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1 Introduction

This paper is a survey of some of the basic results pertaining to reflection
groups.

In §2, we start with the basic concepts and properties of Coxeter groups,
such as the Exchange Lemma and in §4 we construct the geometric represen-
tation. Sections 3 and 5 are devoted to finite real reflection groups and finite
Coxeter groups and §6 concerns Weyl groups, which are crystallographic re-
flection groups. Weyl groups give rise to affine Weyl groups, studied in §7.
The Iwahori-Hecke algebra of a Coxeter group is introduced in §8, after a
discussion on braid groups. Finite complex reflection groups are the subject
of §9, where we describe the infinite families. Finally, we explain in §10 how
the topology of the hyperplane complement allows us to define braid groups
and Iwahori-Hecke algebras for finite complex reflection groups.

This paper is expository : most proofs are to be found in [Bki] or [Hu] for
§2-8 and in [BrMaRo] for §9-10.
2 Coxeter groups

Let W be a group and S a set of (distinct) generators of W of order 2. For
s,8' € S, we denote by m, » € {1,2,...} U {oo} the order of the product ss'.

Definition 2.1 The pair (W, S) is a Coxeter system if W has a presentation
by generators and relations given by the set of generators S and the relations :

s2=1forse S,

1 1 ! ’ ! . .
ss'ss' .. =g'ss's .. for those s,s' € S such that m, o is finite.
{ L= . f ) s 18 fi
m,, terms m,,s terms
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We then say also that W is a Coxeter group.

The relations ss'ss’-.- = s'ss’s .. - are called braid relations.

The rank of the system is the cardinality of S.

The matriz of the Coxeter system (W,S) is (m, ), ses ; it has values in
{L,2,...} U {o0}.

This is a symmetric matrix with diagonal entries 1 and off-diagonal entries
at least 2. A matrix with such properties is called a Cozeter matriz. We
will see (Theorem 4.1) that every Coxeter matrix is the matrix of a Coxeter
system (in a group given by generators and relations as in the definition, with
(ms,») an abstract Coxeter matrix, it isn’t obvious that ss’ will have order
My,

The graph associated with (W, S) is the graph with set of vertices S and
edges {s,s'} when m, s > 3. Furthermore, the edge is then labelled by m, ..

Some examples.

(i) The symmetric group &, = &({1,2,...,n}). Let s; = (¢, + 1) and
Ss, = {s1,-- y8n-1}. Then, (&,,Ss,) is a Coxeter system (of type
A,_)) with graph

o0—0—0 O0——o0 (the label is omitted when it is 3).
S1 82 83 Sn-2 Sp-1

It has rank n — 1.

(ii) The hyperoctahedral group B,, i.e., the group of n x n monomial matri-
ces with non-zero entries in {£1}. It contains &,,, viewed as the group
of permutation matrices, as a subgroup. Let s, = diag(—1,1,...,1) and
SB,, = {%0,81,++ y8n-1}, With s;, ¢ > 1 as in (i). Then, (B,,Sg,) is a
Coxeter system of rank n with graph

O=—0—0—0 O—0 (where 0==0 stands for oio)
So S1 S2 S3 Sn—-2 Sp-1

(iii) The dihedral group Ip(m) : this is the symmetry group of a regular
m-gon (i.e., the subgroup of the group of isometries of the plane fixing
the m-gon), m > 2.

H, H,
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Let H, be a line containing the center of the polygon and one of its
vertices. Let H, be a line containing the center of the polygon and
such that the angle between H, and H; is n#/m. I(m) is generated
by the orthogonal reflections ¢, and ¢, with respect to H, and H,.
(I2(m), {t1,t2}) is a Coxeter system with graph

ol o(m>3) or 0 o(m=2).
t, 1, t, t,

The group I(m) has a decomposition I;(m) = (t,t2) x (¢;). The sub-
group (t,t2) is the subgroup of rotations, it has order m. The action of
(t1) ~ {£1} on Z/mZ in this decomposition is given by multiplication.

This suggests a construction for m = co : we denote by A; the group
Z x {£1}, where {£1} acts by multiplication on Z. Let ¢, = (0,—1)
and t; = (—1,—1). Then, (A, {t1,t2}) is a Coxeter system with graph

o5

13 T, 2
The dihedral groups are the groups Ir(m), 2 < m < oo and A,.

Note that every rank 2 Coxeter system is isomorphic to the Coxeter system
of a dihedral group. In particular, the Coxeter systems for &3 and I,(3) are
isomorphic, as well as those for B, and I,(4).

