HW \#4

1. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism. Show
a. $\operatorname{ker}(\phi) \subset G$ and $\operatorname{im}(\phi) \subset G^{\prime}$ are subgroups.
b. ϕ is an isomorphism if and only if ϕ is bijective.
2. To what group is $\mathrm{ST}_{2}(\mathbf{R})$ isomorphic (besides itself)? Prove your answer.
3. Prove Wilson's Theorem which states: Let $p>1$ be an integer. Then p is a prime if and only if $(p-1)!\equiv-1 \quad(\bmod p)$. [This is not a practical test for primality.] [Hint: Let $1 \leq j \leq p-1$. If p is a prime when $\operatorname{can} j^{2} \equiv 1(\bmod p)$?]
4. (*) Let G be a group and H and K subgroups of G. Show all of the following:
(a) If $K \subset H \subset G$ and K has finite index in G then $[G: K]=[G: H][H: K]$. (This is even true when nothing is finite if read correctly.)
(b) Let $H K:=\{h k \mid h \in H, k \in K\}$. Then $H K / K=\{h K \mid h \in H\}$. Then (clearly) $H /(H \cap K)$ is a subset of $G /(H \cap K)$ and $H K / K$ is a subset of G / K. Show that $f: H /(H \cap K) \rightarrow H K / K$ by $h(H \cap K) \mapsto h K$ is a well-defined bijection.
(c) (Poincaré) Suppose both H and K have finite index in G. Then $H \cap K$ has finite index in G.
5. (*) Show that $\operatorname{Aut}(G)$ is a group and $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$. Let G be a cyclic group. Determine $\operatorname{Aut}(G)$ and $\operatorname{Inn}(G)$ up to isomorphism as groups that we know.
6. Show that a subgroup $H \subset G$ is normal if and only if $g H=H g$ for all $g \in G$. If H is not normal is it still true that for each $g \in G$ there is an $a \in G$ such that $g H=H a$?
7. Find all subgroups of S_{3} and determine which ones are normal.
8. Let G be a group of order p^{n} where p is a prime and $n \geq 1$. Prove that there exists an element of order p in G.
9. Prove that a group of order 30 can have at most 7 groups of order 5 .
