HW \#1

1. Let a and n be positive integers. Show if $a^{n}-1$ is prime and $n>1$ then $a=2$ and n is prime. If $2^{n}+1$ is prime, what can you say about n ?
2.(*) Let x, y, z, n, a, b be integers. Show
a) If $x \mid y$ and $x \mid z$ then $x \mid a y+b z$.
b) If $x \mid y$ then $x \mid y n$.
c) If $x \mid y$ and $y \neq 0$ then $|y| \geq|x| \geq x$.
d) If $x y=0$ then $x=0$ or $y=0$.
e) If $x a=x b$ then $x=0$ or $a=b$.
2. $\left(^{*}\right)$ Let a, b, n be positive integers with $n>1$. Determine when $n^{\frac{a}{b}}$ is rational. Prove. [You can use the Fundamental Theorem of Arithmetic.]
3. Prove the cartesian product of finitely many countable sets is countable.
4. Prove any two (finite) line segments have the same cardinality.
5. Let $F=\mathbf{R}, \mathbf{C}$ or \mathbf{Q} [or any FIELD]. Let $F[t]$ be the set of polynomials with coefficients in F with the usual addition and multiplication. State and prove the analog of the Division Algorithm for Integers. (Use your knowledge of such division. Use degrees of polynomials as a substitute for statement (ii) in the Division Algorithm.) What can you do if you take polynomials with coefficients in \mathbf{Z} ?
6. Prove that the number of subsets of a set with n elements is 2^{n}.
7. The first nine Fibonacci numbers are $1,1,2,3,5,8,13,21,34$. What is the nth Fibonacci number F_{n}. Show that $F_{n}<2^{n}$.
8. Note that Euclid's proof of the infinitude of primes clearly shows that if p_{n} is the nth prime then $p_{n+1} \leq p_{n}^{n}+1$. Be more careful and show that $p_{n+1} \leq 2^{2^{n+1}}$. Using this, can you then show $\pi(x) \geq \log \log (x)$ where $\pi(x)$ is the number of primes less than x if $x \geq 2$. [This is a bad estimate.]
9. When Gauss was ten years old he almost instantly recognized that $1+2+\ldots+n=$ $\frac{n(n+1)}{2}$. [Actually, what he did was a bit harder.] What is a formula for the sum of the first n cubes? Prove your result?