The following theorem [Bki, Chap. IV, §1, Théoréme 2] is an easy conse-
quence of Theorem 4.1 below :

Theorem 2.2 Let (W, S) be a Cozeter system, S' a subset of S and W' the
subgroup of W generated by S'. Then, (W', S") is a Coxeter system with
Cozeter matriz the submatriz of the Coxeter matrix of (W, S) given by S'.

A Coxeter system is irreducible if its associated graph is connected. All
systems in the previous examples are irreducible, except I3(2).

If S is the disjoint union of two subsets S; and S, and no vertex of S is
connected to a vertex of S,, then W = W, x W, where W; is the subgroup
of W generated by S;.

Remark 1 Note that for m odd, I;(2m) ~ I,(m) x G, but (I3(2m), {s,s'})
is nevertheless irreductble form > 1!

Let w € W. The length of w, {(w), is the smallest integer m such that w
is the product of m elements of S.

A decomposition w = s, -+ - 8, With sy,... 8, € S is reduced if m = I(w).
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Theorem 2.8 Letw = s, 8y withsy,... ,8m € S. Then, there is a subset
= {1 < iz < - <ix} of {1,...,m} with k = l(w) elements such that
W= 8 - 8.

This theorem is a direct consequence of the exchange lemma [Bki, Chap.
IV, §1, Proposition 4] :

Lemma 2.4 Let w = s, -5, be a reduced decomposition (sy,... ,sm € S).
Let s € S. Then, one of the following assertion holds :

(1) I(sw) =1l(w) + 1 and s, -+ - sm is a reduced decomposition of sw

(it) 1(sw) = l(w) — 1 and there exists j € {1,... ,m} such that
81+ 8j-18j+1 " Sm 15 a reduced decomposition of sw and
881+ 8j-18j41°** Sm 5 a reduced decomposition of w.

This lemma actually characterizes the Coxeter systems amongst the pairs
(W, S), where S is a set of generators of order 2 of a group W [Bki, Chap.
IV, §1, Théoréme 1].

3 Real reflection groups

Let V be a finite dimensional real vector space. A reflection of V is an
automorphism of order 2 whose set of fixed points is a hyperplane. A finite
reflection group W in V is a finite subgroup of GL(V) generated by reflections.

The group W is crystallographic if there is a W-invariant Z-lattice of V/,
i.e., if there exists a free Z-submodule L of V stable under W such that the
canonical map L ®z R — V is an isomorphism.

Note that this amounts to the existence of a W-stable Q-structure on V,
i.e., a Q-subspace Vg of V stable under W such that the canonical map
Vq ®q R — V is an isomorphism [Bki, Chap. VI, §2, Proposition 9].

Let A be the set of reflecting hyperplanes of W — i.e., the set of ker(s—1),
where s is a reflection of W.

Then, V—Jye H is in general non-connected : its connected components
are the chambers of W.

Theorem 3.1 ([Bki, Chap. V, §3, Théorémes 1 et 2]) The group W
acts stmply transitively on the set of chambers ; the closure of a chamber is a
fundamental domain for the action of W on V.

Let C) be a chamber and S the set of reflections with respect to the walls
of Cy (a wall of C, is a hyperplane in A whose intersection with the closure
of Cy has codimension 1 in V).
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Theorem 3.2 ([Bki, Chap. V, §3, Théoréme 1]) The pair (W,S) is a
Cozeter system.

Taking into account the choice of the chamber C), the chambers are now
parametrized by W. The chamber C,, corresponding to w € W is w(C)).

A gallery of length n is a sequence Dy, ... , D, of adjacent chambers (i.e.,
the intersection of the closures of D; and D;4) has codimension 1 in V). The
following result can be deduced from [Bki, Chap. V, §3, Théoréme 1] :
Proposition 8.3 The minimal length of a gallery from Cy to C,, is l(w).

Example : the chamber system for the group A,.

H,
Coy
Ciis, C,
H,
Chy sy, Cs,
Cozsy

Here, s; is the orthogonal reflection with respect to H;. The group W gener-
ated by s, and s, is a Coxeter group of type A,.

4 Coxeter groups as reflection groups

Let S be a set and M = (m,,)sses a Coxeter matrix. Let V = R and
denote by {e,}ses its canonical basis.

