x in R then R is commutative.
4. (*) Let R be the set of all continuous functions $f:[0,1] \rightarrow \mathbf{R}$ then R is a ring under + and \cdot of functions. Show that any maximal ideal of R has the form $\{f \in R \mid f(a)=0\}$ for some fixed a in $[0,1]$. [You need some analysis, namely, any closed interval I is compact, i.e., any open cover of I has a finite subcover. (If a, b lies in $(0,1)$ then the open interval (a, b) and the half open intervals $[0, a)$ and $(a, 1]$ are all considered open intervals in $[0,1]$.)
5. Let R be a (commutative) ring. Prove the Binomial Theorem:

$$
(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}
$$

6. (*) Let R be a (commutative) ring. An element x of R is called nilpotent if some power of x is zero. Prove
a. If x is nilpotent then $1+x$ is a unit.
b. The set of nilpotent elements of R forms an ideal called the nilradical of R.
c. Compute the nilradical of the rings: $\mathbf{Z} / 12 \mathbf{Z}, \mathbf{Z} / n \mathbf{Z}, n>1$, and \mathbf{Z}.
7. Let R be a (commutative) ring. An element e of R is called an idempotent if $e^{2}=e$. For example, if S is another ring the element $\left(1_{r}, 0_{S}\right)$ is an idempotent in the ring $R \times S$. The object of this exercise is to prove a converse. Let e be an idempotent of R. Then prove
a. $e^{\prime}:=1-e$ is an idempotent of R.
b. The principal ideal $R e$ of R is a ring with identity $1_{R e}=e$. [Note that $R e$ is not a subring of R since $R e$ will not have the same identity as R unless $e=1$.]
c. R is ring isomorphic to $R e \times R e^{\prime}$
8. Let R be a nonzero ring and

$$
\operatorname{End}_{\mathbf{Z}}(R):=\{f: R \rightarrow R \mid f \text { an additive group homomorphism }\} .
$$

Show that $\operatorname{End}_{\mathbf{Z}}(R)$ is a ring with addition defined by $(f+g)$ given by $(f+g)(x)=$ $f(x)+g(x)$ for all $x \in R$ and multiplication given by composition. Prove that the units in $\operatorname{End}_{\mathbf{Z}}(R)$ is $\operatorname{Aut}_{\mathbf{Z}}(R)$, the group of additive group automorphisms of R.

