HW #4

- Let φ : G → G' be a group homomorphism. Show
 a. ker(φ) ⊂ G and im(φ) ⊂ G' are subgroups.
 b. φ is an isomorphism if and only if φ is bijective.
- 2. To what group is $ST_2(\mathbf{R})$ isomorphic (besides itself)? Prove your answer.
- 3. Prove Wilson's Theorem which states: Let p > 1 be an integer. Then p is a prime if and only if $(p-1)! \equiv -1 \pmod{p}$. [This is not a practical test for primality.] [Hint: Let $1 \leq j \leq p-1$. If p is a prime when can $j^2 \equiv 1 \pmod{p}$?]
- 4.(*) Let G be a group and H and K subgroups of G. Show all of the following:
 - (a) If $K \subset H \subset G$ and K has finite index in G then [G:K] = [G:H][H:K]. (This is even true when nothing is finite if read correctly.)
 - (b) Let $HK := \{hk \mid h \in H, k \in K\}$. Then $HK/K = \{hK \mid h \in H\}$. Then (clearly) $H/(H \cap K)$ is a subset of $G/(H \cap K)$ and HK/K is a subset of G/K. Show that $f : H/(H \cap K) \to HK/K$ by $h(H \cap K) \mapsto hK$ is a well-defined bijection.
 - (c) (Poincaré) Suppose both H and K have finite index in G. Then $H \cap K$ has finite index in G.
- 5.(*) Show that Aut(G) is a group and $Inn(G) \triangleleft Aut(G)$. Let G be a cyclic group. Determine Aut(G) and Inn(G) up to isomorphism as groups that we know.
 - 6. Show that a subgroup $H \subset G$ is normal if and only if gH = Hg for all $g \in G$. If H is not normal is it still true that for each $g \in G$ there is an $a \in G$ such that gH = Ha?
 - 7. Find all subgroups of S_3 and determine which ones are normal.
 - 8. Let G be a group of order p^n where p is a prime and $n \ge 1$. Prove that there exists an element of order p in G.
 - 9. Prove that a group of order 30 can have at most 7 groups of order 5.