Define a bilinear form By on V by

™
Bum(es, ) = —cos —

(Note that Bum(es,e5) = 1).
Let p, be the reflection in V given by

ps(z) = = — 2Bum(es, T)es.

One has V = Re, @ H,, where H, is the hyperplane orthogonal to e,.
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Let W be the group with set of generators S and relations
2
s=1

ss'ss'--. = s'ss's ... for those s,s' € S such that m, s # oo.

m,,s terms m,, terms

Theorem 4.1 ([Bki, Chap. V, §4.3 et §4.4]) The map s — p, extends
to an injective group morphism W — GL(V), the reflection representation of
W. Furthermore, (W, S) is a Cozeter system.

When S is finite, By is positive definite if and only if W is finite.
Summarizing Theorems 3.2 and 4.1, we deduce

Theorem 4.2 The constructions of §83 and §4 give rise to inverse bijections
between the set of conjugacy classes of finite subgroups of GL,(R) generated
by reflections and the set of those rank n Coxeter matrices giving rise to a
finite Cozxeter group.

5 Finite Coxeter groups

The classification of Coxeter graphs giving rise to irreducible finite Coxeter
groups is the following [Bki, Chap. VI, §4, Théoréme 1] (the number attached
to the name of the diagram is the number of nodes of the diagram) :

An o—o—o0 o0—o

B, OO0 OO

Es o0—0—0—0—o0
o

E, o—o0—0—0—0—0
o

Eg o0—o0—0—0—0—0—0
o

Fy O0—O0—0—20

G2 = L(6) o=
Hs o200

H o260 o0
L(m) oMo (m=50rm2>7)
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In the list above, all the groups are crystallographic except Hs, H, and
L(m),m=50rm>17.

6 Root systems and Weyl groups

Let V be a finite dimensional real vector space, ® a finite subset of V and ®
a finite subset of V* parametrized by @< ® = &V, a = aV.

Assume

(1) the vector space V is generated by @

(2) for all @ € ®, we have (a¥,a) = 2 and the reflection s, : V = V,
z — ¢ — (a¥, r)a stabilizes ®

(3) wehave aV(®) C Zforalla € ®
(4) for a € ®, we have 2a ¢ ©.

Then, @ is a root system in V (sometimes called reduced, because of (4)).
Note that given ®, there is at most one set ®¥ parametrized by ® with the
required properties.

If ® = @, U®P, and d; (together with ®Y = {a"}ses,) is a root system
in V;, the subspace of V generated by ®;, for i € {1,2}, then we say that
® is the direct sum of the root systems ®, and ®,. The root system @ is
irreducible if it is non-empty and it is not the direct sum of two non-empty
root systems.

The Weyl group of the root system @ is the subgroup of GL(V') generated
by the reflections s, for @ € ®. Note that W is a crystallographic finite
reflection group with Z-lattice the Z-submodule of V' generated by ®. A
converse actually holds [Bki, Ch. VI, §2, Proposition 9] :

Proposition 6.1 Let W be a crystallographic teflection group in a finite di-
mensional real vector space V. Then, there is a root system ® in V with Weyl
group W.

Note that if W is irreducible, then the root system ® is unique up to
isomorphism if and only if W is not of type By, n > 3 (cf Remark 2).

Let C be a chamber of W with walls L,,..., L,. Then, there is a unique
root a; € ® orthogonal to L; and lying in the same half-space determined by
L,' as C

The set A = {a;}1<i<n is called a basis of @.

Let ®* = {a € ®|a = 3_ niai,n; > 0} (the positive roots) and ¢~ = {a €
®la = Y niai,ni < 0} (the negative roots).
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Proposition 6.2 ([Bki, Chap. VI, §1, Théorémes 2 et 3]) The set A
is a basis of V and ® =@+ U &~

The Cartan matriz is ((&t, 8Y)apea-
Define S = {sq}aca. Then, (W,S) is a Coxeter system.

The rank 2 root systems

Type A; x A; Type A,
s )
) ay + az
—Q) )
| —a; —as a2
—ap -
Type B, = C, Type G,
3oy +2az
az ar+a; 20 +a
! 2 1+ a az ajtag 2014z 3oy +az
—Q) a) —ay ay
—3a;—-az —2a)—ay —a1—ag -y
—201 —Qp; —qa;—Q —Q
—3a; —2a3

The action of W on @ gives another interpretation of the length function
[Bki, Chap. VI, §1, Corollaire 2 de la Proposition 17] :
Proposition 6.3 Let w € W. The cardinality of @~ N w(®*) is the length
l(w).

