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Abstract. We show that the category O for a rational Cherednik alge-
bra of type A is equivalent to modules over a q-Schur algebra (parameter
/∈ 1

2
+Z), providing thus character formulas for simple modules. We give

some generalization to Bn(d). We prove an “abstract” translation prin-
ciple. These results follow from the unicity of certain highest weight
categories covering Hecke algebras. We also provide a semi-simplicity
criterion for Hecke algebras of complex reflection groups and show the
isomorphism type of Hecke algebras is invariant under field automor-
phisms acting on parameters.
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1. Introduction

This paper (and its sequel) develops a new aspect of the representation theory of
Hecke algebras of complex reflection groups, namely the study of quasi-hereditary
covers, analogous to q-Schur algebras in the symmetric groups case. An impor-
tant point is the existence of a family of such covers: it depends on the choice of
“logarithms” of the parameters.

The theory we develop is particularly interesting when the ring of coefficients
is not specialized: it blends features of representation theory over C at roots of
unity and features away from roots of unity, where Lusztig’s families of characters
show up (in that respect, it is a continuation of [52], where combinatorial objects
are given homological definitions, which led to generalizations from real to complex
reflection groups).

The main idea of this first paper is the unicity of certain types of quasi-hereditary
covers. This applies in particular to the category O of rational Cherednik algebras:
we show that, in type A, when the parameter is not in 1

2 + Z, the category O
is equivalent to the module category of a q-Schur algebra, solving a conjecture of
[36]. As a consequence, we obtain character formulas for simple objects of O in this
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case. We also obtain a general translation principle for category O of a Cherednik
algebra.

In Section 3, we introduce a function c on the set of irreducible characters of W ,
with values linear functions of the logarithms of the parameters and we construct
an order on the set of irreducible characters of W . This is suggested by [27, Lemma
2.5] (“roots of unity” case) as well as by [47] (“away from roots of unity”).

In Section 4, we develop a general theory of (split) highest weight categories
over a commutative ring. This is a categorical version of Cline–Parshall–Scott’s
integral quasi-hereditary algebras. We study covers of finite dimensional algebras
by highest weight categories and consider different levels of “faithfulness”. The
simplest situation is that of a “double centralizer Theorem”. The key results are
Proposition 4.42 (deformation principle) and Theorem 4.49 (unicity).

Section 5 shows that category O for Cherednik algebras gives a cover of Hecke
algebras of complex reflection groups, and that it has the faithfulness property
when the rank 1 parabolic Hecke subalgebras are semi-simple. This provides a
translation principle for category O. We also give a simple criterion for semi-
simplicity of Hecke algebras in characteristic 0, generalizing the usual property
for Coxeter groups and the “one-parameter case”, that the algebra is semi-simple
if that parameter is not a root of unity (Theorem 3.5). We prove that rescaling
the parameters by a positive integer (without affecting “denominators”) doesn’t
change category O, up to equivalence, and that the Hecke algebra is unchanged,
up to isomorphism of C-algebras, by field automorphisms acting on parameters. In
the last part, we describe blocks with “defect 1”.

Finally, in Section 6, we consider the case W = Bn(d). We show that, for
a suitable choice of “logarithms of parameters”, the category O is equivalent to
modules over Dipper–James–Mathas q-Schur algebra (Theorem 6.8). Otherwise,
we obtain new q-Schur algebras. Putting our work together with Yvonne’s [60]
suggests that the decomposition matrices should be given by Uglov’s canonical
bases of the level d Fock spaces.

Relations between Kazhdan–Lusztig theory and modular representations at roots
of unity have been investigated by various authors [31], [35], [32], [42], [41], and
[24], [22], [23], whose “integral” approach influenced our Section 4. We hope our
approach provides some new insight.

The second part will deal with integral aspects, bad primes and dualities and will
address the relations between the representation theory “at t = 0” of the rational
Cherednik algebra and Lusztig’s asymptotic Hecke algebra. We will discuss more
thoroughly the case of finite Coxeter groups and present a number of conjectures.

Acknowledgements. I thank Susumu Ariki, Steve Donkin, Karin Erdmann, Pavel
Etingof, Victor Ginzburg and Bernard Leclerc for useful discussions.

2. Notations

Let k be a commutative ring and A a k-algebra. We denote by A-mod the
category of finitely generated A-modules and by A-proj the category of finitely
generated projective A-modules. We write ⊗ for ⊗k. Let M be a k-module. We
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put M∗ = Homk(M, k) and given n a non-negative integer, we write M⊕n for Mn,
the direct sum of n copies of M , when there is a risk of confusion.

Let k′ be a commutative k-algebra. We put k′M = k′⊗M . We put k′(A-mod) =
(k′A)-mod. We denote by Irr(A) the set of isomorphism classes of simple A-
modules. If m is a maximal ideal of k, then we put M(m) = (k/m)M , etc. Given
B another k-algebra, we write (A-mod) ⊗ (B-mod) for (A⊗ B)-mod.

Let A be an abelian category. We denote by Db(A) the derived category of
bounded complexes of objects of A. We denote by A-proj the full subcategory of
A of projective objects. Given I a set of objects of A, we denote by AI the full
exact subcategory of A of I-filtered objects, i. e., objects that have a finite filtration
whose successive quotients are isomorphic to objects of I.

Given G a finite group, we denote by Irr(G) the set of irreducible (complex)
characters of G.

Let Λ be a set. Given 61 and 62 two orders on Λ, we say that 61 refines 62

if λ 62 λ
′ implies λ 61 λ

′. Fix an order on Λ. A subset I of Λ is an ideal (resp.
a coideal) if λ′ 6 λ (resp. λ 6 λ′) and λ ∈ I imply λ′ ∈ I. Given λ ∈ Λ, we put
Λ<λ = {λ′ ∈ Λ: λ′ < λ}, etc.

3. Parameters for Hecke Algebras

3.1. Definitions

3.1.1. Hecke algebra. Let W be a finite reflection group on a complex vector space
V . Let A be the set of reflecting hyperplanes of W and for H ∈ A, let WH be the
pointwise stabilizer of H in W , let eH = |WH |, and let oH be the cardinality of
W (H) (= orbit of H under W ).

Let U =
∐

H∈A/W Irr(WH). We have a bijection Z/eH
∼−→ Irr(WH), j 7→

detj |WH
, and we denote by (H, j) the corresponding element of U . Let Gm be

the multiplicative group over Z. Let T = (Gm)U and k = Z[T] = Z[{x±1
u }u∈U ].

Let Vreg = V −
⋃

H∈AH, let x0 ∈ Vreg, and let BW = π1(Vreg/W, x0) be the
braid group ofW . Let H be the Hecke algebra ofW over k [8, Section 4.C], quotient
of k[BW ] by the relations

∏

06j<eH

(σH − xH,j) = 0.

There is one such relation for each H ∈ A. Here, σH is an sH -generator of the
monodromy around H, where sH is the reflection around H with determinant
e2iπ/eH .

In the rest of the paper, we make the following assumption, which is known to
hold for all but finitely many irreducible complex reflection groups, for which it is
conjectured to be true [8, Section 4.C] (cf. [29, Section 6] for a proof of a weak
version of the conjecture, when dimV = 2).

Hypothesis 1. The algebra H is free over k, of rank |W |.

3.1.2. Specialization. Let k be a commutative ring. A parameter for W is an ele-
ment x• = {xu} of T(k). This is the same data as a morphism of groupsX(T) → k×

or a morphism of rings k → k, xu 7→ xu.
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Let m = lcm({eH}H∈A) and Φm(t) ∈ Z[t] be the m-th cyclotomic polynomial.
Let km = Z[t]/(Φm(t)). We will identify km with its image through the embedding
km → C, t 7→ e2iπ/m.

The canonical morphism k[BW ] → k[W ], σH 7→ sH , induces an isomorphism
km ⊗k H ∼−→ km[W ] where the specialization k → km is given by

ρ = {tjm/eH}(H,j)∈U ∈ T(km).

It is convenient to shift the elements of T by ρ. We put qH,j = xH,jt
−jm/eH ∈

km[T]. Given a specialization km[T] → k, we denote by q• the image of q•. We
put H(q•) = kH.

The algebra kmH is a deformation of km[W ]. It follows that C(T)H is semi-
simple. Let K be a field extension of C(T) such that KH is split semi-simple. Let
S be a local C[T]-subalgebra of K, integrally closed in K, and whose maximal ideal
contains {qu − 1}u∈U . Then we have a canonical isomorphism Irr(W ) ∼−→ Irr(KH)
(“Tits deformation Theorem”). More generally, let k be a field such that kH is split
semi-simple, together with an integrally closed local km[ 1

|W | ][T]-subalgebra S of k

whose maximal ideal contains {qu−1}u∈U . Then we have a canonical isomorphism
Irr(W ) ∼−→ Irr(kH), χ 7→ χk.

By [48, Corollary 4.8], if the representation V of W is defined over a subfield K0

of C and the group of roots of unity in K0 is finite of order l, then K0({q
1/l
u }u∈U )

is a splitting field for H. We choose S = K0[{q
1/l
u }]

(q
1/l
u −1)u

to define the bijection

Irr(W ) ∼−→ Irr(K0({q
1/l
u }u∈U )H).

Remark 3.1. One could also work with the smaller coefficient ring Z[{au}][{a
±1
H,0}]

instead of k and define H with the relations σeH

H + aH,eH−1
σeH−1

H + · · ·+ aH,0 = 0.

3.2. Logarithms of the parameters.

3.2.1. Function c. Let t be the Lie algebra of T over km. Let {hu}u∈U be the basis
of X(t) giving the isomorphism

∑
u hu : t ∼−→ kU

m corresponding to the isomorphism∑
u qu : T(km) ∼−→ Gm(km)U . We denote by tZ =

⊕
u h−1

u (Z) the corresponding
Z-Lie subalgebra of t.

Let χ ∈ Irr(W ). We put

nH,j(χ) =
oHeH

χ(1)
〈χ|WH

, detj |WH
〉.

This is the scalar by which
∑

H′∈W (H),w∈WH′
det(w)−jw acts on an irreducible

representation of W with character χ. In particular, this is a non-negative integer.
We define a map c : Irr(W ) → X(t) by

χ 7→ cχ =
∑

(H,j)∈U

nH,j(χ)hH,j .

We also put

c′χ =
∑

(H,j)∈U

nH,j(χ)(hH,j − hH,0) = cχ −
∑

H∈A/W

oHeHhH,0.

So, c′χ = 0 if and only if χ is the trivial character.
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3.2.2. Lift. Let k be a commutative ring and q• ∈ (k×)U . Let Γ be the subgroup
of k× generated by {qu}u∈U . We denote by Γtors its subgroup of elements of finite
order.

Let Γ̃ be a free abelian group together with a surjective morphism exp: Γ̃ → Γ
and an isomorphism Z ∼−→ ker(exp):

0 → Z → Γ̃
exp
−−→ Γ → 0.

Let us fix an order on Γ̃ with the following properties:

• it extends the natural order on Z

• it is compatible with the group law
• if x /∈ Z and x > 0, then x+n > 0 for all n ∈ Z, i. e., the order on Γ̃ induces

an order on Γ.

We define the coarsest order to be the one given by x > 0 if and only if x ∈ Z>0.

Let h• ∈ Γ̃ ⊗Z tZ with q• = exp(h•): this is the data of {hu} ∈ Γ̃U with qu =

exp(hu). To h• corresponds a morphism X(t) → Γ̃. We denote by c : Irr(W ) → Γ̃
the map deduced from c.

Let π ∈ BW be the element given by the loop t ∈ [0, 1] 7→ e2iπt. This is a central
element of BW and we denote by Tπ its image in H.

We have χk(Tπ) = exp(cχ) [9, Proposition 4.16]. Cf. also [7, Section 1] for a
more detailed discussion.

