2-REPRESENTATIONS OF $\mathfrak{s l}_{2}$ FROM QUASI-MAPS

RAPHAËL ROUQUIER

1. Introduction

There are two main classes of constructions of 2-representations of Kac-Moody algebras [Rou2]. One is algebraic, for example via representations of cyclotomic quiver Hecke algebras, and the other uses constructible sheaves, for example on quiver varieties. We describe here a new type of 2-representations, using coherent sheaves.

One of our motivations is to develop an affinization of the theory of 2-representations of KacMoody algebras. One would want a theory of 2-representations of affinizations of symmetrizable Kac-Moody algebras, or rather of the larger Maulik-Okounkov algebras [MauOk].

A classical theme of (geometric) representation theory is that affinizations arise from degenerations. Shan, Varagnolo and Vasserot [ShaVarVas, VarVas] and the author have proposed that the affinization of the monoidal category associated to the positive part of a symmetric Kac-Moody algebra should be a full monoidal subcategory of the derived category of \mathcal{O}-modules on the derived cotangent stack of the moduli stack of representations of a corresponding quiver. A description of this category by generators and relations is missing, even in the case of $\mathfrak{s l}_{2}$.

This article stems from efforts to better understand 2-representations on categories of coherent sheaves. A number of constructions have been given by Cautis, Kamnitzer and Licata (cf e.g. [CauKaLi]). We study here a different geometrical framework. Feigin, Finkelberg, Kuznetsov, Mirković and Braverman [FeiFiKuMi, Bra] have provided a construction of Verma modules for complex semi-simple Lie algebras using based quasi-map spaces from \mathbf{P}^{1} to flag varieties (zastavas). We consider here the case of $\mathfrak{s l}_{2}$, where the zastavas are smooth, and are mere affine spaces. We show that coherent sheaves on zastavas provide a 2 -Verma module for $\mathfrak{s l}_{2}$ in the sense of Naisse-Vaz [NaiVa1]. Adding a superpotential and considering matrix factorizations, we obtain a realization of simple 2-representations of $\mathfrak{s l}_{2}$.

I thank Sergei Gukov for useful discussions.

2. Zastavas and correspondences

2.1. Quasi-maps. We fix a field k and we consider varieties over k. The space of maps $\mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ of degree d sending ∞ to ∞ identifies with the space of pairs (g, h) of polynomials such that g and h have no common roots, $\operatorname{deg}\left(g(z)-z^{d}\right)<d$ and $\operatorname{deg} h<d$.

Date: January 8, 2023.
The author gratefully acknowledges support from the NSF (grant DMS-1702305) and from the Simons Foundation (grant \#376202).

The zastava space V_{d} of quasi-maps $\mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ defined in a neighborhood of ∞ and sending ∞ to ∞ is the space of pairs as above, without the condition on roots. There is an isomorphism
$\mathbf{A}^{2 d} \xrightarrow{\sim} V_{d},(a, b) \mapsto\left(g(z)=a_{1}+a_{2} z+\cdots+a_{d} z^{d-1}+z^{d}, h(z)=b_{1}+b_{2} z+\cdots+b_{d} z^{d-1}\right)$.
There is an action of $\mathbf{T}=\mathbf{G}_{m} \times \mathbf{G}_{m}$ on V_{d}. The first \mathbf{G}_{m}-action is by rescaling the variable z with weight -2 . The second \mathbf{G}_{m}-action is by scalar action on $h(z)$ with weight 2 .
2.2. Correspondences. Let $Y_{d}=V_{d} \times \mathbf{A}^{1}$. We extend the \mathbf{T}-action on V_{d} to an action on Y_{d} by letting \mathbf{T} act on \mathbf{A}^{1} by weight ($-2,0$).

We have a diagram of affine varieties with \mathbf{T}-actions

We have functors

$$
\begin{gathered}
F_{d}=\psi_{d *} \circ \phi_{d}^{*}: D_{\mathbf{T}}^{b}\left(V_{d} \text {-qcoh }\right) \rightarrow D_{\mathbf{T}}^{b}\left(V_{d+1} \text {-qcoh }\right) \\
E_{d}=\phi_{d *} \circ \mathbf{L} \psi_{d}^{*}: D_{\mathbf{T}}^{b}\left(V_{d+1}-\text { qcoh }\right) \rightarrow D_{\mathbf{T}}^{b}\left(V_{d} \text {-qcoh }\right) .
\end{gathered}
$$

2.3. Universal Verma module. Let $U_{v}\left(\mathfrak{s l}_{2}\right)$ be the quantum enveloping algebra of $\mathfrak{s l}_{2}$. It is the $\mathbf{Q}(v)$-algebra generated by e, f and $k^{ \pm 1}$ subject to the relations

$$
k e=v^{2} e k, k f=v^{-2} f k, \text { ef }-f e=\frac{k-k^{-1}}{v-v^{-1}} .
$$