The set ®Y defines a root system in V* (the root system inverse or dual to
®). There is an isomorphism of groups

W(@) —» W(®Y),
w7t

sending s, on s,v. Through this isomorphism, W(®) operates on V*.
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Remark 2 Note that the root systems (V, @) and (V*, ®*) are not isomorphic
in general : for example, the root system of type C,, is the inverse of the root
system of type B, ; when n > 3, these root systems are not isomorphic.

7 Affine Weyl groups

Let ® be a root system in a finite dimensional real vector space V. We
construct a subgroup of the group Aff(V*) of affine transformations of V* as
follows :

For o € ® and k € Z, let H,x be the affine hyperplane of V* defined by
H,x = {z € V*[{a,z) = k}.
Let sqx be the orthogonal reflection with respect to Hy :
sak(z) =z — ((a,z) — k).

The affine Weyl group associated to ® is the subgroup W of Aff(V*) generated
by the ok, a € @, k € Z.

Let @) be the subgroup of Aff(V*) generated by the translations by elements
of V.

Proposition 7.1 ([Bki, Chap. VI, §2, Proposition 1]) We have W =
QxW.

An alcove is a connected component of V* — (J, ¢ rez Hex (note that the
set {Hak}aco kez is the set of reflecting hyperplanes of W).

Theorem 7.2 ([Bki, Chap. VI, §2.1]) The group W acts simply transi-
tively on the set of alcoves. The closure of an alcove is a fundamental domain
for the action of W on V*,

Let C be a chamber for W. Then, there is a unique alcove A C C such
that 0 is in the closure of A.

Let S be the set of reflections with respect to the walls of A. The pair
(W, §) is Coxeter group.

If @ is irreducible, there is a root & = ) n;a; in ® such that if 5 € @,
B =3 m;a;, then m; < n; : & is the highest root. This root is orthogonal to
the wall of A which doesn’t contain 0 [Bki, Chap. VI, §1, Proposition 25].

The length of an element w € W (relatively to 5) is the minimal length of
a gallery of alcoves from A to w(A).
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Example : Type A,.

H-
&0 Ha2 0

\\/\/\/\A/\/\A//

)

a
A
Hal,O

0
W\/\
7 A A A A N 7aY

The classification of the irreducible affine Weyl groups (or of their Coxeter
graphs) is the following [Bki, Chap. VI, §4, Théoréme 4] :

sl
3
0

v
&

13

R bl
3
=
\Y
Nt

o—0
o}
o
o
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Es o 0—1

F4 C C 'S

)
O
O

(0]
o

Gz &==C—-0
8 Braid groups and Iwahori-Hecke algebras

Let (W, S) be a Coxeter system.

Definition 8.1 The braid monoid B}, associated with (W, S) is the monoid
with set of generators {o}},es and relations :

) e
oyojaral - =ajolato) - fors,s' €8S such that myy is finite.

Vv —

m,,s terms m,, terms

The braid group Bw associated with (W, S) is the group with set of generators
{0s}ses and relations :

0s0y0,0y  ++ = Oy0,050,: - fors,s' € S such that m,y is finite.

m,, terms m,,s terms

The following result is due to Deligne [De, Proposition 4.17] and Brieskorn-
Saito [BrSa, Proposition 5.5] :

Theorem 8.2 Assume W is finite. Then, the morphism B}, — By given
by o} — o, is injective.

Thanks to this result, we can identify Bj}, with the submonoid of Bw
consisting of those elements which can be written as products of generators
05, when W is finite.

Let p: B, - W be given by o, — s.
The exchange lemma (Lemma 2.4) has the following consequence [Bki,
Chapitre IV, §1, Proposition 5] :

Proposition 8.3 Let w=s;---8, = 8| ---5,, be two reduced expressions of
weW. Then, 0} ---0f =0} -0}

This allows the construction of a very nice section ¢ of p (g is not multi-
plicative !) : given w € W and w = s, --- s,y a reduced expression of w, we
put g(w) = o} ---o} . Thanks to the last proposition, this is independent of
the choice of the reduced expression of w. We have pg(w) = w.
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Let S be the set of equivalence classes for the relation defined by : s,t € §
are equivalent if there is a sequence t = to,y,... ,tm = s such that m(¢;,¢;4)
is finite and odd. For s € S, we denote by 3 its class in S.