Remark 3.2. Note that given Γ, there exists always Γ̃ as above, when k is a
domain: take Γ = Γtors ×L with L free and g a generator of Γtors. Let Γ̃ = 〈g̃〉×L.

Define exp by g̃ 7→ g and as the identity on L. The coarsest order on Γ̃ satisfies the
conditions above.

Example 3.3. Assume the qu’s are roots of unity and k is a domain. Then Γ is a
finite cyclic group and Γ̃ is free of rank 1. The order on Γ̃ is the coarsest order.

3.2.3. Order on Irr(W ). We define now an order on Irr(W ). Let χ, χ′ ∈ Irr(W ).
We put χ > χ′ if cχ < cχ′ (equivalently, c′χ < c′χ′).

3.3. Change of parameters

3.3.1. Twist. Let W∧ = Hom(W, C×) be the group of one-dimensional characters
of W . We have an isomorphism given by restriction W∧ ∼−→

(∏
H∈A Irr(WH)

)
/W .

The group W∧ acts by multiplication on U , and this gives an action on km = km⊗Z

k. Let ξ ∈W∧. The action of ξ on km is given by qH,j 7→ qH,j+rH
, where ξ|WH

=
detrH |WH

. It extends to an automorphism of km-algebras km[BW ] ∼−→ km[BW ],
σH 7→ ξ(sH)−1σH . It induces automorphisms of km-algebras kmH ∼−→ kmH and
km[W ] ∼−→ km[W ], w 7→ ξ(w)−1w for w ∈W .

There is a similar action of ξ on X(t) given by hH,j 7→ hH,j+rH
. We denote by

θξ these automorphisms induced by ξ. We have θξ(cχ) = cχ⊗ξ.

3.3.2. Permutation of the parameters. ConsiderG=
∏

H∈A/W S(Irr(WH))⊂S(U).

It acts on T, hence on k. Let g ∈ G. We denote by kg the ring k viewed as a
k-module by letting a ∈ k act by multiplication by g(a). There is an isomorphism
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of k-algebras H ∼−→ kgH, σH 7→ σH , a 7→ g(a) for a ∈ k. The action on t is given

by hH,j 7→ hH,g(j) + g(j)−j
eH

(we view g as an automorphism of {0, . . . , eH − 1}).

Let K = C({q
1/l
u }u). We extend the action of G to an action by C-algebra

automorphisms on K: the element g sends q
1/l
H,j to q

1/l
H,g(j)e

2iπ(g(j)−j)/(leH). We

deduce an action (by ring automorphisms) on KH fixing the image of BW . The
action of G on Irr(KH) induces an action on Irr(W ).

3.3.3. Normalization. Consider a map f : A/W → k×. Let q′
•

be given by q′H,j =

f(H)qH,j . Let k′ be k as a ring, but viewed as a k-algebra through q′
•
. Then we

have an isomorphism of k-algebras kH ∼−→ k′H, TH 7→ f(H)−1TH (here, TH is the
image of σH).

So, up to isomorphism, kH depends only on q• modulo the “diagonal” subgroup
(Gm)A/W of T. In particular every Hecke algebra over k is isomorphic to one where
qH,0 = 1 for all H ∈ A.

Similarly, consider a map f̃ : A/W → Γ̃. Put h′H,j = f̃(H) + hH,j . Then

c′χ|h•=h′
•

= c′χ|h•=h•
: we can reduce to the study of the order on Irr(W ) to the

case where hH,0 = 0 for all H.

Remark 3.4. Assume there is κ ∈ Γ̃ with hH,j = 0 for all H and j 6= 0 and

hH,0 = κ (“special case”). Then c′χ = −N(χ)+N(χ∗)
χ(1) κ, where N(χ) is the derivative

at 1 of the fake degree of χ (cf. [9, Section 4.B]).
Assume furthermore that W is a Coxeter group. Let aχ (resp. Aχ) be the

valuation (resp. the degree) of the generic degree of χ. Then N(χ)+N(χ∗)
χ(1) = aχ +Aχ

[9, 4.21], hence c′χ = −(aχ +Aχ)κ.

3.4. Semi-simplicity. Let us close this part with a semi-simplicity criterion for
Hecke algebras of complex reflection groups over a field of characteristic 0. It
generalizes the classical idea for Coxeter groups, that, in the equal parameters case
((qH,0, qH,1) = (q, −1)), the Hecke algebra is semi-simple if q is not a non-trivial
root of unity.

Theorem 3.5. Let k → k be a specialization with k a characteristic 0 field. Assume

that Γtors = 1. Then kH is semi-simple.

The proof uses rational Cherednik algebras and will be given in Section 5.2.1.

In general, using the action of Tπ (cf. Section 3.2.2), we have the following weaker
statement:

Proposition 3.6. Let R be a local commutative noetherian k-algebra with field of

fractions K and residue field k. Assume KH is split semi-simple.

If χK and χ′
K are in the same block of RH, then cχ − cχ′ ∈ Z.

4. Quasi-Hereditary Covers

4.1. Integral highest weight categories. In this part, we define and study high-
est weight categories over a commutative noetherian ring (extending the classical
notion for a field). This matches the definition of split quasi-hereditary algebras
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[14]. In the case of a local base ring, a different but equivalent approach is given in
[25, Section 2] (cf. also loc. cit. for comments on the general case).

4.1.1. Reminders. Let k be a commutative noetherian ring. Let A be a finite pro-
jective k-algebra (i. e., a k-algebra, finitely generated and projective as a k-module).
Let C = A-mod.

Let us recall some basics facts about projectivity.

Let M be a finitely generated k-module. The following assertions are equivalent:

• M is a projective k-module.
• kmM is a projective km-module for every maximal ideal m of k.
• Tork

1(k/m, M) = 0 for every maximal ideal m of k.

Let M be a finitely generated A-module. The following assertions are equivalent:

• M is a projective A-module.
• kmM is a projective kmA-module for every maximal ideal m of k.
• M is a projective k-module and M(m) is a projective A(m)-module for

every maximal ideal m of k.
• M is a projective k-module and Ext1A(M, N) = 0 for all N ∈ C ∩ k-proj.

We say that a finitely generated A-module M is relatively k-injective if it is a
projective k-module and Ext1C(N, M) = 0 for all N ∈ C∩k-proj. So, M is relatively
k-injective if and only if M is a projective k-module and M∗ is a projective right
A-module.

4.1.2. Heredity ideals and associated modules.

Definition 4.1. An ideal J of A is an indecomposable split heredity ideal [14,
Definition 3.1] if the following conditions hold

(i) A/J is projective as a k-module
(ii) J is projective as a left A-module
(iii) J2 = J
(iv) EndA(J) is Morita equivalent to k.

Remark 4.2. Note that a split heredity ideal, as defined in [14, Definition 3.1],
is a direct sum of indecomposable split heredity ideals, corresponding to the de-
composition of the endomorphism ring into a product of indecomposable algebras.
Note further that J is a split heredity ideal for A if and only if it is a split heredity
ideal for the opposite algebra Aopp [14, Corollary 3.4].

Given L an A-module, we denote by

τL : L⊗EndA(L) HomA(L, A) → A, l ⊗ f 7→ f(l)

the canonical morphism of (A, A)-bimodules.
Given P an A-module, we define similarly τ ′L,P : L⊗ HomA(L, P ) → P .

Lemma 4.3. Let L be a projective A-module. Then J = im τL is an ideal of A and

J2 = J .
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Proof. Since τL is a morphism of (A, A)-bimodules, it is clear that J is an ideal of
A. Let E = EndA(L) and L∨ = HomA(L, A). We have a commutative diagram

L⊗E L∨ ⊗A L⊗E L∨

τL⊗τL

∼

l⊗f⊗l′⊗f ′ 7→l⊗f(−)l′⊗f ′

L⊗E EndA(L) ⊗E L∨

l⊗φ⊗f ′ 7→f ′(φ(l))

A⊗A A = A

where the horizontal arrow is an isomorphism since L is projective. The image in
A of L⊗E idL ⊗EL

∨ is equal to J and the diagram shows it is contained in J2. �

Lemma 4.4. Let J be an ideal of A which is projective as a left A-module and

such that J2 = J .

Let M be an A-module. Then HomA(J, M) = 0 if and only if JM = 0.

Proof. Consider m ∈ M with Jm 6= 0. The morphism of A-modules J → M ,
j 7→ jm is not zero. This shows the first implication. The image of a morphism of
A-modules J →M is contained in JM , since J2 = J . This proves the lemma. �

Lemma 4.5. Let L be a projective object of C which is a faithful k-module. The

following assertions are equivalent :

(i) τ ′L,P : L⊗HomC(L, P ) → P is a split injection of k-modules for all projec-

tive objects P of C;
(ii) τ ′L,A : L⊗ HomC(L, A) → A is a split injection of k-modules ;

(iii) k ∼−→ EndC(L) and given P a projective object of C, then there is a subobject

P0 of P such that

• P/P0 is a projective k-module,

• HomC(L, P/P0) = 0, and

• P0 ≃ L⊗ U for some U ∈ k-proj.

Proof. The equivalence between (i) and (ii) is clear.
Assume (i). Then τ ′L,L : L ⊗ EndA(L) → L is injective. Since it is clearly

surjective, it is an isomorphism. Since L is a progenerator for k, we obtain k ∼−→
EndA(L). Let P be a projective object of C. Let P0 = im τ ′L,P , a direct summand
of P as a k-module. The map

HomA(L, τ ′L,P ) : HomA(L, L⊗ HomA(L, P )) → HomA(L, P )

is clearly surjective, hence HomA(L, P/P0) = 0. This proves (iii).
Conversely, assume (iii). Let P be a projective object of C. The canonical map

HomA(L, P0) → HomA(L, P ) is an isomorphism. We have canonical isomorphisms
HomA(L, L⊗U) ∼−→ EndA(L)⊗U ∼−→ U . So, τ ′L,P is injective with image P0 and (i)
holds. �

Remark 4.6. Note that if k has no non-trivial idempotent, then every non-zero
projective k-module is faithful.

Let M(C) be the set of isomorphism classes of projective objects L of C satisfying
the equivalent assertions of Lemma 4.5.
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Let Pic(k) be the group of isomorphism classes of invertible k-modules. Given
F ∈ Pic(k) and L ∈ M(C), then L⊗ F ∈ M(C). This gives an action of Pic(k) on
M(C).

Proposition 4.7. There is a bijection from M(C)/Pic(k) to the set of indecom-

posable split heredity ideals of A given by L 7→ im(τL).
Furthermore, the canonical functor (A/ im τL)-mod → A-mod induces an equiv-

alence between (A/ im τL)-mod and the full subcategory of C of objects M such that

HomC(L, M) = 0.

Proof. We will prove a more precise statement. We will construct inverse maps
α, β between M(C) and the set of isomorphism classes of pairs (J, P ), where J is
an indecomposable split heredity ideal of A and P is a progenerator for EndA(J)
such that k ∼−→ EndEndA(J)(P ). Here, we say that two pairs (J, P ) and (J ′, P ′) are
isomorphic if J ′ = J and P ′ ≃ P .

Let L ∈M(C), let J = im τL and let B = EndA(J). By assumption, A/J is a pro-
jective k-module. Also, J2 = J by Lemma 4.3. Note that HomA(L, A) is a faithful
projective k-module. Since L⊗HomA(L, A) ≃ J , it follows that J is a projective A-
module. Also, Endk(HomA(L, A)) ∼−→ EndA(J) because k ∼−→ EndA(L). This gives
HomA(L, A) a structure of right B-module. Let P = Homk(HomA(L, A), k). This
is a progenerator for B and k ∼−→ EndB(P ). We have obtained a pair (J, P ) = α(L)
as required.

