1. The area of a circle

(2 pts) A) Let \(r \) be a positive real number and let \(O = (0, 0) \) and \(P = (r, 0) \) be points in the coordinate plane. Let \(\ell_\theta \) be the (half)-line that emanates from \(O \) and makes an angle \(\theta \) with respect to the positive \(x \)-axis (see figure).

Let \(Q \) be the point on \(\ell_\theta \) whose distance to \(O \) is \(r \) and let \(Q' \) be the point on \(\ell_\theta \) whose perpendicular projection onto the positive \(x \)-axis is \(P \) (see figure 1).

Find the \(x \) and \(y \) coordinates of \(Q \) and \(Q' \).

B) Partition the angle \(2\pi \) into \(N \) equal parts of size \(\Delta \phi \) and let
\[
\mathcal{C}_r = \text{area of a circle with radius } r, \\
\mathcal{A} = \text{area of the triangle } \triangle OPQ, \\
\mathcal{A}' = \text{area of the triangle } \triangle OPQ',
\]
where \(O, P, Q, Q' \) are as in the above figure with angle \(\theta = \Delta \varphi \).

(2 pts) i. Show that
\[
\mathcal{A} = \frac{r^2 \sin(\Delta \varphi)}{2} \quad \text{and} \quad \mathcal{A}' = \frac{r^2 \tan(\Delta \varphi)}{2}.
\]

(3 pts) ii. Explain why the inequalities
\[
\frac{Nr^2 \sin(\Delta \varphi)}{2} \leq \mathcal{C}_r \leq \frac{Nr^2 \tan(\Delta \varphi)}{2} \tag{2}
\]
hold for any \(r > 0 \) and any natural number \(N \geq 5 \).

(3 pts) iii. Find an expression for \(N \) in terms of \(\Delta \varphi \) and take the limit as \(\Delta \varphi \to 0 \) in (2) to find \(\mathcal{C}_r \).