One can then read off conjugacy amongst generators of W and By from
the Coxeter diagram. Two elements s,t € S are conjugate in W if and only
if 3 = £. Similarly, o, and o, are conjugate in By if and only if 5 = . So, we
have :

Proposition 8.4 The map o, — 1; extends to a group morphism By — Z°.
Its kernel is the derived subgroup of Bw, i.e., this morphism identifies the
largest abelian quotient B3 of By with Z5. Similarly, We is isomorphic to
(Z/22)°.

Examples (using the notations from the examples of §2).
[ ) Gn . S = {51}

[ ] Bn . S = {50,5,,-1} (n Z 2)

o I)(m): S={f} for odd m, S = {f}, %} for even m.

Let {gs}se5 and {g}}se5 be two sets of indeterminates. Let O = Z[gs, ¢l]ses-
The Iwahori-Hecke algebra H = H(W) of (W, S) is the O-algebra with

generators Ty, s € S, and relations
(Te—g5)(Ty—g5)=0forse S

TTyT,Ty - = TyT,TyT,- - for s,s' € S such that m, . is finite.

m,, terms m,, terms

This is the quotient of the monoid algebra OBy, by the ideal generated
by the elements (Ts — ¢5)(Ts — ¢;) for s € S. Let T, be the image of ¢ for
weW.

The next theorem shows that # is a deformation of ZW [Bki, Chap. IV,
§2, Exercice 23] :

Theorem 8.5 The algebra H is free over O, with basis {Ty}wew. The mor-
phism H®p5 O /(g5 — 1,¢5 + 1)se3 = ZW, T, ® 1 = w, is an isomorphism.

We assume from now on that W is finite.

Let S’ be a subset of S and W’ be the subgroup of W generated by S’
Then, by [De],

e the submonoid of B}, generated by {0} }.es is isomorphic to B,
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e the subgroup of By generated by {¢,}ses is isomorphic to By,

e the specialization of the subalgebra of H(W) generated by {Ts}ses
obtained by sending to 0 those parameters not associated to elements
8,5 € ', is isomorphic to the specialization of #(W") given by identify-
ing those parameters associated to elements of S’ which become equal

in S.

In several applications, the Iwahori-Hecke algebra arises with invertible
parameters. Then, without loss of generality, one may assume one of the two
parameters gs, g; to be —1. So, let O = O[g; '|se5/(¢ + 1)ses = Zgs, G5 'Jses
and H=H@®y 0.

The Iwahori-Hecke algebra has a trace map r: H — O given by 7(T,) =
d1,w (i-e., we have T(hh') = T(h'R) for h, k' € H).

Denote by “ind” the one-dimensional representation H — O given by
ind(T,) = gs-

Proposition 8.6 Given w,w’ € W, one has 7(TyTw) = 61 ind(Ty,).

This means that the set {ind(T\,)~' T\~ }uew is the dual basis of {T, }uew
with respect to .
More conceptually, the trace T gives a structure of symmetric algebra to
H, i.e., the morphism :
H — Homop(H, O)
h— (K — 7(hh"))
is an isomorphism.

Together with the fact that H is a deformation of ZW, this explains the
structure of H over an algebraic closure K of the field of fractions of O (Tits’
deformation theorem) [Bki, Chap. IV, §2, Exercice 27] :

Theorem 8.7 The algebra H Qo K is semi-simple and isomorphic to KW.

Much more precise is the following rationality theorem (Benard, Springer,
Benson-Curtis, Hoefsmit, Lusztig..., cf [Ge]) :

Theorem 8.8 Assume W is a finite Weyl group. Then, the algebra QW
is tsomorphic to a direct product of matriz algebras over Q and the algebra
H ®0 Q(/T5)sez is isomorphic to a direct product of matriz algebras over

Q(\/qa:)seS'-

The theorem above generalizes to finite Coxeter groups : if W is a finite
reflection group over K C R, then KW is isomorphic to a product of matrix
algebras over K and H Qo K(./qs)sc3 is isomorphic to a direct product of
matrix algebras over K(./gs)s¢3-
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9 Pseudo-reflection groups

Let V be a finite dimensional vector space over a characteristic zero field K.
A pseudo-reflection of V is an automorphism of finite order whose set of fixed
points is a hyperplane.