Consider now a pair (J, P ). Let B = EndA(J). Let L = J ⊗B P , a projective
A-module. We have k ∼−→ EndB(P ) ∼−→ EndA(L). Let i : J → A be the inclusion
map. There is p ∈ P and f ∈ HomB(P, HomA(J, A)) such that f(p) = i. Let g ∈
HomA(J⊗BP, A) be the adjoint map. Given j ∈ J , we have τJ⊗BP (j⊗B p⊗g) = j.
So, J ⊂ im τL. Finally, we have HomA(L, A/J) ∼−→ HomB(P, HomA(J, A/J)).
By Lemma 4.4, we have HomA(J, A/J) = 0, hence HomA(L, A/J) = 0. So,
im(τL) ⊂ J , hence im(τL) = J . We have an isomorphism of right B-modules
HomB(P, B) ≃ Homk(P, k) by Morita theory. We have EndA(J) ∼−→ HomA(J, A)
since HomA(J, A/J) = 0. So, we have isomorphism of right B-modules

HomA(L, A) ≃ HomB(P, HomA(J, A)) ≃ HomB(P, B) ≃ Homk(P, k).

We deduce

J ≃ J ⊗B P ⊗ Homk(P, k) ∼−→ L⊗ HomA(L, A).

Now, τL : L⊗HomA(L, A) → J is an isomorphism, since it is a surjection between
two isomorphic finitely generated projective k-modules. We have constructed L =
β(J, P ) ∈ M(C) and we have proved that βα = id. Since HomA(L, A) ⊗B P ≃
Homk(P, k) ⊗B P ≃ k, it follows that αβ = id.

The last assertion of the Proposition is an immediate consequence of Lemma
4.4. �

Remark 4.8. From the previous theorem, we see that (A/ im τL)-mod is a Serre
subcategory of A-mod (i. e., closed under extensions, subobjects and quotients).

Let us now study the relation between projective A-modules and projective
(A/J)-modules.
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Lemma 4.9. Let L ∈M(C) and J = im τL.

Given P ∈ C-proj, then im τ ′L,P = JP and P/JP is a projective A/J-module.

Conversely, let Q ∈ (A/J)-proj. Let U ∈ k-proj and f : U → Ext1A(Q, L) be a

surjection. Let 0 → L ⊗ U∗ → P → Q → 0 be the extension corresponding to f
via the canonical isomorphism Homk(U, Ext1A(Q, L)) ∼−→ Ext1A(Q, L ⊗ U∗). Then

P ∈ C-proj.

Proof. The first assertion reduces to the case P = A, where it is clear.
Let us now consider the second assertion. It reduces to the case Q = (A/J)n

for some positive integer n. The canonical map An → (A/J)n factors through
φ : An → P . Let ψ = φ+can: An⊕L⊗U∗ → P andN = kerψ. Then ψ is surjective
and there is an exact sequence of A-modules 0 → N → J⊕n⊕L⊗U∗ → L⊗U∗ → 0.
Such a sequence splits, hence N ≃ L ⊗ V for some V ∈ k-proj. By construction,
Ext1A(P, L) = 0, so Ext1A(P, N) = 0. It follows that ψ is a split surjection, hence
P is projective. �

The following lemma shows that M(C) behaves well with respect to base change.

Lemma 4.10. Let L be an object of C. Let R be a commutative noetherian k-
algebra. If L ∈M(C), then RL ∈M(RC).

The following assertions are equivalent :

(i) L ∈M(C);
(ii) kmL ∈M(kmC) for every maximal ideal m of k;
(iii) L is projective over k and L(m) ∈ M(C(m)) for every maximal ideal m

of k.

Proof. There is a commutative diagram

RL⊗R HomRA(RL, RA)
τ ′

RL,RA

RA

R(L⊗ HomA(L, A))

Rτ ′
L,A

∼

This shows the first assertion.
Assume (ii). Since kmL is a projective kmA-module for every m, it follows that L

is projective A-module. We obtain also that τ ′L,A is injective and that its cokernel

is projective over k. So, (ii)⇒ (i).
Assume (iii). Then L is a projective A-module. Also, τ ′L,A is injective. The exact

sequence 0 → L⊗HomA(L, A) → L→ coker τ ′L,A → 0 remains exact after tensoring

by k/m for every m, hence Tork
1(k/m, coker τ ′L,A) = 0 for all m, so coker τ ′L,A is

projective over k. Hence, (iii)⇒ (i).
Finally, (i)⇒ (ii) and (i)⇒ (iii) are special cases of the first part of the lemma.

�

4.1.3. Definition. Let C be (a category equivalent to) the module category of a
finite projective k-algebra A. Let ∆ be a finite set of objects of C together with a
poset structure.
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Given Γ an ideal of ∆, we denote by C[Γ] the full subcategory of C of objects M
such that Hom(D, M) = 0 for all D ∈ ∆ \ Γ.

We put ∆̃ = {D ⊗ U : D ∈ ∆, U ∈ k-proj}. We put the order on ∆̃ given by
D ⊗ U < D′ ⊗ U ′ if D < D′. We also put ∆⊗ = {D ⊗ U : D ∈ ∆, U ∈ Pic(k)}.

Definition 4.11. We say that (C, ∆) is a highest weight category over k if the
following conditions are satisfied:

(1) the objects of ∆ are projective over k;
(2) EndC(M) = k for all M ∈ ∆;
(3) given D1, D2 ∈ ∆, if HomC(D1, D2) 6= 0, then D1 6 D2;
(4) C[∅] = 0;
(5) given D ∈ ∆, there is P ∈ C-proj and f : P → D surjective such that

ker f ∈ C∆̃>D .

We call ∆ the set of standard objects.

Let (C, ∆) and (C′, ∆′) be two highest weight categories over k. A functor
F : C → C′ is an equivalence of highest weight categories if it is an equivalence of
categories and if there is a bijection φ : ∆ ∼−→ ∆′ and invertible k-modules UD for
D ∈ ∆ such that F (D) ≃ φ(D) ⊗ UD for D ∈ ∆.

When k is a field, this corresponds to the usual concept of a highest category
[13]. We leave it to the interested reader to extend the definition to the case where
∆ is an infinite set (this will cover representations of reductive groups over Z) and
to the non split situation where (2) is relaxed.

Lemma 4.12. Let C be the module category of a finite projective k-algebra. Let ∆
be a finite set of objects of C together with a poset structure. Let L be a maximal

element of ∆.

Under all these assumptions, (C, ∆) is a highest weight category if and only if

L ∈M(C) and (C[∆ \ {L}], ∆ \ {L}) is a highest weight category.

Proof. Assume (C, ∆) is a highest weight category. Given D ∈ ∆, let PD be a

projective object of C with a surjection PD → D whose kernel is in C∆̃>D (Definition
4.11 (5)). Let P =

⊕
D∈∆ PD. Then P is a progenerator for C (Definition 4.11

(4)).
By Definition 4.11 (5), L is projective. We deduce that PD has a submodule

QD ≃ L ⊗ UD for some UD ∈ k-proj with PD/QD ∈ C(∆̃\{L})>D . So, P has a

submodule Q ≃ L⊗ U for some U ∈ k-proj with P/Q ∈ C∆̃\{L} ⊂ C[∆ \ {L}]. We
deduce that L ∈M(C). Also, PD/QD is a projective object of C[∆ \ {L}] (Lemma
4.9) and (5) holds for C[∆ \ {L}]. So, (C[∆ \ {L}], ∆ \ {L}) is a highest weight
category.

Assume now L ∈M(C) and (C[∆ \ {L}], ∆ \ {L}) is a highest weight category.
Let D ∈ ∆ \ {L} and Q be a projective object of C[∆ \ {L}] as in Definition 4.11

(5). Let U ∈ k-proj and p : U → Ext1C(Q, L) be a surjection. Via the canonical
isomorphism Homk(U, Ext1C(Q, L)) ∼−→ Ext1C(Q, L ⊗ U∗), this gives an extension
0 → L ⊗ U∗ → P → Q → 0. By Lemma 4.9, P is projective (in C). So, (5) holds
for C and C is a highest weight category. �
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Proposition 4.13. Suppose that (C, ∆) is a highest weight category. Then the

following assertions hold.

• Given Γ an ideal of ∆, then (C[Γ], Γ) is a highest weight category and C[Γ]

is the full subcategory of C with objects the quotients of objects of CΓ̃. This

is a Serre subcategory of C.

• Given D1, D2 ∈ ∆, if Exti
C(D1, D2) 6= 0 for some i, then D1 6 D2.

Furthermore, Exti
C(D1, D1) = 0 for i > 0.

• Let P ∈ C-proj and let ∆ ∼−→ {1, . . . , n}, ∆i ↔ i, be an increasing bijection.

Then there is a filtration 0 = Pn+1 ⊂ Pn ⊂ · · · ⊂ P1 = P with Pi/Pi+1 ≃
∆i ⊗ Ui for some Ui ∈ k-proj.

Proof. By induction, it is sufficient to prove the first assertion in the case where
|∆ \ Γ| = 1. It is then given by Lemma 4.12.

Let us now prove the second assertion. Let Ω be a coideal of ∆. Then every

object of CΩ̃ has a projective resolution with terms in CΩ̃. This shows the first
part of the second assertion. The second part follows from the fact that there is a

projective P and f : P → D1 surjective with kernel in CΩ̃, with Ω = ∆>D1
.

The last assertion follows easily by induction on |∆| from Lemma 4.12 and its
proof. �

Proposition 4.14. Let k′ be a commutative noetherian k-algebra. Let (C, ∆) be a

highest weight category over k. Then (k′C, k′∆) is a highest weight category over

k′ and (k′C)[k′Γ] ≃ k′(C[Γ]) for all ideals Γ of ∆.

Proof. Let A be a finite projective k-algebra with an equivalence C ∼−→ A-mod. Let
L be a maximal element of ∆. Then L ∈ M(C) (Lemma 4.12) and k′L ∈ M(k′C)
(Lemma 4.10). Let J be the ideal of A corresponding to L. For Γ = ∆\{L}, we have
C[Γ] ∼−→ (A/J)-mod, (k′C)[k′Γ] ∼−→ k′(A/J)-mod, and we deduce that (k′C)[k′Γ] ≃
k′(C[Γ]).

The Proposition follows by induction on |∆| from Lemmas 4.10 and 4.12. �

Testing that (C, ∆) is a highest weight category can be reduced to the case of a
base field:

Theorem 4.15. Let C be the module category of a finite projective k-algebra. Let

∆ be a finite poset of objects of C ∩ k-proj.
Then (C, ∆) is a highest weight category if and only if (C(m), ∆(m)) is a highest

weight category for all maximal ideals m of k.

Proof. The first implication is a special case of Proposition 4.14. The reverse im-
plication follows by induction on |∆| from Lemmas 4.10 and 4.12. �

4.1.4. Quasi-hereditary algebras. Let us recall now the definition of split quasi-
hereditary algebras [14, Definition 3.2].

A structure of split quasi-hereditary algebra on a finite projective k-algebra A is
the data of a poset Λ and of a set of ideals I = {IΩ}Ω coideal of Λ of A such that

• if Ω ⊂ Ω′ are coideals of Λ, then IΩ ⊂ IΩ′ ,
• if Ω ⊂ Ω′ are coideals of Λ with |Ω′ \ Ω| = 1, then IΩ′/IΩ is an indecom-

posable split heredity ideal of A/IΩ,
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• I∅ = 0 and IΛ = A.

The following theorem shows that notion of highest weight category corresponds
to that of split quasi-hereditary algebras.

Theorem 4.16. Let A be a finite projective k-algebra and let C = A-mod.