The universal Verma module M_{κ} is the $U_{v}\left(\mathfrak{s l}_{2}\right)$-module over $\mathbf{Q}(v, \kappa)$ with basis $\left(m_{d}\right)_{d \geq 0}$, with

$$
k\left(m_{d}\right)=\kappa v^{-2 d} m_{d}, e\left(m_{d}\right)=\delta_{d, 0} m_{d-1} \text { and } f\left(m_{d}\right)=\frac{v^{d+1}-v^{-d-1}}{v-v^{-1}} \cdot \frac{\kappa v^{-d}-\kappa^{-1} v^{d}}{v-v^{-1}}
$$

Specializing κ to v^{λ} gives the Verma module with highest weight λ.
2.4. Geometric realization. Let \mathcal{C} be the category of bigraded vector spaces N such that $\operatorname{dim}\left(\bigoplus_{i \leq n, j \in \mathbf{Z}} N_{i j}\right)<\infty$ for all n. Taking bigraded dimension gives an isomorphism

$$
K_{0}(\mathcal{C}) \xrightarrow{\sim} \mathbf{Z}((v)) \otimes \mathbf{Z}\left[t^{ \pm 1}\right], \quad N \mapsto \sum_{i, j} v^{i} t^{j} \operatorname{dim} N_{i j} .
$$

We denote by \mathcal{T}_{d} the full triangulated subcategory of $D_{\mathbf{T}}^{b}\left(V_{d}\right.$-qcoh) generated by objects $N \otimes \mathcal{O}_{V_{d}}$ for $N \in \mathcal{C}$.

Given $N \in \mathcal{C}$ with class $P \in \mathbf{Z}((v)) \otimes \mathbf{Z}\left[t^{ \pm 1}\right]$ and given $C \in D_{\mathbf{T}}^{b}\left(V_{d}\right.$-qcoh $)$, we write $P \cdot C$ for the object $N \otimes_{k} C$ of $D_{\mathbf{T}}^{b}\left(V_{d}\right.$-qcoh) (well defined up to isomorphism).

We put $E=\bigoplus_{d \geq 0} E_{d}$ and $F=\bigoplus_{d \geq 0} t v^{-2 d} F_{d}[1]$. The following proposition is an immediate consequence of Lemma 2.2 below. It is a variant of a result of Braverman and Finkelberg [BraFi].

Proposition 2.1. The actions of $[E]$ and $[F]$ on $M=\bigoplus_{d \geq 0} \mathbf{Q}(v, t) \otimes_{\mathbf{z}[v, t]} K_{0}\left(\mathcal{T}_{d}\right)$ give an action of $U_{v}\left(\mathfrak{s l}_{2}\right)$ and there is an isomorphism of representations

$$
\mathbf{Q}((v)) \otimes_{\mathbf{Q}(v)} M_{t v^{-1}} \xrightarrow{\sim} M, m_{d} \mapsto\left(1-v^{2}\right)^{d}\left[\mathcal{O}_{V_{d}}\right] .
$$

2.5. Modules. Let $A_{d}=k\left[V_{d}\right]=k\left[a_{1}, \ldots, a_{d}, b_{1}, \ldots, b_{d}\right]$, a bigraded algebra with $\operatorname{deg}\left(a_{i}\right)=$ $(2(d-i+1), 0)$ and $\operatorname{deg}\left(b_{i}\right)=(2(d-i+1),-2)$.

Let $B_{d}=k\left[Y_{d}\right]=k\left[a_{1}, \ldots, a_{d}, b_{1}, \ldots, b_{d}, c\right]$, a bigraded algebra with $\operatorname{deg}\left(a_{i}\right)=(2(d-i+1), 0)$, $\operatorname{deg}\left(b_{i}\right)=(2(d-i+1),-2)$ and $\operatorname{deg}(c)=(2,0)$.

There is a bigraded action of A_{d} on B_{d} by multiplication and a bigraded action of A_{d+1} on B_{d} given by multiplication preceded by the morphism of algebras

$$
f: A_{d+1} \rightarrow B_{d}, a_{i} \mapsto a_{i-1}-c a_{i} \text { and } b_{i} \mapsto b_{i-1}-c b_{i}
$$

where we put $a_{0}=b_{0}=b_{d+1}=0$ and $a_{d+1}=1$ in B_{d}.
Via the equivalences $\Gamma: D_{\mathbf{T}}^{b}\left(V_{d}\right.$-qcoh $) \xrightarrow{\sim} D_{\text {bigr }}^{b}\left(A_{d}\right.$-Mod), the functors E_{d} and F_{d} become

$$
\begin{gathered}
F_{d}=B_{d} \otimes_{A_{d}}-: D_{b i g r}^{b}\left(A_{d}-\mathrm{Mod}\right) \rightarrow D_{b i g r}^{b}\left(A_{d+1} \text {-Mod }\right) \\
E_{d}=B_{d} \otimes_{A_{d+1}}^{\mathbf{L}}-: D_{b i g r}^{b}\left(A_{d+1}-\mathrm{Mod}\right) \rightarrow D_{b i g r}^{b}\left(A_{d} \text {-Mod }\right) .
\end{gathered}
$$