Let G be a finite subgroup of GL(V).
We denote by S(V) the symmetric algebra of V.
The following theorem is due to Shephard-Todd and Chevalley. It shows

that the regularity of the ring of invariants S(V)® characterizes pseudo-
reflection groups [Bens, Theorem 7.2.1] :

Theorem 9.1 The following assertions are equivalent :
(i) The algebra S(V)€ is a polynomial algebra.
(i) The group G is generated by pseudo-reflections.
(iii) The S(V)¢[G]-module S(V) is free of rank one.

When K C R, a pseudo-reflection is actually a reflection. When K = C,
a pseudo-reflection need not have order 2 ; a group generated by complex
pseudo-reflections is then called a complex reflection group.

The rationality theorem 8.8 for representations of Weyl groups or finite
Coxeter groups extends to pseudo-reflection groups : the group algebra of G
over K is a direct product of matrix algebras over K [Bena, Bes].

The irreducible complex reflection groups have been classified by Shephard
and Todd [ShTo]. There are two infinite series : the groups A, ~ G,4,, the
groups G(p, ¢,n) and 34 exceptional groups (the dimension of an exceptional
group is at most 8).

Let us describe the groups G(p,q,n) (p > 1, ¢ =2 1, n > 1 and ¢|p).
It turns out that these groups have nice presentations, generalizing in some
sense the presentation of Coxeter groups and sharing some of their properties.
In particular, these groups have a presentation given by a set S consisting of
n or n + 1 pseudo-reflections and two kinds of relations :

e braid relations (homogeneous relations)
o finite order relations.

The group given by the same presentation, but without the finite order re-
lations can be seen as an analog of the braid group defined in §8 for real
reflection groups. We will come back to this in §10.
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9.1 G(p,1,n)

First, G(p,1,n) is the group of n by n monomial complex matrices whose
non-zero entries are p-th roots of unity. This group has a semi-direct product
decomposition G(p,1,n) = (Z/pZ)"* x &, ~ (Z/pZ) ! S, where &, is the
subgroup of permutation matrices and (Z/pZ)" is the subgroup of diagonal
matrices.

Let so = diag((,1,...,1), where ¢ is a primitive p-th root of unity. Keep-
ing the notations of §2, Example (i), one sees that G(p,1,n) is generated
by the set of pseudo-reflections {so, 31, ... ,84-1}. They satisfy the following
relations :

80518081 = 81808180
braid relations ¢ s;s; = s;s; if [i —j] > 1

8iSiy18i = 8i418i8iy1 fori>1

P

. ) s
finite order relations { g
1

Actually, this gives a presentation for G(p,1,n) by generators and relations.
A convenient way to encode the relations is to use a generalization of the
Coxeter diagrams :

() @ i o W o FRUNSRI O—0O
So S1 S2 83 Sn—2 Sn-|

Note that G(2,1,n) = B, and the presentation above is the Coxeter presen-
tation.

Now, for g|p, we define G(p, q,n) as the subgroup of G(p,1,n) consisting
of matrices where the product of the non-zero entries is a (p/q)-th root of
unity.

9.2 G(p7 P, n)

Let us now look at G(p, p,n). It is generated by the set of pseudo-reflections
{81,815+ .. ,5a_1} where s} = sos155". They satisfy the following relations :

4 . . .

$i8; = 8;8; ifli—j]>1
s8; = 8;8) fori >3
8i8i418i = Sip18iSit1 for:>1

M M ' ! '
braid relations < s|s2s) = s28]s2
528181828181 = 8181525)8152

1 1
S18]818] ** = 81818181+

. p terms p terms
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12
=1
finite order relations s; .
si=1fori>1.

This gives a presentation of G(p,p,n) by generators and relations. The

relations may be encoded in the following diagram :

!
3

S2 S3 Sn—2 Sn-|
S1
Note that G(p,p,2) = I,(p) and the presentation above is a Coxeter pre-

sentation. Also, G(2,2,n) = D, and the presentation above is a Coxeter
presentation.