Assume A, together with Λ and I is a split quasi-hereditary algebra. Given λ ∈ Λ,

let ∆(λ) ∈M((A/IΛ>λ
)-mod) correspond to IΛ>λ

/IΛ>λ
. Then (C, {∆(λ)}λ∈Λ) is a

highest weight category.

Conversely, assume (C, ∆) is a highest weight category. Given Ω a coideal of ∆,

let IΩ ⊂ A be the annihilator of all objects of C[∆\Ω]. Then A together with {IΩ}Ω

is a split quasi-hereditary algebra and (A/IΩ)-mod identifies with C[∆ \ Ω].

Proof. We prove the first assertion by induction on |Λ|. Assume A is a split quasi-
hereditary algebra. Let λ ∈ Λ be maximal and let Γ = Λ \ {λ}. Let J = Iλ.
By Proposition 4.7, we have C[{∆(λ′)}λ′∈Γ] ∼−→ (A/J)-mod. Since A/J is a split
quasi-hereditary algebra, it follows by induction that (C[{∆(λ′)}λ′∈Γ], {∆(λ′)}λ′∈Γ)
is a highest weight category. By Lemma 4.12, it follows that (C, {∆(β)}β∈Λ) is a
highest weight category.

We prove the second assertion by induction on |∆|. Let (C, ∆) be a highest
weight category. Let Ω ⊂ Ω′ be coideals of ∆ with |Ω′ \ Ω| = 1. If Ω = ∅, then
Ω′ = {L} and L ∈ M(C), hence I{L} is an indecomposable split heredity ideal
of A (Proposition 4.7). Assume now Ω 6= ∅ and let L be a maximal element of
Ω. Then C[∆ \ {L}] ≃ (A/I{L})-mod (Proposition 4.7). By induction, IΩ′/IΩ is
an indecomposable split heredity ideal of A/IΩ. So, A is a split quasi-hereditary
algebra. �

Remark 4.17. Note that, starting from a split quasi-hereditary algebra, we obtain
a well defined poset ∆⊗, but ∆ is not unique, unless Pic(k) = 1.

Remark 4.18. Note that Theorem 4.15 translates, via Theorem 4.16, to a known
criterion for split quasi-heredity [14, Theorem 3.3].

4.1.5. Tilting objects

Proposition 4.19. Let (C, {∆(λ)}λ∈Λ) be a highest weight category. Then there

is a set {∇(λ)}λ∈Λ of objects of C, unique up to isomorphism, with the following

properties :

• (Copp, {∇(λ)}λ∈Λ) is a highest weight category,

• given λ, β ∈ Λ, then Exti
C(∆(λ), ∇(β)) ≃

{
k if i = 0 and λ = β,

0 otherwise.

Proof. Let A be a finite projective k-algebra with A-mod ∼−→ C, together with its
structure I of split quasi-hereditary algebra (Theorem 4.16). Then Aopp together
with I is a split quasi-hereditary algebra [14, Corollary 3.4]. Let C∗ = Aopp-mod
and {∆(λ∗)}λ∈Λ be a corresponding set of standard objects.

We have Ext>0
A (∆(λ), ∆(β∗)∗) = 0 for all β with β 6> λ, since ∆(λ), ∆(β∗)∗ ∈

(A/I>λ)-mod and ∆(λ) is a projective (A/I>λ)-module. By the same token,
we have Ext>0

Aopp(∆(β∗), ∆(λ)∗) = 0 if λ 6> β. Since Ext>0
A (∆(λ), ∆(β∗)∗)∗ ≃
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Ext>0
Aopp(∆(β∗), ∆(λ)∗), we deduce that this vanishes for all λ, β. In the same way,

we obtain HomA(∆(λ), ∆(β∗)∗) = 0 for β 6= λ.
Let m be a maximal ideal of k. We know that HomA(m)(∆(λ)(m), ∆(λ∗)(m)∗) =

k/m (see, e. g., [13, proof of Theorem 3.11]). Let Uλ = HomA(∆(λ), ∆(λ∗)∗).
This is a projective k-module, since ∆(λ), ∆(λ∗)∗ ∈ (A/I>λ)-mod, ∆(λ∗)∗ is a
projective k-module, and ∆(λ) is a projective (A/I>λ)-module. It follows that Uλ

is invertible. Let ∇(λ) = U∗
λ ⊗ ∆(λ∗)∗. Then HomA(∆(λ), ∇(λ)) ≃ k.

Let us now show the unicity part. Let {∇′(λ)}λ∈Λ be a set of objects of C with
the same properties. We show by induction that ∇′(λ) ≃ ∇(λ).

Assume this holds for λ > α. Then {∇′(λ)∗}λ 6>α and {∇(λ)∗}λ 6>α are sets of
standard objects for a highest weight category structure on (A/I>α)opp-mod. The
maximality of α shows that ∇′(α)∗ is a projective (A/I>α)opp-module, hence it has
a filtration 0 = Pn ⊂ · · · ⊂ P1 = ∇′(α)∗ such that Pi/Pi+1 ≃ ∇(λi)

∗ ⊗Ui for some
Ui ∈ k-proj and λi 6>α, as in Proposition 4.13. By assumption, we have

Hom(∇′(α)∗, ∆(β)∗ ⊗ U) ≃ Hom(∆(β), ∇′(α)) ⊗ U = δα,β · U

and

Ext1(∇′(α)∗, ∆(β)∗ ⊗ U) = 0,

hence there is a unique term in the filtration and ∇′(α) ≃ ∇(α). �

We put ∇ = {∇(λ)}λ∈Λ and ∇̃ = {L⊗ U : L ∈ ∇, U ∈ k-proj}.

From Proposition 4.19 and its proof, we deduce:

Proposition 4.20. Given λ ∈ Λ, there is a relatively k-injective module I and an

injection g : ∇(λ) → I with coker g ∈ C∇̃>λ .

Lemma 4.21. Let M ∈ C∩k-proj. Then M ∈ C∆̃ if and only if Ext1C(M, ∇(λ)) =

0 for all λ ∈ Λ. Similarly, M ∈ C∇̃ if and only if Ext1C(∆(λ), M) = 0 for all λ ∈ Λ.

Proof. The first implication is clear. We show the converse by induction on |Λ|.
Let M ∈ C ∩ k-proj with Ext1C(M, ∇(λ)) = 0 for all λ ∈ Λ

Let λ ∈ Λ be maximal. Let M0 = im τ∆(λ),M , a subobject of M together
with a surjective map f : ∆(λ) ⊗ U → M0, where U = HomC(∆(λ), M) ∈ k-proj.
Given λ′ 6= λ, we have HomC(M0, ∇(λ′)) = 0, hence Ext1C(M/M0, ∇(λ′)) =

0. We have M/M0 ∈ C[{∆(λ′)}λ′ 6=λ], hence M/M0 ∈ C∆̃ by induction. So,

Exti
C(M/M0, ∇(λ′)) = 0 for all i > 0 and λ′ ∈ Λ. Consequently, Ext1C(M0, ∇(λ′)) =

0 for all λ′ ∈ Λ.
Let N = ker f . We have HomC(∆(λ), ∇(λ′)) = 0 for λ′ 6= λ, and it follows that

HomC(N, ∇(λ′)) = 0 for λ′ 6= λ.
By construction, the canonical map HomC(∆(λ), ∆(λ)⊗U) → HomC(∆(λ), M0)

is surjective. So, HomC(∆(λ), N) = 0. Let P be a projective object of C with a
surjection P → N . There is a subobject P0 of P with P0 ≃ ∆(λ) ⊗ U ′ for some

U ′ ∈ k-proj and P/P0 ∈ C
˜{∆(λ′)}λ′ 6=λ . We obtain a surjection P/P0 → N . We have

HomC(P/P0, ∇(λ)) = 0, hence HomC(N, ∇(λ)) = 0. We deduce that N = 0, hence

M ∈ C∆̃.
The second statement follows by duality. �
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The following Lemma will be useful in Section 4.2.3.

Lemma 4.22. Let A be a split quasi-hereditary k-algebra. Let M ∈ (A-mod)∆̃. If

Ext1A(M, N) = 0 for all N ∈ ∆, then M is projective.

Proof. We have Ext1A(M, N) = 0 for all N ∈ (A-mod)∆̃. Let 0 → N → P →M →

0 be an exact sequence with P projective. Then N is ∆̃-filtered (Lemma 4.21),
hence Ext1A(M, N) = 0 and the sequence splits. �

Recall that the category of perfect complexes for A is the full subcategory of
Db(A-mod) of objects isomorphic to a bounded complex of finitely generated pro-
jective A-modules.

Proposition 4.23. Every object of C∩k-proj has finite projective dimension. More

precisely, a complex of C that is perfect as a complex of k-modules is also perfect as

a complex of C.

Proof. This is almost [14, Theorem 3.6], whose proof we follow. We show the
Proposition by induction on |Λ|. Consider λ ∈ Λ maximal and let J be the ideal
of A corresponding to the projective object L = ∆(λ). Note that we have an
isomorphism of (A, A)-bimodules L ⊗ L∨ ∼−→ J , where L∨ = HomA(L, A). The
exact sequence of (A, A)-bimodules

0 → J → A→ A/J → 0

induces an exact sequence of functors A-mod → A-mod

0 → L⊗ HomA(L, −) → Id → (A/J) ⊗A − → 0.

Let C be a complex of A-modules. We have a distinguished triangle

L⊗ HomA(L, C) → C → A/J ⊗L
A C  .

Assume C is perfect, viewed as a complex of k-modules. Then HomA(L, C) is
perfect as a complex of k-modules, hence L⊗HomA(L, C) is perfect as a complex
of A-modules. In particular, A/J ⊗L

A C is an object of Db((A/J)-mod) that is
perfect as a complex of k-modules. By induction, it is perfect as a complex of
(A/J)-modules. Since A/J is perfect as a complex of A-modules, it follows that
A/J ⊗L

A C is a perfect complex of A-modules, hence C as well. �

Remark 4.24. Let T be the full subcategory ofDb(C) of complexes that are perfect
as complexes of k-modules. Fix an increasing bijection Λ ∼−→ {1, . . . , n}. Then T
has a semi-orthogonal decomposition T = 〈∆1 ⊗ k-perf , ∆2 ⊗ k-perf, . . . , ∆n ⊗
k-perf〉. This gives an isomorphism

K0(k-proj)∆ ∼−→ K0(T ) = K0(C-proj), {[Lλ]}λ∈Λ 7→
∑

λ

[∆(λ) ⊗ L]

In the isomorphism above, one can replace ∆(λ) by a projective object P (λ) as
in Definition 4.11, (5), or by ∇(λ), I(λ) or T (λ). We recover [19, Corollary 1.2.g]
(case of integral Schur algebras).

Definition 4.25. An object T ∈ C is tilting if T ∈ C∆̃ ∩ C∇̃. We denote by C-tilt
the full subcategory of C of tilting objects.
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A tilting complex is a perfect complex C with the following properties:

• C generates the category of perfect complexes as a full triangulated sub-
category closed under taking direct summands and

• HomDb(A-mod)(C, C[i]) = 0 for i 6= 0.

Note that a tilting module is not a tilting complex in general, for the generating
property will be missing in general. Nevertheless, there is a tilting module which
is a tilting complex, as explained below.

Proposition 4.26. Let M ∈ C∆̃. Then there is T ∈ C-tilt and an injection i : M →

T with coker i ∈ C∆̃.

Let λ ∈ Λ. There is T (λ) ∈ C-tilt and

• an injection i : ∆(λ) → T (λ) with coker i ∈ C∆̃<λ ;

• a surjection p : T (λ) → ∇(λ) with ker p ∈ C∇̃<λ .

Let T =
⊕

λ∈Λ T (λ). Then T is a tilting complex. Let Ar = EndC(T ) and

Cr = Ar-mod. There is an equivalence RHomC(T, −) : Db(C) ∼−→ Db(Cr). Let

Λr = {λr}λ∈Λ be the opposite poset to Λ. Let ∆(λr) = RHomC(T, ∇(λ)). Then

(Cr, {∆(λr)}λr∈Λr ) is a highest weight category.