Lemma 2.2. We have $\left[E_{d}\left(A_{d+1}\right)\right]=\frac{1}{1-v^{2}}\left[A_{d}\right]$ and $\left[F_{d}\left(A_{d}\right)\right]=\frac{\left(1-t^{-2} v^{2(d+1)}\right)\left(1-v^{2(d+1)}\right)}{1-v^{2}}\left[A_{d+1}\right]$.
Proof. We have $B_{d} \simeq A_{d} \otimes k[c]$ as bigraded A_{d}-modules and the first statement follows.
The second statement follows from Lemma 2.3 below.
Lemma 2.3. There is an exact sequence of bigraded $A_{d+1}-$ modules

$$
0 \rightarrow t^{-2} v^{2(d+1)} \frac{1-v^{2(d+1}}{1-v^{2}} A_{d+1} \rightarrow \frac{1-v^{2(d+1)}}{1-v^{2}} A_{d+1} \rightarrow B_{d} \rightarrow 0
$$

Proof. Let $C=k\left[a_{1}, \ldots, a_{d}, c^{\prime}, b_{1}, \ldots, b_{d}, c^{\prime \prime}\right]$. The morphism f is the composition of the following morphisms of algebras:

$$
\begin{aligned}
& f_{1}: k\left[a_{1}, \ldots, a_{d+1}, b_{1}, \ldots, b_{d+1}\right] \rightarrow k\left[a_{1}, \ldots, a_{d}, c^{\prime}, b_{1}, \ldots, b_{d+1}\right] \\
& b_{i} \mapsto b_{i}, a_{i} \mapsto \begin{cases}-c^{\prime} a_{1} & \text { for } i=1 \\
a_{i-1}-c^{\prime} a_{i} & \text { for } 1<i \leq d \\
a_{d}-c^{\prime} & \text { for } i=d+1\end{cases} \\
& f_{2}: k\left[a_{1}, \ldots, a_{d}, c^{\prime}, b_{1}, \ldots, b_{d+1}\right] \xrightarrow{\sim} k\left[a_{1}, \ldots, a_{d}, c^{\prime}, b_{1}, \ldots, b_{d+1}\right] \\
& a_{i} \mapsto a_{i}, c^{\prime} \mapsto c^{\prime}, b_{i} \mapsto \begin{cases}b_{i} & \text { for } i \leq d \\
b_{d+1}+c^{\prime} & \text { for } i=d+1\end{cases} \\
& f_{3}: k\left[a_{1}, \ldots, a_{d}, c^{\prime}, b_{1}, \ldots, b_{d+1}\right] \rightarrow C \\
& a_{i} \mapsto a_{i}, c^{\prime} \mapsto c^{\prime}, b_{i} \mapsto \begin{cases}-c^{\prime \prime} b_{1} & \text { for } i=1 \\
b_{i-1}-c^{\prime \prime} b_{i} & \text { for } 1<i \leq d \\
b_{d}-c^{\prime \prime} & \text { for } i=d+1\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& f_{4}: C \rightarrow k\left[a_{1}, \ldots, a_{d}, b_{1}, \ldots, b_{d}, c\right] \\
& a_{i} \mapsto a_{i}, b_{i} \mapsto b_{i}, c^{\prime} \mapsto c, c^{\prime \prime} \mapsto c .
\end{aligned}
$$

The first morphism makes $k\left[a_{1}, \ldots, a_{d}, c^{\prime}, b_{1}, \ldots, b_{d+1}\right]$ into a free $k\left[a_{1}, \ldots, a_{d+1}, b_{1}, \ldots, b_{d+1}\right]$ module with basis $\left(1, c^{\prime}, \ldots, c^{\prime d}\right)$.

The third morphism makes C into a free $k\left[a_{1}, \ldots, a_{d}, c^{\prime}, b_{1}, \ldots, b_{d+1}\right]$-module with basis $\left(1, c^{\prime \prime}, \ldots, c^{\prime \prime d}\right)$. The last morphism makes $k\left[a_{1}, \ldots, a_{d}, b_{1}, \ldots, b_{d}, c\right]$ fit into an exact sequence of C-modules

$$
0 \rightarrow C \xrightarrow{c^{\prime}-c^{\prime \prime}} C \xrightarrow{f_{4}} k\left[a_{1}, \ldots, a_{d}, b_{1}, \ldots, b_{d}, c\right] \rightarrow 0 .
$$