9.3 G(p7 q, n)

Finally, let us consider G(p, g,n) for ¢|p, ¢ # p and ¢ # 1. We put d = p/q.
This group is generated by the set of pseudo-reflections {sg, s},31,... ,8n-1}
where s = s§. They satisfy the following relations :

$i8; = 8j8; ifli—jl>1
808; = 8;8; fori>2
§18; = 8;8) fori >3
$iSi418i = Si}18iSi41 fori>1

braid relations < sis;8) = 5,8/,
508181 = 8818

528181828181 = 815)52518152

! ’ ’
518451818181+ * = 83518181818+ -
\ q+1 terms g+1 terms
d
" =1

finite order relations ¢ s/* =

sf=1fori>1.

We have obtained a presentation of G(p, g,n) by generators and relations
which we encode in the following diagram :

Sn-2 Sn-1
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10 Topological construction of braid groups
and Iwahori-Hecke algebras

Let V be a finite dimensional complex vector space and G a finite subgroup
of GL(V) generated by pseudo-reflections. Let A be the set of reflecting
hyperplanes of G and X = V—|Jy 4 H. Let p: X — X/G be the projection
map.

The following result is due to Steinberg [St] :

Theorem 10.1 The group G acts freely on X, i.e., p is an unramified Galois
covering.

Let 2o € X. The braid group associated to G is B¢ = I1;(X/G, p(x0)) and
the pure braid group associated to G is Pg = II|(X,z0). Then, thanks to
Steinberg’s theorem, we have an exact sequence :

05 Pe 3 Beg—> G = 1.

10.1 The real case

Assume G is the complexification of a real reflection group, i.e., there is a real
vector space V' with V = V' ®@c R and such that G is a subgroup of GL(V').
Let C) be a chamber of G (a connected component of V' — | J , HNV') and
take zo € C,. Let S be the set of reflections of G with respect to the walls of
C,. For s € S, let v, be the path [0,1] = X defined by

y(t) = 2 s(z0) | Zo— $(20) int.
2 2
Let 7, be the class in Bg of p(7s).
Brieskorn [Br] and Deligne [De] have proved the following theorem :

Theorem 10.2 The map o, — 7, induces an isomorphism Bg — Bg.

10.2 The complex case

Let H € A. Let ey be the order of the pointwise stabilizer of H in G. This is
a cyclic group, generated by a pseudo-reflection s with non-trivial eigenvalue
exp(2ir/ey). Let zy € X. Let yy be the intersection of H with the affine
line containing zgy and s(zy). We assume zpy is close enough to H so that
the closed ball with center yy and radius ||z — yu|| does not intersect any
H',H € A, H' # H. Let a be a path from zo to 7 in X. Let A be the path
in X from zy to s(zg) defined by

/\(t) =yy + (93H _ yH)e2i1rt/eH_
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We define the path v from z4 to s(zo) by

a(31) for0<t<1/3
()= ¢ ABt—1) for1/3<t<2/3
s(a(3-3t)) for2/3<t<1

Let 7 be the class of v in Bg : 7 is called a generator of the monodromy
associated to s (or to H). The image of 7 in G is s.

Theorem 10.2 has a counterpart for complex reflection groups, based on
a case by case study [BrMaRo] (six of the irreducible exceptional complex
reflection groups are not covered by this approach).

Let us explain this for the group G = G(p, ¢,n).

Theorem 10.3 Assume G = G(p,q,n). Then, for every s € S, there is a
generator of the monodromy 7, associated to s, such that the group Bg has a
presentation with set of generators {7, },es and relations the braid relations.

10.3 Iwahori-Hecke algebras

An analogue of Proposition 8.4 for complex reflection groups is : BY is iso-
morphic to Z*/C.

For C € A/G and H € C, we put e¢c = ey. Let @ be the polynomial
ring over the integers on the set of variables {qc ;}ces/cocjcec—1. We put
qu,; = gc,; for H € Cand C € A/G.

For H € A, let Ty be a generator of the monodromy associated to H.
Let H be the quotient of the group algebra OB by the ideal generated by
the (TH - qH,O)(TH - (IH,I) cee (TH - (IH,eH-—l)a for H € A. Then, 7:2 is the
Iwahori-Hecke algebra associated to G.

When G is the complexification of a real reflection group, then Theorem
10.2 induces an isomorphism with the Iwahori-Hecke algebra associated with
the Coxeter system (G, S).

_ When G = G(p, q,n), the algebra H is a deformation of the group algebra
OG (it is free over O, with rank |G|) [Ar].
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