Proof. Let us fix an increasing bijection ∆ ∼−→ {1, . . . , n}, ∆i ↔ i. Let M ∈ C∆̃.
We construct by induction an object T with a filtration 0 = Tn+1 ⊂ M = Tn ⊂
· · · ⊂ T0 = T such that Ti−1/Ti ≃ ∆i ⊗ Ui for some Ui ∈ k-proj, for i 6 n.

Assume Ti is defined for some i, 2 6 i 6 n. Let Ui ∈ k-proj with a surjection of k-
modules Ui →Ext1C(∆i, Ti). The canonical isomorphism Homk(Ui, Ext1C(∆i, Ti))

∼−→
Ext1C(∆i ⊗ Ui, Ti) yields an extension

0 → Ti → Ti−1 → ∆i ⊗ Ui → 0.

By construction, we have Ext1(∆i, Ti−1) = 0, since Ext1C(∆i, ∆i) = 0 (Proposition
4.13).

We have T/M, T ∈ C∆̃. By Proposition 4.13, we have

Ext1C(∆i, T ) ≃ Ext1C(∆i, Ti−1) = 0.

It follows from Lemma 4.21 that T is tilting.
AssumeM = ∆(λ). Then in the construction above, one can replace the bijection

∆ ∼−→ {1, . . . , n}, ∆i ↔ i by an increasing bijection ∆<λ
∼−→ {1, . . . , m}, ∆i ↔ i,

and obtain the same conclusion. This produces a tilting object T (λ). It has a

∇̃-filtration with top term ∇(λ) giving rise to a map p : T (λ) → ∇(λ) as required.

Every object of C∆̃ has finite homological dimension (Proposition 4.23). In

particular, T is a perfect complex. We have Exti
C(T, T ) = 0 for i 6= 0 by Lemma

4.21. Let D be the smallest full triangulated subcategory of Db(C) containing T
and closed under direct summands. By induction, D contains ∆, hence it contains
the projective objects of C. So, T generates the category of perfect complexes and
T is a tilting complex.

As a consequence, we have an equivalence F = RHomC(T, −). Note that ∆(λr)
has non zero homology only in degree 0 by Lemma 4.21 and it is projective over
k. Let P (λr) = F (T (λ)), an object with homology concentrated in degree 0 and
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projective. Also, we obtain a surjection P (λr) → ∆(λr) with kernel filtered by
terms ∆(βr) ⊗ U with U ∈ k-proj and βr > λr. This shows that (Cr, {∆r(λ)}) is
a highest weight category. �

The highest weight category Cr in the proposition above is called the Ringel dual

of C.

Proposition 4.27. Fix a family {T (λ)}λ∈Λ as in Proposition 4.26. Then every

tilting object of C is a direct summand of a direct sum of T (λ)’s.
Furthermore, the category Cr is independent of the choice of the T (λ)’s, up to

equivalence of highest weight categories.

Proof. The first assertion follows using these equivalences from the fact that every
projective object of Cr is a direct summand of a direct sum of P (λr)’s.

Consider another family {T ′(λ)} and the associated T ′, C′r. We consider the
composite equivalence

F : RHomC(T ′, −) ◦ RHomC(T, −)−1 : Db(Cr) ∼−→ Db(C′r).

It sends ∆(λr) to ∆(λ′r), hence it sends projective objects to objects with homol-
ogy only in degree 0, which are projective by Lemma 4.21. So, F restricts to an
equivalence of highest weight categories Cr ∼−→ C′r. �

Remark 4.28. Note that we don’t construct a canonical T (λ) (nor a canonical
P (λ)), our construction depends on the choice of projective k-modules mapping
onto certain Ext1’s.

Remark 4.29. The theory of tilting modules has been developed by Donkin for
algebraic groups over Z, cf. [18, Remark 1.7].

4.1.6. Reduction to fields

Proposition 4.30. Let (C, ∆) be a highest weight category over k. Let M ∈

C ∩ k-proj. Then M ∈ C∆̃ (resp. M ∈ C-tilt) if and only if the corresponding

property holds for M(m) in C(m), for all maximal ideals m of k.
If k is indecomposable, then the same statement holds for the properties of be-

longing to ∆̃ or ∆⊗.

Proof. Given V a k-module, we put V̄ = (k/m)⊗V . Let C be a bounded complex of
projective objects of C and N ∈ C ∩ k-proj. Then we have a canonical isomorphism

(k/m) HomDb(A)(C, N) ∼−→ HomDb(Ā)(C̄, N̄)

(this only needs to be checked for C = A[i], where is it clear). It follows from
Proposition 4.23 that we have a canonical isomorphism

(k/m) HomA(L, N) ∼−→ HomĀ(L̄, N̄)

for L, N ∈ C ∩ k-proj.

Let M ∈ C ∩ k-proj with M(m) ∈ C(m)∆̃(m) for every maximal ideal m. We

show that M ∈ C∆̃ by induction on the projective dimension of M (which is finite
by Proposition 4.23). Let 0 → L → P → M → 0 be an exact sequence with P

projective. By Lemma 4.21, L(m) ∈ C(m)∆̃(m) for every m.
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By induction, L ∈ C∆̃. Let N ∈ ∇. We have Ext>0
A(m)(L(m), N(m)) = 0. Let

0 → Cr → · · · → C0 → L→ 0

be a projective resolution. Let

D = 0 → HomA(C0, N) → HomA(C1, N) → · · · → HomA(Cr, N) → 0.

We have Hi(D(m)) ∼−→ Exti
A(m)(L(m), N(m)) = 0 for i > 0. It follows that the com-

plex D is homotopy equivalent to H0(D), as a complex of k-modules, and H0(D)
is projective. So, the canonical map HomA(L, N)(m) → HomA(m)(L(m), N(m)) is
an isomorphism.

We have a commutative diagram whose horizontal sequences are exact

HomA(P,N)(m)

∼

HomA(L,N)(m)

∼

Ext1A(M,N)(m) 0

HomA(m)(P (m),N(m)) HomA(m)(L(m),N(m)) Ext1A(m)(M(m),N(m)) 0

We have Ext1A(m)(M(m), N(m)) = 0 and it follows that Ext1A(M, N)(m) = 0. Since

Ext1A(M, N) is a finitely generated k-module, it must thus be 0. Lemma 4.21 shows

that M ∈ C∆̃.
The other statements follow easily. �

Remark 4.31. If k is decomposable, then being in ∆̃ cannot be tested locally—
only being a sum of objects of ∆̃ can be tested locally.

4.2. Covers

4.2.1. Double centralizer. Let k be a commutative noetherian ring and A a finite
dimensional k-algebra. Let C = A-mod.

Let P be a finitely generated projective A-module, B = EndA(P ). Consider the
functors F = HomA(P, −) : A-mod → B-mod and G = HomB(FA, −) : B-mod →
A-mod. The canonical isomorphism HomA(P, A)⊗A − ∼−→ HomA(P, −) makes F a
left adjoint of G. We denote by ε : FG→ Id (resp. η : Id → GF ) the corresponding
unit (resp. counit). Note that ε is an isomorphism.

The following lemma is immediate.

Lemma 4.32. Let M ∈ A-mod. The following assertions are equivalent :

• the map η(M) : M → GFM is an isomorphism;
• F induces an isomorphism HomA(A, M) ∼−→ HomB(FA, FM);
• M is a direct summand of a module in the image of G.

We will consider gradually stronger conditions on F .
Lemma 4.32 gives:

Proposition 4.33. The following assertions are equivalent :

• the canonical map of algebras A→ EndB(FA) is an isomorphism;
• for all M ∈ A-proj, the map η(M) : M → GFM is an isomorphism;
• the restriction of F to A-proj is fully faithful.
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Let us name this “double centralizer” situation.

Definition 4.34. We say that (A, P ) (or (A-mod, P )) is a cover of B if the
restriction of HomA(P, −) to A-proj is fully faithful. We say also that (C, F ) is a
cover of B-mod.

Remark 4.35. Let E = P ⊗B − : B-mod → A-mod. This is a left adjoint of F .
The canonical map Id → FE is an isomorphism. By Morita theory, the following
conditions are equivalent:

• F : A-mod → B-mod is an equivalence with inverse G ≃ E;
• F : A-mod → B-mod is fully faithful;
• for all M ∈ A-mod, the map η(M) : M → GFM is an isomorphism;
• the adjunction map EFA→ A is an isomorphism.

The “cover” property can be checked at closed points:

Proposition 4.36. Assume k is regular. If (A(m), P (m)) is a cover of B(m) for

every maximal ideal m of k, then (A, P ) is a cover of B.

Proof. Since (A, P ) is a cover of B if and only if (kmA, kmP ) is a cover of kmB for
every maximal ideal m of k, we can assume k is local. We prove now the Proposition
by induction on the Krull dimension of k. Let π be a regular element of the maximal
ideal of k. We have a commutative diagram with exact rows

0 EndB(FA)
π

EndB(FA) HomB(FA, (k/π)FA)

EndB(FA)
π

EndB(FA) EndB(FA) ⊗ k/π 0

0 A
π

A (k/π)A 0

and the canonical map EndB(FA) ⊗ k/π → HomB(FA, (k/π)FA) is injective.
By induction, ((k/π)A, (k/π)P ) is a cover of (k/π)B, hence the canonical map

(k/π)A → HomB(FA, (k/π)FA) is an isomorphism. It follows that the canon-
ical map EndB(FA) ⊗ k/π → HomB(FA, (k/π)FA) is an isomorphism, hence
the canonical map (k/π)A → EndB(FA) ⊗ k/π is an isomorphism as well. By
Nakayama’s Lemma, we deduce that the canonical map A → EndB(FA) is an
isomorphism. �

4.2.2. Faithful covers. We assume now that we are given a highest weight category
structure (C, ∆) on C. If C is a cover of B-mod, we say that it is a highest weight

cover.

Definition 4.37. Let i be a non-negative integer. We say that the pair (A, P ) (or
(A-mod, P )) is an i-faithful cover of B if F = HomA(P, −) induces isomorphisms

Extj
A(M, N) ∼−→ Extj

B(FM, FN) for all M, N ∈ C∆̃ and j 6 i. We say also that
(C, F ) is an i-cover of B-mod.
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Remark 4.38. For i big enough, this will force F to be an equivalence, assuming
k is a field.

Remark 4.39. Note that the 0-faithfulness assumption is not satisfied in Soergel’s
theory on category O for a complex semi-simple Lie algebra, cf. already the case of
sl2.

Proposition 4.40. The following assertions are equivalent :

(1) (C, F ) is a 0-faithful cover of B-mod;

(2) for all M ∈ C∆̃, the map η(M) : M → GFM is an isomorphism;

(3) every object of C∆̃ is in the image of G;
(4) for all T ∈ C-tilt, the map η(T ) : T → GFT is an isomorphism;
(5) every object of C-tilt is in the image of G.

Proof. The equivalence of (1), (2) and (3) and the equivalence of (4) and (5) is
given by Lemma 4.32.

Assume (4). Let M ∈ C∆̃. Then there is an exact sequence

0 →M → T → N → 0

where T ∈ C-tilt N ∈ C∆̃ (Proposition 4.26). We have a commutative diagram with
exact rows

0 M

η(M)

T

∼ η(T )

N

η(N)

0

0 GFM GFT GFN

It follows that η(M) is injective for all M ∈ C∆̃. In particular, in the diagram
above, η(N) is injective and it follows that η(M) is surjective. So, (4) implies (2)
and the converse is trivial. �

Proposition 4.41. Assume (C, F ) is a 0-faithful cover of B-mod. The following

assertions are equivalent :

(1) (C, F ) is a 1-faithful cover of B-mod;

(2) F restricts to an equivalence of exact categories C∆̃ ∼−→ (B-mod)F ∆̃ with

inverse G;

(3) for all M ∈ C∆̃, we have R1G(FM) = 0.

