HW #3

- 1. Let H_i , $i \in I$, be a collection of subgroups of G. Prove that $\bigcap H_i$ is a subgroup of G. Is $\bigcup H_i$ a subgroup of G?
- 2. Let G be a group and W a subset of G. Show that

$$\langle W \rangle =$$

$$\{g \in G \mid \exists w_1, \ldots, w_r \in W, \text{not necessarily distinct}, e_1, \ldots, e_r \in \{\pm 1\} \ni g = w_1^{e_1} \ldots w_r^{e_r}\}.$$

- 3. Show if G is a group in which $(ab)^2 = a^2b^2$ for all $a, b \in G$ then G is abelian.
- 4. Determine all groups up to order 6. (You cannot use Lagrange's Theorem.)
- 5. Let p be a prime. Show that $F = \mathbb{Z}/p\mathbb{Z}$ is a field [i.e., in the commutative ring $\mathbb{Z}/p\mathbb{Z}$ every non-zero element has a multiplicative inverse]. Compute |G| if G =

 $GL_n(F)$, $SL_n(F)$, $T_n(F)$, $ST_n(F)$, or $D_n(F)$.

[Hint: First show that F is a *domain*, i.e., a commutative ring satisfying: if ab = 0 in F then a = 0 or b = 0. Then show that any domain with finitely many elements is a field.]

6. (*) Let $m_i > 1, 1 \le i \le n$, be pairwise relatively prime integers. Let $m = m_1 \cdots m_n$. Let $\phi(m)$ denote the order of the group $(\mathbb{Z}/m\mathbb{Z})^{\times}$. The function $\phi : \mathbb{Z}^+ \to \mathbb{Z}^+$ is called the *Euler phi function*. [We let $\phi(1) = 1$.] Show that there exists an isomorphism

$$(\mathbb{Z}/m\mathbb{Z})^{\times} \to (\mathbb{Z}/m_1\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/m_n\mathbb{Z}^{\times})$$

In particular $\phi(m) = \phi(m_1) \cdots \phi(m_n)$. Compute $\phi(p^r)$ when p is a prime and r is a positive integer.

- 7. (*) Prove the Cyclic Subgroup Theorem which states: Let H be a subgroup of the cyclic group $G = \langle g \rangle$. Let e be the identity of G and n be a positive integer. Then
 - (i) $H = \{e\}$ or $H = \langle g^m \rangle$ where $m \geq 1$ is the least integer such that $g^m \in H$. If G is infinite then H is infinite or $\{e\}$. If G is finite of order n then m|n.
 - (ii) If |G| = n and m|n then $\langle g^m \rangle$ is the unique subgroup of G of order n/|m|.
 - (*iii*) If |G| = n and $m \not\mid n$, then G does not have a subgroup of order |m|.
 - (iv) If |G| = n then the number of subgroups of G is equal to the number of divisors of |G|.
 - (v) If G has prime order then the only subgroups of G are $\{e\}$ and G.
- 8. (*) Let G be an abelian group. Let $a, b \in G$ have finite order m, n, respectively. Suppose that m and n are relatively prime. Show that ab has order mn. Is this true if G is not abelian? Prove or give a counterexample.