Let L_{1} (resp. L_{0}) be the free A_{d+1}-module with basis $\left(e_{i j}\right)_{0 \leq i, j \leq d}$ (resp. $\left.\left(f_{i j}\right)_{0 \leq i, j \leq d}\right)$. We have a commutative diagram of A_{d+1}-modules

where the structure of A_{d+1}-module on C comes from $f_{3} \circ f_{2} \circ f_{1}$, the one on $k\left[a_{1}, \ldots, a_{d}, b_{1}, \ldots, b_{d}, c\right]$ from $f_{4} \circ f_{3} \circ f_{2} \circ f_{1}$ and where

$$
\begin{gathered}
d_{0}\left(f_{i j}\right)=c^{i+j} \\
d_{1}\left(e_{i j}\right)= \begin{cases}f_{i+1, j}-f_{i, j+1} & \text { for } 0 \leq i, j<d \\
-\left(a_{1} f_{0 j}+a_{2} f_{1 j}+\cdots+a_{d+1} f_{d j}+f_{d, j+1}\right) & \text { for } i=d, 0 \leq j<d \\
b_{1} f_{i 0}+b_{2} f_{i 1}+\cdots+b_{d+1} f_{i d} & \text { for } j=d \\
\alpha_{1}\left(e_{i j}\right)=c^{\prime i} c^{\prime \prime j} & \\
\alpha_{0}\left(f_{i j}\right)=c^{\prime i} c^{\prime \prime j} & \end{cases}
\end{gathered}
$$

Note that d_{1} and d_{0} are morphisms of bigraded modules with

$$
\operatorname{deg}\left(e_{i j}\right)=\left\{\begin{array}{ll}
(2(i+j+1), 0) & \text { for } j \neq d \\
(2(i+d+1),-2) & \text { for } j=d
\end{array} \text { and } \operatorname{deg}\left(f_{i j}\right)=(i+j, 0)\right.
$$

The A_{d+1}-module L_{0} is generated by $\left\{d_{1}\left(e_{i j}\right)\right\}_{0 \leq i<d, 0 \leq j \leq d}$ and $\left(f_{i 0}\right)_{0 \leq i \leq d}$. It follows that the complex $0 \rightarrow L_{1} \xrightarrow{d_{1}} L_{0} \rightarrow 0$ is homotopy equivalent to a complex of the form

$$
0 \rightarrow \bigoplus_{0 \leq j \leq d} A_{d+1} e_{d, j} \rightarrow \bigoplus_{0 \leq i \leq d} A_{d+1} f_{i, d} \rightarrow 0
$$

The lemma follows.

3. 2-Representations

We construct now endomorphisms of F and F^{2}, leading to a structure of 2-representation.

- Let $\rho_{d}: Y_{d} \rightarrow \mathbf{A}^{1}$ be the projection map. It provides a morphim $k[X]=\Gamma\left(\mathcal{O}_{\mathbf{A}^{1}}\right) \rightarrow \Gamma\left(\mathcal{O}_{Y_{d}}\right)$, hence a morphism $k[X] \rightarrow \operatorname{End}\left(F_{d}\right)$.
- There is an action of \mathbf{G}_{a} on $V_{d} \times V_{d+1}$ given by $u \cdot\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\left((g, h),\left(g^{\prime}, h^{\prime}+u\right)\right)$. It provides a map $\operatorname{Lie}\left(\mathbf{G}_{a}\right)=k \rightarrow \Gamma\left(\mathcal{T}_{V_{d} \times V_{d+1}}\right)$ and we denote by ω^{\prime} the image of 1 , a vector field on $V_{d} \times V_{d+1}$.

The morphism $\phi_{d} \times \psi_{d}: Y_{d} \rightarrow V_{d} \times V_{d+1}$ is a closed immersion and we identify Y_{d} with its image. There is a canonical isomorphism

$$
\begin{equation*}
F_{d} \xrightarrow{\sim} \pi_{2 *}\left(\mathcal{O}_{Y_{d}} \otimes \pi_{1}^{*}(-)\right) \tag{1}
\end{equation*}
$$

where $\pi_{1}: V_{d} \times V_{d+1} \rightarrow V_{d}$ is the first projection and $\pi_{2}: V_{d} \times V_{d+1} \rightarrow V_{d+1}$ the second projection.
Let $\omega^{\prime \prime}$ be the image of ω^{\prime} by the composition of canonical maps

$$
\Gamma\left(\mathcal{T}_{V_{d} \times V_{d+1}} \otimes \mathcal{O}_{Y_{d}}\right) \rightarrow \Gamma\left(\mathcal{N}_{Y_{d} /\left(V_{d} \times V_{d+1}\right)}\right) \xrightarrow{\sim} \operatorname{Ext}_{\mathcal{O}_{V_{d} \times V_{d+1}}}^{1}\left(\mathcal{O}_{Y_{d}}, \mathcal{O}_{Y_{d}}\right) .
$$

Via the isomorphism (1), $\omega^{\prime \prime}$ defines an element $\omega \in \operatorname{Hom}\left(F_{d}, F_{d}[1]\right)$.