Proof. If (2) holds, then Ext1A(M, N) ∼−→ Ext1B(FM, FN) for M, N ∈ (A-mod)∆̃,
i. e., (1) holds.

We have R1G(FM) = Ext1B(FA, FM) = 0, hence (1)⇒ (3).

Assume (3). Let X, Y ∈ C∆̃ and let 0 → FX → U → FY → 0 be an exact
sequence. We have an exact sequence 0 → GFX → GU → GFY → 0. Since

X ∼−→ GFX and Y ∼−→ GFY , we deduce that GU ∈ C∆̃. Now, FGU ∼−→ U , hence

U ∈ F (C∆̃). It follows by induction on the length of a F ∆̃-filtration that F (C∆̃) =

(B-mod)F ∆̃. So, (3) implies (2). �

The following very useful result shows that 1-faithful quasi-hereditary covers
arise naturally as deformations of 0-faithful covers.
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Proposition 4.42. Assume k is regular and KA is split semi-simple. If the pair

(A(m), P (m)) is a 0-faithful cover of B(m) for every maximal ideal m of k, then

(A, P ) is a 1-faithful cover of B.

Proof. As in the proof of Proposition 4.36, we can assume k is local with maximal
ideal m.

Let us first assume k is a discrete valuation ring with uniformizing parameter π.

Let N ∈ (A-mod)∆̃. The composition of canonical maps (k/π)N → (k/π)GFN →
G((k/π)FN) is an isomorphism by assumption and the second map is surjective,
hence both maps are isomorphisms. By Nakayama’s Lemma, it follows that the
canonical map N → GFN is an isomorphism. Since π is regular for k, FA and
FN , the Universal Coefficient Theorem (i. e., the isomorphism (k/π)⊗L

k RG(FN) ∼−→
RG(FN ⊗L

k (k/π)) gives an exact sequence

0 → (k/π)GFN → G((k/π)FN) → Tork
1(R1G(FN), k/π) → 0.

We deduce that Tork
1(E, k/π) = 0, where E = R1G(FN), hence E is free over

k. Note that the canonical map N ′ → GFN ′ is an isomorphism for every N ′ ∈
KA-mod, hence KB is Morita-equivalent to KA (cf. Remark 4.35). Since KB is
semi-simple, E is a torsion k-module and this forces E = 0. So, the proposition
holds in the case k has Krull dimension 1.

We prove now the proposition by induction on the Krull dimension of k. Assume
the Krull dimension of k is at least 2. There is α ∈ k − {0} such that A[α−1] is
isomorphic to a product of matrix algebras over k[α−1]. Then (kp/p)A is split
semi-simple, whenever p is a prime ideal of k with α /∈ p.

We proceed as in the proof of Proposition 4.36. Let N ∈ (A-mod)∆̃ such that
R1GFN 6= 0. Let Z be the support of R1GFN in Spec k, a non-empty strict closed
subvariety. Let π ∈ m regular with Z ∩ Spec(k/π) 6= ∅ and α /∈ (π).

We have a commutative diagram with exact rows

0 GFN
π

GFN G((k/π)FN)

GFN
π

GFN (k/π)GFN 0

0 N
π

N (k/π)N 0

Since the canonical map (k/π)N → G((k/π)FN) is an isomorphism, we deduce
that the canonical map N → GFN is an isomorphism. The Universal Coefficient
Theorem gives an exact sequence

0 → (k/π)GFN → G((k/π)FN) → Tork
1(R1G(FN), k/π) → 0.

It follows that R1G(FN) has no π-torsion, which is a contradiction. So, R1GN = 0.
We deduce that (A, P ) is a 1-faithful cover of B. �

Remark 4.43. In the proof above, the case of a discrete valuation ring has been
treated separately, for if k/π is finite, then there might be no element α as needed.
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An alternative proof would be to take a faithfully flat extension of k to avoid this
problem.

4.2.3. Unicity of faithful covers

Definition 4.44. We say that two highest weight covers (C, F ) and (C′, F ′) of B
are equivalent if there is an equivalence of highest weight categories C ∼−→ C′ making
the following diagram commutative

C

∼

F

B-mod

C′ F ′

The following result shows that a 1-faithful highest weight cover depends only
on F∆⊗:

Proposition 4.45. Let (C, F ) be a 1-faithful highest weight cover of B.

Given M ∈ F∆, there is a pair (Y (M), pM ) unique up to isomorphism with

Y (M) ∈ B-mod and pM : Y (M) →M a surjection such that ker pM ∈ (B-mod)F ∆̃

and Ext1B(Y (M), F∆) = 0.
Given N ∈ ∆ with M = F (N) and qN : P (N) → N a surjective map with

ker qN ∈ C∆̃ and P (N) a projective A-module, then Y (M) = F (P (N)) and pM =
F (qN ) satisfy the property above.

Let Y =
⊕

M∈F∆ Y (M), A′ = EndB(Y ), ∆′ = HomB(Y, F∆), and P ′ =
Hom(A′)opp(Y, A′). Then (A′-mod, ∆′) is a highest weight category and together

with HomA′(P ′, −), this is a 1-faithful highest weight cover of B equivalent to

(C, F ).

Proof. The unicity follows from Lemma 4.22, while the construction of (Y (M), pM )
with the required properties is clear.

Note that
⊕

N∈∆ P (N) is a progenerator for A, since every object of ∆ appears
as a quotient. We have a canonical isomorphism EndA(

⊕
N∈∆ P (N)) ∼−→ A′, hence

an equivalence

HomA

(⊕

N∈∆

P (N), −
)
: A-mod ∼−→ A′-mod

giving rise to the commutative diagram of Definition 4.44. �

We deduce a unicity result.

Corollary 4.46. Let (C, F ) and (C′, F ′) be two 1-faithful highest weight covers of

B. Assume F∆⊗ ≃ F ′∆′
⊗. Then (C, F ) and (C′, F ′) are equivalent highest weight

covers.

4.2.4. Deformation. We assume in Section 4.2.4 that k is a noetherian domain with
field of fractions K.

When KC is split semi-simple, we can restate the definition of a highest weight
category structure on C as follows (cf. [22, Lemma 1.6]):
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Proposition 4.47. Let C be the module category of a finite projective k-algebra
and let ∆ be a finite poset of objects of C ∩k-proj. Assume KC is split semi-simple.

Then (C, ∆) is a highest weight category if and only if there is a bijection

Irr(KC) ∼−→ ∆, E 7→ ∆(E) such that

• K∆(E) ≃ E for E ∈ Irr(KC),
• for E ∈ Irr(KC), there is a projective module P (E) with a filtration 0 =
Pr ⊂ · · · ⊂ P1 = P (E) such that P1/P2 ≃ ∆(E) and Pj/Pj+1 ≃ ∆(Fj)⊗Uj

for some Fj > E and Uj ∈ k-proj, for j > 2,
•
⊕

E∈Irr(KC) P (E) is a progenerator of C.

Note that ∆⊗ is determined by the order on Irr(KC): given Q a projective object
of C with KQ ≃ E ⊕

⊕
F>E F

aF for some integers aF , then the image of Q by a
surjection KQ→ E is isomorphic to ∆(E) ⊗ U for some U ∈ Pic(k).

Let B be a finite projective k-algebra with KB split semi-simple. Let (C, F )
be a 1-faithful highest weight cover of B. Then (KC, KF ) is a 1-faithful highest
weight cover of KB, hence KF : KC → KB-mod is an equivalence and it induces a
bijection Irr(KC) ∼−→ Irr(KB). We will say that (C, F ) is a highest weight cover of
B for the order on Irr(KB) coming from the one on Irr(KC). Given I ⊂ Irr(KB),
we denote by (KB)I the sum of the simple KB-submodules of KB isomorphic to
elements of I.

Lemma 4.48. Let J ⊂ I be coideals of Irr(KB) such that no two distinct elements

of I \ J are comparable. Then
(
(KB)I ∩B

)
/
(
(KB)J ∩B

)
≃
⊕

E∈I\J

F∆(E) ⊗ UE .

where UE ∈ k-proj and rankk UE = dimK E.

Proof. Recall that C = A-mod, F = HomA(P, −) and B = EndA(P ). Since

P is ∆̃-filtered, there is a filtration P0 ⊂ P1 ⊂ P with P0 ∈ C∆̃(J), P1/P0 ≃⊕
E∈I\J ∆(E) ⊗ UE for some UE ∈ k-proj, and P/P1 ∈ C∆̃(Irr(KB)\I). So, we have

a filtration FP0 ⊂ FP1 ⊂ FP = B and (KB)I ∩ B = FP1 and (KB)J ∩ B =
FP0, since FP0 and FP1 are direct summands of FP as k-modules. Furthermore,
dimK KUE = dimK E and we are done. �

We can now show that a 1-faithful highest weight cover is determined by the
induced order on Irr(KB).

Theorem 4.49. Let B be a finite projective k-algebra such that KB is split semi-

simple. Fix two orders, 61 and 62 on Irr(KB). Let (C1, F1) and (C2, F2) be

1-faithful highest weight covers of B for the orders 61 and 62.

Assume 61 is a refinement of 62. Then there is an equivalence C1-mod ∼−→
C2-mod of highest weight covers of B inducing the bijection Irr(KC1)

∼−→ Irr(KB) ∼−→
Irr(KC2).

Proof. Let E ∈ Irr(KB), I = Irr(KB)>1E and J = Irr(KB)>1E . These are coide-
als for 61 and also for 62. Using Lemma 4.48, we obtain F1∆1(E) ⊗ ME ≃
F2∆2(E) ⊗ NE where ME , NE ∈ k-proj and rankk ME = rankk NE = dimK E.
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Since EndB(F1∆1(E)) = k, we deduce that HomB(F1∆1(E), F2∆2(E)) is an in-
vertible k-module and since

F1∆1(E) ⊗ HomB(F1∆1(E), F2∆2(E)) ∼−→ F2∆2(E),

we obtain F2∆2(E) ∼−→ UE ⊗ F1∆1(E) for some UE ∈ Pic(k). The result follows
now from Corollary 4.46. �

Remark 4.50. Let us give a variant of Theorem 4.49. Let C1 be a 1-faithful
highest weight cover of B with associated order 61 on Irr(KB). Let 6′ be an
order on Irr(KB) and {S′(E)}E∈Irr(KB) be a set of B-modules such that given
J ′ ⊂ I ′ coideals of Irr(KB) for 6′ such that no two distinct elements of I ′ \ J ′ are
comparable for 6′, we have

(
(KB)I′

∩B
)
/
(
(KB)J′

∩B
)
≃

⊕

E∈I′\J′

S′(E) ⊗ME

for some ME ∈ k-proj with rankk ME = dimK E. Assume 61 is a refinement of 6′.
Then given E ∈ Irr(KB), we have S′(E) ∼−→ F1∆1(E) ⊗ UE for some UE ∈ Pic(k).

In particular, if C2 is a 1-faithful highest weight cover of B with associated order
62 and if 62 is a refinement of 6′, then C1 and C2 are equivalent highest weight
covers.

Remark 4.51. It would interesting to investigate when two 1-faithful highest cov-
ers are derived equivalent (cf. Conjecture 5.6 for the case of Cherednik algebras).
This might be achieved through perverse equivalences (cf. [12] and [54, Section
2.6]).

5. Cherednik’s Rational Algebra

We refer to [53] for a survey of the representation theory of rational Cherednik
algebras.

