HW #1

- 1. Let a and n be positive integers. Show if $a^n 1$ is prime and n > 1 then a = 2 and n is prime. If $2^n + 1$ is prime, what can you say about n?
- 2.(*) Let x, y, z, n, a, b be integers. Show
 - a) If x|y and x|z then x|ay + bz.
 - b) If x|y then x|yn.
 - c) If x|y and $y \neq 0$ then $|y| \geq |x| \geq x$.
 - d) If xy = 0 then x = 0 or y = 0.
 - e) If xa = xb then x = 0 or a = b.
- 3.(*) Let a, b, n be positive integers with n > 1. Determine when $n^{\frac{a}{b}}$ is rational. Prove. [You can use the Fundamental Theorem of Arithmetic.]
 - 4. Prove the cartesian product of finitely many countable sets is countable.
 - 5. Prove any two (finite) line segments have the same cardinality.
 - 6. Let $F = \mathbf{R}$, \mathbf{C} or \mathbf{Q} [or any FIELD]. Let F[t] be the set of polynomials with coefficients in F with the usual addition and multiplication. State and prove the analog of the Division Algorithm for Integers. (Use your knowledge of such division. Use degrees of polynomials as a substitute for statement (ii) in the Division Algorithm.) What can you do if you take polynomials with coefficients in \mathbf{Z} ?
 - 7. Prove that the number of subsets of a set with n elements is 2^n .
 - 8. The first nine Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34. What is the *n*th Fibonacci number F_n . Show that $F_n < 2^n$.
 - 9. Note that Euclid's proof of the infinitude of primes clearly shows that if p_n is the nth prime then $p_{n+1} \leq p_n^n + 1$. Be more careful and show that $p_{n+1} \leq 2^{2^{n+1}}$. Using this, can you then show $\pi(x) \geq \log \log(x)$ where $\pi(x)$ is the number of primes less than x if $x \geq 2$. [This is a bad estimate.]
 - 10. When Gauss was ten years old he almost instantly recognized that $1 + 2 + ... + n = \frac{n(n+1)}{2}$. [Actually, what he did was a bit harder.] What is a formula for the sum of the first n cubes? Prove your result?