- There is an isomorphism

$$
V_{d} \times \mathbf{A}^{2} \xrightarrow{\sim} Y_{d} \times_{V_{d+1}} Y_{d+1}, \quad\left(\left(g, h, z_{0}, z_{0}^{\prime}\right) \mapsto\left(\left(g, h, z_{0}\right),\left(\left(z-z_{0}\right) g,\left(z-z_{0}\right) h, z_{0}^{\prime}\right)\right) .\right.
$$

There is a commutative diagram

for some maps ϕ_{d}^{\prime} and ψ_{d}^{\prime}, and where $\pi: \mathbf{A}^{2} \rightarrow \mathbf{A}^{2} / \mathfrak{S}_{2}$ is the quotient map.
Consequently, we obtain an isomorphism

$$
\begin{equation*}
F_{d+1} F_{d} \xrightarrow{\sim} \psi_{d *}^{\prime}\left(\left(\mathcal{O}_{V_{d}} \boxtimes \pi_{*}\left(\mathcal{O}_{\mathbf{A}^{2}}\right)\right) \otimes \phi_{d}^{\prime}(-)\right) . \tag{2}
\end{equation*}
$$

Let ∂ be the endomorphism of $k\left[X_{1}, X_{2}\right]=\Gamma\left(\mathcal{O}_{\mathbf{A}^{2}}\right)$ given by

$$
\partial(P)=\frac{P\left(X_{1}, X_{2}\right)-P\left(X_{2}, X_{1}\right)}{X_{2}-X_{1}} .
$$

It induces an endomorphism of $\pi_{*}\left(\mathcal{O}_{\mathbf{A}^{2}}\right)$, hence, via the isomorphism (2), an endomorphism T of $F_{d+1} F_{d}$.

The data of $\left(\left(E_{d}\right)_{d}, X, T\right)$ above gives rise to a 2-representation of $\mathfrak{s l}_{2}^{+}$, but it does not extend to a 2-representation of $\mathfrak{s l}_{2}$. But the data of $\left(\left(E_{d}\right)_{d}, X, T, \omega\right)$ gives rise to a 2-Verma module as defined by Naisse and Vaz (cf [NaiVa1] and [NaiVa2, Definition 4.1]).

Theorem 3.1. The functors E_{d}, F_{d} and the natural transformations X, ω, T define a 2 -Verma module for $\mathfrak{s l}_{2}$ on $\bigoplus_{d} \mathcal{T}_{d}$ equivalent to the universal 2-Verma module of [NaiVa1, §5.2].
Proof. We show that our construction is equivalent to the Naisse-Vaz universal Verma module [NaiVa1, §5.2].

Let $\Omega_{d}=\operatorname{Ext}_{A_{d}}^{*}\left(A_{d} /\left(b_{1}, \ldots, b_{d}\right), A_{d} /\left(b_{1}, \ldots, b_{d}\right)\right)$. The canonical Koszul isomorphism of graded algebras $\Lambda\left(b_{1}^{*}, \ldots, b_{d}^{*}\right) \xrightarrow{\sim} \operatorname{Ext}_{k\left[b_{1}, \ldots, b_{d}\right]}^{*}(k, k)$ induces an isomorphism of graded algebras

$$
\iota: k\left[a_{1}, \ldots, a_{d}\right] \otimes \Lambda\left(b_{1}^{*}, \ldots, b_{d}^{*}\right) \xrightarrow{\sim} \Omega_{d} .
$$

We denote by ω_{i} the image of $(-1)^{d+1-i} b_{d+1-i}^{*}$ in Ω_{d} and by x_{i} the image of $(-1)^{i} a_{d+1-i}$. We have $\Omega_{d}=k\left[x_{1}, \ldots, x_{d}\right] \otimes \Lambda\left(\omega_{1}, \ldots, \omega_{d}\right)$.

Consider the morphism of algebras $h: A_{d} \otimes A_{d+1} \rightarrow B_{d}, r \otimes s \mapsto r f(s)$. We put $a_{i}=a_{i} \otimes 1$, $b_{i}=b_{i} \otimes 1, a_{j}^{\prime}=1 \otimes a_{j}$ and $b_{j}^{\prime}=1 \otimes b_{j}$ for $1 \leq i \leq d$ and $1 \leq j \leq d+1$.

The morphism h is surjective, and its kernel is the ideal generated by $\tilde{b}_{i}=b_{i}^{\prime}+\tilde{c} b_{i}-b_{i-1}$ where $\tilde{c}=a_{d}-a_{d+1}^{\prime}$.

Let $R=k\left[a_{1}, \ldots, a_{d}, \tilde{c}\right] \subset A_{d} \otimes A_{d+1}$ and $I=\bigoplus_{1<i<d+1} R \tilde{b}_{i}$, an R-submodule of $L=$ $\bigoplus_{1 \leq i \leq d+1} R b_{i}^{\prime} \oplus \bigoplus_{1 \leq i \leq d} R b_{i}$. The morphism h restricts to a surjective morphism of algebras $S_{R}(\bar{L}) \rightarrow B_{d}$ with kernel generated by L.