5.1. Category O

5.1.1. Given H ∈ A, let αH ∈ V ∗ with H = kerαH and let vH ∈ V such that
CvH is a WH -stable complement to H.

The rational Cherednik algebra A is the quotient of C[{hu}u∈U ]⊗CT (V⊕V ∗)⋊W
by the relations

[ξ, η] = 0 for ξ, η ∈ V, [x, y] = 0 for x, y ∈ V ∗

[ξ, x] = 〈ξ, x〉 +
∑

H∈A

〈ξ, αH〉〈vH , x〉

〈vH , αH〉
γH

where

γH =
∑

w∈WH−{1}

(
eH−1∑

j=0

det(w)−j(hH,j − hH,j−1)

)
w.
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Remark 5.1. From the definition in [36, Section 3.1] one gets to the notations
here by putting hH,j = −kH,−j (here, we allow the possibility hH,0 6= 0 to make
twists by linear characters of W more natural).

From the definitions in [28, p.251], W being a finite Coxeter group, one puts
hH,0 = 0 and hH,1 = cα for H the kernel of the root α.

5.1.2. Let k′ be a local commutative noetherian C[{hu}]-algebra with residue
field k.

Let O be the category of finitely generated k′A-modules that are locally nilpotent
for S(V ). Given E ∈ Irr(W ), we put ∆(E) = k′A ⊗S(V )⋊W E and we denote by
∇(E) the submodule of k′ HomS(V ∗)⋊W (A, E) of elements that are locally finite
for S(V ). Let ∆ = {∆(E)}E∈Irr(W ). We define an order on Irr(W ) by χ > χ′ if
cχ′ − cχ ∈ Z>0.

Theorem 5.2. (O, ∆) is a highest weight category with costandard objects the

∇(E)’s.

Proof. We know that O ≃ R-mod for some finite projective k′-algebra R [36, Corol-
lary 2.8]. By Theorem 4.15, it suffices to check the highest weight category property
for kO: this is given by [36, Theorem 2.19]. �

5.2. Covers of Hecke algebras

5.2.1. Let m be a maximal ideal of C[{hu}] and k′ be the completion at m. We
view k′ as a k-algebra via qu 7→ e2iπhu .

Let m̂ be the maximal ideal of k′ and k = k′/m̂. Let h• = {hu} ∈ kU be the

image of h. Let Γ̃ be the subgroup of k generated by Z and the hu’s. We have an
exact sequence

0 → Z → Γ̃
x7→e2iπx

−−−−−→ e2iπΓ̃ → 0

and we are in the setting of Section 3.2.2, where we choose the coarsest order. In
particular, the order on Irr(W ) introduced in Section 5.1.2 is the same as the one
defined in Section 3.2.3.

There is a functor KZ: O → k′H-mod [36, Section 5.3] (note that in the definition
of the Hecke algebra in [36, Section 5.2.5], one should read e−2iπkH,j instead of
e2iπkH,j ). By [36, Section 5.3, 5.4], there is a projective object PKZ of O and
an isomorphism k′H ∼−→ EndO(PKZ) such that the functor KZ is isomorphic to
HomO(PKZ, −).

Theorem 5.3. (kO, KZ) is a highest weight cover of kH.

Assume xH,j 6= xH,j′ for all H ∈ A and j 6= j′. Then (O, KZ) is a 1-faithful

highest weight cover of k′H.

Proof. The first statement is [36, Theorem 5.16]. The second statement follows,
via Proposition 4.42, from [36, Proposition 5.9]. �

Proposition 5.4. Assume Γtors = 1. Then kO and kH are semi-simple.

Proof. The semi-simplicities of kO and of kH are equivalent (cf. Theorem 5.3).
The algebra kH depends only on the hu’s up to shifts by integers. So, in order to
prove that kH is semi-simple, we can assume that the restriction of t 7→ e2iπt to
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the subgroup Γ0 of C generated by the hu’s gives an isomorphism Γ0
∼−→ Γ. Then

given χ, χ′ ∈ Irr(W ), we have cχ − cχ′ ∈ Z if and only if cχ = cχ′ . In particular,
no two distinct elements of Irr(W ) are comparable. So, O is semi-simple and kH
as well. �

Proof of Theorem 3.5. Without loss of generality, we may assume that k has finite
transcendence degree over Q. Then there is an embedding of k in C and we can
assume k = C. Now, the result follows from Proposition 5.4. �

5.2.2. We denote by O(h•) the category kO.
From Theorems 4.49 and 5.3, we deduce a translation principle for category O:

Theorem 5.5. Assume xH,j 6= xH,j′ for all H ∈ A and j 6= j′. Let τ ∈ tZ and

assume the order on Irr(W ) defined by h• is the same as the one defined by h• + τ .
Then there is an equivalence O(h•)

∼−→ O(h• + τ ) of quasi-hereditary covers of kH.

It would be interesting to describe precisely which τ ’s satisfy the assumptions of
the Theorem.

Conjecture 5.6. Given any τ ∈ tZ, then Db(O(h•))
∼−→ Db(O(h• + τ )).

Remark 5.7. Let κ ∈ Q>0 with κ /∈ ( 1
eH

Z) \ Z for all H ∈ A. Assume hH,j = 0
for all j 6= 0 and hH,0 = κ, for all H. Let τ be given by τH,j = 0 for j 6= 0 and
τH,0 = 1. Then τ satisfies the assumption of the Theorem, i. e., the order defined
by h• is the same as the one defined by τ + h•.

We conjecture that, for general W , the shift functor associated to ζ a linear
character ofW gives an equivalence if h• and h•+τ define the same order on Irr(W ),
where τ is the element corresponding to ζ. Note that shift functors are compatible
with the KZ functor, hence when they are equivalences, they are equivalences of
highest weight covers of the Hecke algebra as in Theorem 5.5.

When W has type An−1, Gordon and Stafford proved that the shift functor is
an equivalence (parameter /∈ 1

2 + Z) [38, Proposition 3.16].

Note that equivalences arise also from twists [36, Section 5.4.1]:

Proposition 5.8. Let ζ ∈ W∧. We have an equivalence O(h•)
∼−→ O(θξ(h•))

compatible, via KZ, with the isomorphism θξ : H(exph•)
∼−→ H(exp θξ(h•)).

5.2.3. We show now that Hecke algebras do not change, up to isomorphism of
C-algebras, by field automorphisms acting on parameters. As a consequence, we
show that category O doesn’t change if h• is rescaled by a positive integer, as long
as the denominators do not change.

We fix K0 be a subfield of C such that the reflection representation V of W is
defined over K0.

Proposition 5.9. Let q• ∈ T(C) with finite order. Then there exists a K0-algebra

A and an isomorphism of C-algebras C ⊗K0
A ≃ H(q•).

Proof. Let h• ∈ QU such that q• = e2iπh• . Consider the category OK0
for the

rational Cherednik algebra defined over K0, with parameter h•. The simple objects
of OK0

remain simple in C ⊗K0
OK0

, hence there is a projective object PKZ,K0
of
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OK0
such that C ⊗K0

PKZ,K0
≃ PKZ. Then A = EndOK0

(PKZ,K0
) satisfies the

requirement of the proposition. �

For Hecke algebras, the next result, which is an immediate consequence of Propo-
sition 5.9, answers positively (over C) a problem raised by Radha Kessar. In type
A, the result is due to Chuang and Miyachi [11]. Note that their result covers also
fields of positive characteristic.

Theorem 5.10. Let q• ∈ T(C) with finite order and let σ be an automorphism of

K0({qu})/K0.

Then we have an isomorphism of C-algebras: H(σ(q•)) ≃ H(q•).

Remark 5.11. The previous two results can be lifted. We use the notations of the
proof of Proposition 5.9.

Let m0 be the maximal ideal of K0[{hu}] generated by the hu − hu and let k0

be the completion at m0. Let kq• be the completion of C[{q±1
u }] at the maximal

ideal generated by the qu − qu. Let R = C[[{Xu}]] and consider the morphisms of
algebras k0 → R, hu−hu 7→ Xu and kq• → R, qu−qu 7→ e2iπXu . As in Proposition
5.9, one shows there is a K0[{hu}]-algebra A0 and an isomorphism of R-algebras
R⊗k0

A0 ≃ R ⊗kq•
kq•H.

Consider now the setting of Theorem 5.10. We have an isomorphism of R-
algebras R⊗kσ(q•)

kσ(q•)H ≃ R⊗kq•
kq•H.

Theorem 5.12. Let q• ∈ T(C) with finite order and let r ∈ Z>0 such that there is

an automorphism σ ∈ K0({qu})/K0 with σ(q•) = qr
•
. Assume xH,j 6= xH,j′ for all

H ∈ A and j 6= j′.
Then there is an equivalence O(h•)

∼−→ O(rh•), which identifies highest weight

covers of H(σ(q•)) ≃ H(q•).

Proof. The order on Irr(W ) induced by rh• is the same as the order induced by h•.
So, via the isomorphism of Remark 5.11, O(h•) and O(rh•) deform to 1-faithful
highest weight covers of the same algebra (Theorem 5.3) and the result follows from
Theorem 4.49. �

Let us restate the previous theorem in the case of Weyl groups and equal pa-
rameters, where it takes a simpler form.

Corollary 5.13. Assume W is a Weyl group, hu,1 = 0, hu,0 = h is constant and

h ∈ ( 1
dZ) \ ( 1

2 + Z) for some d ∈ Z>0. Given r ∈ Z>0 prime to d, there is an

equivalence O(h) ∼−→ O(rh), which identifies highest weight covers of H(qr) ≃ H(q).

Finally, let us relate characters. Define

eu =
∑

b∈B

b∨b+
∑

H∈A

eH−1∑

j=1

∑

w∈WH

(hH,j − hH,0) det(w)−jw

where B is a basis of V and {b∨}b∈B is the dual basis of V ∗. Given M ∈ O
and a ∈ C, we denote by Ma the generalized a-eigenspace of eu on M , a finite
dimensional vector space. The character of M is an element of Z[[t]] · Irr(W ) given
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by χM (w, t) = TrM (w · teu) ∈ C[[t]] (here, w ∈ W ). Given E ∈ Irr(W ), one has

χ∆(E)(w, t) = TrE(w)tc′E

detV ∗ (1−wt) (cf., for example, [10, Section 2.1]).

The following result was conjectured by Etingof. A similar result has been proved
earlier in [59, Corollary 3.4.2 and Proposition 3.4.1 (b)]. It follows immediately from
Theorem 5.12.

Proposition 5.14. With the assumptions of Theorem 5.12, we have

χLrh• (E)(w, t) =
detV ∗(1 − wtr)

detV ∗(1 − wt)
χLh• (E)(w, t

r).

In particular, Lrh•
(E) is finite-dimensional if and only if Lh•

(E) is finite-dimen-

sional and when this is the case, we have dimLrh•
(E) = rdim V dimLh•

(E).

5.2.4. We discuss now blocks of “defect 1” and show their structure depends only
on their number of simple objects.

Given d a positive integer, recall that a Brauer tree algebra associated to a line
with d vertices (and exceptional multiplicity 1) is a C-algebra Morita-equivalent to
the principal block of the Hecke algebra of the symmetric group Sd at parameter
(q0, q1) = (e2iπ/d, −1) (cf. [4, Section 4.18] for a general definition). Consider now

B̃rd = EndBrd
(Brd ⊕ C)

where C is the trivial representation of Brd. This is a quasi-hereditary algebra
whose module category is ubiquitous in rational representation theory. It occurs as
perverse sheaves on Pd for the partition A0 ⊔ A1 ⊔ · · · ⊔ Ad.

We assume here that the algebra H is endowed with a symmetrizing form t:
here, t in a linear form H → k with t(ab) = t(ba) for all a, b ∈ H and the pairing
H × H → k, (a, b) 7→ t(ab), is perfect. This is well-known to exist for W a finite
Coxeter group (take t(Tw) = δ1w) and it is known to exist for the infinite series
G(r, p, n) [49].

