HW \#2
1.(*) Let $a, b \in \mathbf{Z}^{+}$. Repeated use of the Division Algorithm gives the Euclidean Algorithm, viz., a system of equations

$$
\begin{array}{lll}
a & =b q_{1}+r_{1} & 0<r_{1}<b \\
b & =r_{1} q_{2}+r_{2} & 0<r_{2}<r_{1} \\
r_{1} & =r_{2} q_{3}+r_{3} & 0<r_{3}<r_{2} \\
& \vdots & \\
r_{k-3} & =r_{k-2} q_{k-1}+r_{k-1} & 0<r_{k-1}<r_{k-2} \\
r_{k-2} & =r_{k-1} q_{k}+r_{k} & 0<r_{k}<r_{k-1} \\
r_{k-1} & =r_{k} q_{k+1}+0 &
\end{array}
$$

Show this ends. Show that $r_{k}=\operatorname{gcd}(a, b)$. Plugging in backwards gives $r_{k}=a x+b y$ for some integers x, y. Do all of this for $a=39493$ and $b=19853$ (including finding an appropriate x and y).
2. Let a, b, c be non-zero integers. Let $d=\operatorname{gcd}(a, b)$. Show the equation $a x+b y=c$ has a solution x, y in integers if and only if $d \mid c$. Moreover, show if $d \mid c$ and x_{o}, y_{o} is a solution in integers then the general solution in integers is $x_{o}+\frac{b}{d} k, y_{o}-\frac{a}{d} k$ for all integers k.
3. In the proof of the uniqueness of the Fundamental Theorem of Arithmetic, give two proofs to finish after showing $p_{1}=q_{1}$.
4. (*) Show the following.
(i) Let R be an equivalence relation on A. Then show that the equivalence classes \bar{A} under this equivalence relation partitions A. Conversely, if \mathcal{C} partitions A, define \sim on $A \times A$ by $a \sim b$ if a, b belong to the same set in \mathcal{C}. Then \sim is an equivalence relation on A.
(ii) Through each integer point on the x-axis in the plane \mathbf{R}^{2} draw a line perpendicular to the x-axis and the same with the y-axis. Define a (systematic) partition of the plane that this defines. [Be careful with points on the various lines.] (Of course, there are many such. I like the one(s) that give nice geometric objects when looked it at correctly.)
5 . Let $m>1$ be an integer. Show all of the following:
(i) Congruence modulo m is an equivalence relation. In particular,

$$
\mathbf{Z}=\overline{0} \vee \overline{1} \vee \ldots \vee \overline{m-1}
$$

i.e., there are m equivalence classes. Let $\mathbf{Z} / m \mathbf{Z}=\mathbf{Z} / \equiv \bmod m=\{\overline{0}, \ldots, \overline{m-1}\}$.
(ii) Let $a, b, c, d \in \mathbf{Z}$ satisfy

$$
a \equiv c \quad(\bmod m) \text { and } b \equiv d \quad(\bmod m)
$$

then

$$
a+b \equiv c+d \quad(\bmod m) \text { and } a \cdot b \equiv c \cdot d \quad(\bmod m)
$$

(i.e., $\overline{a+b}=\overline{c+d}$ and $\overline{a \cdot b}=\overline{c \cdot d}$).
(iii) Now define $\mathrm{a}+$ and \cdot on $\mathbf{Z} / m \mathbf{Z}$ by $\bar{a}+\bar{b}=\overline{a+b}$ and $\bar{a} \cdot \bar{b}=\overline{a \cdot b}$.

Show that this is well-defined, i.e., if $\bar{a}=\overline{a^{\prime}}$ and $\bar{b}=\overline{b^{\prime}}$ then $\overline{a+b}=\overline{a^{\prime}+b^{\prime}}$ and $\overline{a \cdot b}=\overline{a^{\prime} \cdot b^{\prime}}$.
(iv) This + and \cdot make $\mathbf{Z} / m \mathbf{Z}$ into a commutative ring.

That is the following axioms are satisfied for all $\bar{a}, \bar{b}, \bar{c} \in \mathbf{Z} / m \mathbf{Z}$:

1. $(\bar{a}+\bar{b})+\bar{c}=\bar{a}+(\bar{b}+\bar{c})$ [Associativity]
2. $\bar{a}+\bar{b}=\bar{b}+\bar{a}$
3. $\bar{a}+\overline{0}=\bar{a}$ [Commutativity]
4. $\bar{a}+(\overline{-a})=\overline{0}$
[Existence of zero]
5. $(\bar{a} \cdot \bar{b}) \cdot \bar{c}=\bar{a} \cdot(\bar{b} \cdot \bar{c})$ [Existence of additive inverses] [Associativity of Multiplication]
6. $\bar{a} \cdot \bar{b}=\bar{b} \cdot \bar{a}$
7. $\bar{a} \cdot \overline{1}=\bar{a}=\overline{1} \cdot \bar{a}$
8. $\bar{c} \cdot(\bar{a}+\bar{b})=\bar{c} \cdot \bar{a}+\bar{c} \cdot \bar{b}$
[Commutativity of Multiplication]
[Existence of one]
9. $(\bar{a}+\bar{b}) \cdot \bar{c}=\bar{a} \cdot \bar{c}+\bar{b} \cdot \bar{c}$
[Distributative Law]
[Distributative Law]
10. Let c_{1}, c_{2}, and c_{3} be integers. Find an integer x such that $x \equiv c_{1}(\bmod 11), x \equiv c_{2}$ $(\bmod 12)$, and $x \equiv c_{3}(\bmod 13)$. Find the smallest positive integer x satisfying these equations if $c_{1}=3, c_{2}=2$, and $c_{3}=1$.
11. Prove that there exist infinitely many primes congruent to 3 modulo 4.
12. $\left(^{*}\right)$ Let p be a prime number. Show that $a^{p} \equiv a(\bmod p)$ for all integers a.