The orthogonal of I in $\operatorname{Hom}_{R}(L, R)=\bigoplus_{1 \leq i \leq d+1} R b_{i}^{* *} \oplus \bigoplus_{1 \leq i \leq d} R b_{i}^{*}$ is

$$
I^{\perp}=\bigoplus_{1 \leq i \leq d+1} R\left(b_{i+1}^{\prime *}+b_{i}^{*}-\tilde{c} b_{i}^{\prime *}\right)
$$

Define

$$
\Omega_{d, d+1}=\operatorname{Ext}_{A_{d} \otimes A_{d+1}}^{*}\left(\left(A_{d} /\left(b_{1}, \ldots, b_{d}\right)\right) \otimes\left(A_{d+1} /\left(b_{1}, \ldots, b_{d+1}\right)\right), B_{d}\right) .
$$

The decomposition $A_{d} \otimes A_{d+1}=S_{R}(L) \otimes k\left[a_{1}^{\prime}, \ldots, a_{d}^{\prime}\right]$ induces an isomorphism

$$
\Omega_{d, d+1} \xrightarrow{\sim} \operatorname{Ext}_{S_{R}(L)}^{*}\left(S_{R}(L) /(L), B_{d}\right)
$$

hence

$$
\Omega_{d, d+1} \xrightarrow{\sim} \operatorname{Ext}_{S_{R}(L)}^{*}\left(S_{R}(L) /(L), S_{R}(L) /(I)\right) \xrightarrow{\sim} \Lambda_{R}\left(\operatorname{Hom}_{R}(L, R) / I^{\perp}\right) .
$$

Let ω_{i} be the element of $\Omega_{d, d+1}$ corresponding to the image of $(-1)^{d+2-i} b_{d+2-i}^{\prime *}$ in $\operatorname{Hom}_{R}(L, R) / I^{\perp}$. Let y_{i} be the image of $(-1)^{i} a_{d+1-i}$ in $\Omega_{d, d+1}$ and ξ the image of \tilde{c}. We have $\Omega_{d, d+1}=$ $k\left[y_{1}, \ldots, y_{d}, \xi\right] \otimes \Lambda\left(\omega_{1}, \ldots, \omega_{d+1}\right)$. The actions of Ω_{d} and Ω_{d+1} on $\Omega_{d, d+1}$ are given by multiplication preceded by morphisms of algebras

$$
\begin{gathered}
\Omega_{d} \rightarrow \Omega_{d, d+1}, x_{i} \mapsto y_{i}, \omega_{i} \mapsto \omega_{i}+\xi \omega_{i+1} \\
\Omega_{d+1} \rightarrow \Omega_{d, d+1}, x_{i} \mapsto y_{i}+\xi y_{i-1}, \omega_{i} \mapsto \omega_{i} .
\end{gathered}
$$

Let \mathcal{T}_{d}^{\prime} be the full triangulated subcategory of $D_{\text {bigr }}^{b}\left(\Omega_{d}\right)$ generated by objects $N \otimes k\left[x_{1}, \ldots, x_{d}\right]$ for $N \in \mathcal{C}$.

There is an equivalence of triangulated categories $R \operatorname{Hom}_{A_{d}}^{\bullet}\left(A_{d} /\left(b_{1}, \ldots, b_{d}\right),-\right): \mathcal{T}_{d} \xrightarrow{\sim} \mathcal{T}_{d}^{\prime}$. This equivalence intertwines the action of E_{d} and F_{d} with the action of $\Omega_{d, d+1} \otimes_{\Omega_{d}}$ - and $\Omega_{d, d+1} \otimes_{\Omega_{d+1}}-$. This shows our construction is equivalent to that of Naisse and Vaz.

4. Finite-dimensional Simple modules

We fix now $n \geq 0$. We define a simple 2-representation of $\mathfrak{s l}_{2}$ by defining a superpotential on the universal 2-Verma module and considering matrix factorizations.

Let $(g, h) \in V_{d}$. We have

$$
\frac{h\left(z^{-1}\right)}{g\left(z^{-1}\right)}=z \frac{b_{d}+b_{d-1} z+\cdots+b_{1} z^{d-1}}{1+a_{d} z+\cdots+a_{1} z^{d}}=z \sum_{i \geq 0}\left(b_{d} v_{i, d}+\cdots+b_{1} v_{i-d+1, d}\right) z^{i}
$$

for some polynomials functions $v_{i, d}$ of a_{1}, \ldots, a_{d} with $v_{0, d}=1$ and $v_{i, d}=0$ for $i<0$.
We define a morphism $W_{d, n}: V_{d} \times \mathbf{A}^{n} \rightarrow \mathbf{A}^{1}$ by

$$
W_{d, n}\left((g, h),\left(\gamma_{1}, \ldots, \gamma_{n}\right)\right)=\sum_{i=0}^{n} \gamma_{i+1}\left(b_{d} v_{i, d}+\cdots+b_{1} v_{i-d+1, d}\right)
$$

where we put $\gamma_{n+1}=1$.
Note that $W_{d+1, n} \circ\left(\psi_{d} \times \mathrm{id}\right)=W_{d, n} \circ\left(\phi_{d} \times \mathrm{id}\right)$ and we denote by $W_{d, n}$ that morphism $Y_{d} \times \mathbf{A}^{n} \rightarrow \mathbf{A}^{1}$. We endow $\mathbf{A}^{n}=\operatorname{Spec} k\left[\gamma_{1}, \ldots, \gamma_{n}\right]$ with an action of $\left(\mathbf{G}_{m}\right)^{2}$ with $\operatorname{deg}\left(\gamma_{i}\right)=$ $(2(n+1-i), 0)$. This makes $W_{d, n}$ into a homogeneous map of degree $(2(n+1),-2)$.

We denote by $\mathcal{T}_{d, n}$ the homotopy category of $\left(\mathbf{G}_{m}\right)^{2}$-equivariant matrix factorizations of $W_{d, n}$ on $V_{d} \times \mathbf{A}^{n}$. The functors E_{d} and F_{d} of $\S 2.2$ and $\S 2.4$ extend to functors between the categories $\mathcal{T}_{d, n}$ and $\mathcal{T}_{d+1, n}$.
Proposition 4.1. We have $\mathcal{T}_{d, n}=0$ if $d>n$.
The action of $[E]$ and $[F]$ on $\bigoplus_{d=0}^{n-1} \mathbf{Q} \otimes K_{0}\left(\mathcal{T}_{d, n}\right)$ give an action of $U_{q}\left(\mathfrak{s l}_{2}\right)$ and the corresponding representation is simple of dimension $n+1$.

The data of (E, F, T, X) define a 2 -representation of $\mathfrak{s l}_{2}$ on $\bigoplus_{d=0}^{n} \mathcal{T}_{d, n}$ equivalent to the homotopy category of bounded complexes of objects of the simple 2 -representation $\mathcal{L}(n)$ of [Rou2, §4.3.2].
Proof. If $d>n$, then

$$
W_{d, n}=b_{d}\left(\gamma_{1}+\sum_{i=1}^{n} \gamma_{i+1} v_{i, d}\right)+b_{d-1}\left(\gamma_{2}+\sum_{i=2}^{n} \gamma_{i+1} v_{i-1, d}\right)+\cdots+b_{d-n+1}\left(\gamma_{n}+v_{1, d}\right)+b_{d-n}
$$

As a consequence, the homotopy category of matrix factorizations $\mathcal{T}_{d, n}$ is 0 .
Assume now $d \leq n$. We have

$$
W_{d, n}=b_{d}\left(\gamma_{1}+\sum_{i=1}^{n} \gamma_{i+1} v_{i, d}\right)+b_{d-1}\left(\gamma_{2}+\sum_{i=2}^{n} \gamma_{i+1} v_{i-1, d}\right)+\cdots+b_{1}\left(\gamma_{d}+\sum_{i=d}^{n} \gamma_{i+1} v_{i-d+1, d}\right)
$$

Let $P_{n}=k\left[x_{1}, \ldots, x_{n}\right]$, a graded algebra with $\operatorname{deg}\left(x_{i}\right)=2$. Define

$$
A_{d, n}=\left(A_{d} \otimes k\left[\gamma_{1}, \ldots, \gamma_{n}\right]\right) /\left(\left\{b_{r}\right\}_{1 \leq r \leq d} \bigcup\left\{\gamma_{r}+\sum_{i=r}^{n} \gamma_{i+1} v_{i-r+1, d}\right\}_{1 \leq r \leq d}\right)
$$

The inclusion map induces an isomorphism

$$
k\left[a_{1}, \ldots, a_{d}\right] \otimes k\left[\gamma_{d+1}, \ldots, \gamma_{n}\right] \xrightarrow{\sim} A_{d, n}
$$

Composing with the inverse of the isomorphism

$$
k\left[a_{1}, \ldots, a_{d}, \gamma_{d+1}, \ldots, \gamma_{n}\right] \xrightarrow{\sim} P_{n}^{\mathfrak{S}_{d} \times \mathfrak{S}_{n-d}}, a_{i} \mapsto e_{d-i+1}\left(x_{1}, \ldots, x_{d}\right), \gamma_{i} \mapsto e_{n-i+1}\left(x_{d+1}, \ldots, x_{n}\right)
$$

we obtain an isomorphism of graded algebras

$$
P_{n}^{\mathfrak{S}_{d} \times \mathfrak{S}_{n-d}} \xrightarrow{\sim} A_{d, n} .
$$

We view $A_{d, n}$ as a \mathbf{Z}-graded algebra with $\operatorname{deg}\left(a_{i}\right)=2(d-i+1)$ and $\operatorname{deg} \gamma_{i}=2(n+1-i)$. We have an equivalence $D^{b}\left(A_{d, n}\right.$-modgr $) \xrightarrow{\sim} \mathcal{T}_{d, n}$.

Let $\mathcal{T}_{d, n}^{\prime}$ be the homotopy category of $\left(\mathbf{G}_{m}\right)^{2}$-equivariant matrix factorizations of $W_{d, n}$ on $Y_{d} \times \mathbf{A}^{n}$. Let $B_{d, n}^{\prime}=A_{d, n} \otimes k[c]$. We have an equivalence $D^{b}\left(B_{d, n}^{\prime}-\operatorname{modgr}\right) \xrightarrow{\sim} \mathcal{T}_{d, n}^{\prime}$. Let $B_{d, n}=B_{d, n}^{\prime} \otimes_{A_{d+1}\left[\gamma_{1}, \ldots, \gamma_{n}\right]} A_{d+1, n}$. We have

$$
B_{d, n}=B_{d, n}^{\prime} /\left(\gamma_{d+1}+\sum_{i=d+1}^{n} \gamma_{i+1} \sum_{j=0}^{i-d} v_{j, d} c^{i-j-d}\right)
$$

and the inclusion map induces an isomorphism

$$
k\left[a_{1}, \ldots, a_{d}, c, \gamma_{d+2}, \ldots, \gamma_{n}\right] \xrightarrow{\sim} B_{d, n} .
$$

Composing with the inverse of the isomorphism

$$
\begin{gathered}
k\left[a_{1}, \ldots, a_{d}, c, \gamma_{d+2}, \ldots, \gamma_{n}\right] \xrightarrow{\sim} P_{n}^{\mathfrak{G}_{d} \times \mathfrak{G}_{n-d-1}} \\
a_{i} \mapsto e_{d-i+1}\left(x_{1}, \ldots, x_{d}\right), c \mapsto-x_{d+1}, \gamma_{i} \mapsto e_{n-i+1}\left(x_{d+2}, \ldots, x_{n}\right)
\end{gathered}
$$

we obtain an isomorphism of graded algebras

$$
P_{n}^{\mathfrak{G}_{d} \times \mathfrak{S}_{n-d-1}} \xrightarrow{\sim} B_{d, n} .
$$

There is a commutative diagram

We deduce that there is a commutative diagram

It follows that $\mathcal{T}_{d, n}$ is equivalent to the bounded derived category of finitely generated graded $\left(k\left[a_{1}, \ldots, a_{d}\right] \otimes k\left[\gamma_{d+1}, \ldots, \gamma_{n}\right]\right)$-modules, where $\operatorname{deg}\left(a_{i}\right)=2(d-i+1)$ and $\operatorname{deg}\left(\gamma_{i}\right)=2(n+1-i)$. Similarly, the homotopy category of $\left(\mathbf{G}_{m}\right)^{2}$-equivariant matrix factorizations of $W_{d, n}$ on $Y_{d} \times \mathbf{A}^{n}$ is equivalent to the bounded derived category of finitely generated graded $\left(k\left[a_{1}, \ldots, a_{d}\right] \otimes\right.$ $\left.k\left[\gamma_{d+1}, \ldots, \gamma_{n}\right]\right)$-modules, where $\operatorname{deg}\left(a_{i}\right)=2(d-i+1)$ and $\operatorname{deg}\left(\gamma_{i}\right)=2 i$. We recover the usual construction of the (homotopy category of the) simple 2-representation $\mathcal{L}(n)$ of $\mathfrak{s l}_{2}$ (cf [Rou1, §5.2] and [Rou2, §4.3.2]).

This construction is a Koszul dual counterpart of the construction of [NaiVa1, §7] based on adding a differential.

References

[Bra] A. Braverman, Instanton counting via affine Lie algebras I. Equivariant J-functions of (affine) flag manifolds and Whittaker vectors, in "Algebraic Structures and Moduli Spaces", pp. 113-132, CRM Proc. Lecture Notes, vol. 38Amer. Math. Soc., 2004.
[BraFi] A. Braverman and M. Finkelberg, Finite difference quantum Toda lattice via equivariant K-theory, Transform. Groups 10 (2005), 363-386.
[CauKaLi] S. Cautis, J. Kamnitzer and A. Licata, Coherent sheaves and categorical $\mathfrak{s l}_{2}$-actions, Duke Math. J. 154 (2010), 135-179.
[FeiFiKuMi] B. Feigin, M. Finkelberg, A. Kuznetsov and I. Mirković, Semi-infinite Flags II. Local and global intersection cohomology of quasimaps' spaces, in "Differential topology, infinite-dimensional Lie algebras, and applications", pp. 113-148, Amer. Math. Soc., 1999.
[MauOk] D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, Astérisque 408 (2019).
[NaiVa1] G. Naisse and P. Vaz, An approach to categorification of Verma modules, Proc. London Math. Soc. 117 (2018), 1181-1241.
[NaiVa2] G. Naisse and P. Vaz, On 2-Verma modules for quantum $\mathfrak{s l}_{2}$, Selecta Math. 24 (2018), 3763-3821.
[Rou1] R. Rouquier, 2-Kac-Moody algebras, preprint arXiv:0812.5023.
[Rou2] R. Rouquier, Quiver Hecke algebras and 2-Lie algebras, Algebra Colloquium 19 (2012), 359-410.
[ShaVarVas] P. Shan, M. Varagnolo and E. Vasserot, Coherent categorification of quantum loop algebras : the SL(2) case, J. reine angew. Math., 2022.
[VarVas] M. Varagnolo and E. Vasserot, K-theoretic Hall algebras, quantum groups and super quantum groups, preprint arXiv:2011.01203.

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: rouquier@math.ucla.edu