Let n ⊂ m̂ be a prime ideal such that R = k′/n is a discrete valuation ring.
Denote by π a uniformizing parameter for R. Denote by K the field of fractions of
R. Its residue field is k.

Let A be a block of RO. We assume KA is semi-simple. We denote by IrrA(W )
the set of E ∈ Irr(W ) such that ∆(E) ∈ A. We denote by B the block of RH

corresponding, via the KZ-functor, to A [36, Corollary 5.18]. Given χ ∈ IrrA(W ),
we denote by sχ ∈ R the Schur element of χK : the primitive idempotent of Z(KH)
corresponding to χK is s−1

χ

∑
a χK(a)a∨, where a runs over a basis of H over k and

(a∨) is the dual basis.
The following theorem gives the structure of blocks with defect one. Theorem

5.15 was known for W of type An in case the order of h in C/Z is n+1 [5, Theorem
1.4]. When W is a Coxeter group, the statement about H in Theorem 5.15 goes
back to Geck [30, Theorem 9.6] (in the case of equal parameters, but the proof
applies to unequal parameters as well) and we follow part of his proof.

Theorem 5.15. Let d = |IrrA(W )|. Assume for every χ ∈ IrrA(W ), we have

π−1sχ ∈ R× (“defect 1”). Then > is a total order on IrrA(W ), kB is Morita
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equivalent to Brd and A is equivalent to B̃rd-mod. In particular, if χ1 < · · · < χd

are the elements of IrrA(W ), then for n = 1, . . . , d, we have

[L(χn)] =
n∑

i=1

(−1)i+n[∆(χi)].

Proof. Given E ∈ IrrA(W ), we denote by L(E), ∆(E) and P (E) the corresponding
simple, standard and projective objects of kA. Let IrrA(W )0 be the set of E ∈
IrrA(W ) such that KZ(L(E)) 6= 0.

Brauer’s theory of blocks of finite groups of defect 1 carries to RH (cf. [30,
Propositions 9.1–9.4] for the case of Weyl groups) and shows that:

(i) [∆(E) : L(F )] ∈ {0, 1} for E ∈ IrrA(W ) and F ∈ IrrA(W )0;
(ii) given E ∈ IrrA(W )0, there is a unique F ∈ IrrA(W ) distinct from E such

that [P (E)] = [∆(E)] + [∆(F )];
(iii) given E ∈ IrrA(W ), then KZ(∆(E)) is uniserial.

Let E ∈ IrrA(W ). Let E1 6= E2 ∈ IrrA(W ) distinct from E and such that L(E1)
and L(E2) are composition factors of ∆(E).

Since [P (E1)] = [∆(E1)] + [∆(E)], it follows from the reciprocity formula that
[∆(E2) : L(E1)] = 0. We have [P (E2)] = [∆(E2)] + [∆(E)] by the reciprocity
formula, so we have an exact sequence

0 → ∆(E) → P (E2) → ∆(E2) → 0.

Let ΩL(E2) be the kernel of a projective cover P (E2) → L(E2). Let M be the
kernel of a surjective map ∆(E2) → L(E2). We have an exact sequence

0 → ∆(E) → ΩL(E2) →M → 0.

Since Hom(M, L(E1)) = 0 and Hom(∆(E), L(E1)) = 0, we can now deduce that
Hom(ΩL(E2), L(E1)) = 0, hence Ext1(L(E2), L(E1)) = 0. Similarly, one shows
that Ext1(L(E1), L(E2)) = 0.

Let N be the kernel of a surjective map ∆(E) → L(E). We have shown that N
is semi-simple. Since KZ(∆(E)) is uniserial, we deduce that KZ(N) is simple or 0.
So, we have proven that

(iv) given E ∈ IrrA(W ), there is at most one F ∈ IrrA(W )0 distinct from E
and such that [∆(E) : L(F )] 6= 0.

The decomposition matrix of B has at most two non-zero entries in each row
and in each column. It follows that kB is a Brauer tree algebra associated to a
line (cf. [30, Theorem 9.6]). In particular, the order > on IrrA(W ) is a total or-
der. Also, there is a unique E′ ∈ Irr(W ) such that KZ(L(E′)) = 0. We have
P (E′) = ∆(E′) and KZ(∆(E′)) is a simple module. Via an appropriate identi-
fication of kB-mod with Brd-mod, it corresponds to the trivial module C. Since

kA ≃ EndkH

(⊕
E∈IrrA(W ) KZ(P (E))

)
-mod, it follows that kA ≃ B̃rd-mod. �

Let us give a concrete application of the previous result. Assume there is r ∈ Z>0

such that for all u, we have hu = au

r for some au ∈ Z. The Schur element sχ is the

specialization at qu = qau of the generic Schur element sχ of χ, where q = e2iπh
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and π = h − 1
r . The assumption “π−1sχ ∈ R×” will be satisfied if and only if the

r-th cyclotomic polynomial in q (over K0) divides sχ exactly once.
In case au = 1 for all u and W is a finite Coxeter group, then the principal

block satisfies the assumption if and only if Φr(q) divides the Poincaré polynomial
of W exactly once. Note that in such a case the other blocks either satisfy the
assumption or are simple.

We list now for each finite exceptional irreducible Coxeter group W all simple
finite dimensional representations in a block A of defect 1 and provide their charac-
ter. We assume au = 1 for all u. We denote by φm,b an irreducible representation
of W of dimension m whose first occurrence in S(V ) is in degree b. When we use
this notation, there is a unique irreducible representation of W with that property.
For example, φ1,0 = C is the trivial representation and φdim V,1 = V . Computa-
tions have been performed in GAP, using the CHEVIE package [33]. The blocks are
described in [34, Appendix F].

F4 • h = 1/12, L(C) = φ1,0.
• h = 1/8, L(C) = φ1,0 + tφ4,1 + t2φ1,0.

H3 • h = 1/10, L(C) = φ1,0.
• h = 1/6, L(C) = φ1,0 + tφ3,1 + t2φ1,0.

H4 • h = 1/30, L(C) = φ1,0.
• h = 1/20, L(C) = φ1,0 + tφ4,1 + t2φ1,0.
• h = 1/15, L(C) = φ1,0 + tφ4,1 + t2(φ1,0 + φ9,2) + t3φ4,1 + t4φ1,0 and
L(φ4,7) = t2φ4,7.

• h = 1/12, L(C) = φ1,0 + tφ4,1 + t2(φ1,0 + φ9,2) + t3(φ4,1 + φ16,3) +
t4(φ1,0 + φ9,2) + t5φ4,1 + φ1,0.

• h = 1/10, L(φ4,1) = t3(φ4,1 + tφ1,0 + t2φ4,1).

E6 • h = 1/12, L(C) = φ1,0.
• h = 1/9, L(C) = φ1,0 + tφ6,1 + t2φ1,0.

E7 • h = 1/18, L(C) = φ1,0.
• h = 1/14, L(C) = φ1,0 + tφ7,1 + t2φ1,0.

• h = 1/10, L(φ7,1) = t9/2(φ7,1 + tφ1,0 + t2φ7,1).

E8 • h = 1/30, L(C) = φ1,0.
• h = 1/24, L(C) = φ1,0 + tφ8,1 + t2φ1,0.
• h = 1/20, L(C) = φ1,0 + tφ8,1 + t2(φ1,0 + φ35,2) + t3φ8,1 + t4φ1,0.

• h = 1/18, L(φ8,1) = t5/3(φ8,1 + t(φ1,0 + φ28,8) + t2φ8,1).
• h = 1/15, L(C) = φ1,0 + tφ8,1 + t2(φ1,0 + φ35,2) + t3(φ8,1 + φ112,3) +
t4(φ1,0+φ35,2+φ210,4)+t

4(φ8,1+φ112,3)+t
5(φ1,0+φ35,2)+t

6φ8,1+t
7φ1,0

and L(φ8,1) = t2(φ8,1 + t(φ1,0 + φ28,8 + φ35,2) + t2(2φ8,1 + φ160,7) +
t3(φ1,0 + φ28,8 + φ35,2) + t4φ8,1).

• h = 1/12, L(φ28,8) = t5(φ28,8 + t(φ8,1 + φ56,19) + t2φ28,8).

Similar results on the classification of finite dimensional simple representations
have been obtained by different methods in [6].

Remark 5.16. Consider a block A of defect 1. Then A has at most one finite-
dimensional simple module. If A has a finite-dimensional simple module, it is



q-SCHUR ALGEBRAS AND COMPLEX REFLECTION GROUPS 149

L(E) where c′E is minimal and we have | IrrA(W )| > 1 + dimV , since L(E) has a
projective resolution over C[V ] of length | IrrA(W )|.

Remark 5.17. It would be interesting to see if | IrrA(W )| 6 1+dimV for any block
A satisfying the assumption of Theorem 5.15. Also, in case of equal parameters
with order e in C/Z, is it true that | IrrA(W )| 6 e?

6. Case W = Bn(d)

6.1. Combinatorics

6.1.1. Let W be the complex reflection group of type Bn(d) (i. e., G(d, 1, n)) for
some integers n, d > 1. This is the subgroup of GLn(C) of monomial matrices
whose non-zero entries are d-th roots of unity. The subgroup of permutations ma-
trices is the symmetric group Sn. It is generated by the transpositions s1 = (1, 2),
. . . , sn−1 = (n − 1, n). Let s0 be the diagonal matrix with diagonal coefficients
(e2iπ/d, 1, . . . , 1). Then W is generated by s0, s1, . . . , sn−1. We identify its sub-
group of diagonal matrices with the group of functions {1, . . . , n} → µd, where µd

is the group of d-th roots of unity of C. Let Hi be the reflecting hyperplane of si.
A partition of n is a non-increasing sequence (finite or infinite) α = (α1 >

α2 > · · · ) of non-negative integers with sum n and we write |α| = n. We identify
two partitions that differ only by zeroes. We denote by tα the transposed partition.
We denote by P(n) the set of partitions of n.

A multipartition of n is a d-tuple of partitions λ = (λ(1), . . . , λ(d)) such that∑
i |λ

(i)| = n. We denote by lr the largest integer such that λ
(r)
lr

6= 0. We put

Iλ(r) =

{
r−1∑

i=1

|λ(i)| + 1,

r−1∑

i=1

|λ(i)| + 2, . . . ,

r∑

i=1

|λ(i)|

}
.

Given i, j > 1, we put

b
(r)
i,j =

{
(tλ

(r)
)j − i if (tλ

(r)
)j > i

0 otherwise
and d

(r)
i,j =

{
λ

(r)
i − j if λ

(r)
i > j

0 otherwise.

We put Sλ = SIλ(1)×· · ·SIλ(d) and Bλ(d) = µ
{1,...,n}
d ⋊Sλ. We denote by P(d, n)

the set of multipartitions of n.
Given α ∈ P(n), we denote by χα the corresponding irreducible character of

Sn. Given λ ∈ P(d, n), we denote by χλ the corresponding irreducible character
of Bn(d). Let us recall its construction. We denote by φ(r) the one-dimensional

character of (µd)
Iλ(r) ⋊ SIλ(r) whose restriction to (µd)

Iλ(r) is detr−1 and whose
restriction to SIλ(r) is trivial. Then

χλ = Ind
Bn(d)
Bλ(d)(φ

(1)χλ(1) ⊗ · · · ⊗ φ(d)χλ(d)).

Lemma 6.1. Let λ ∈ P(d, n). Then given 0 6 l 6 d− 1, we have

1

χλ(1)
〈(χλ)|〈s0〉, detl〉 =

|λ(l+1)|

n
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and
1

χλ(1)
〈(χλ)|〈s1〉, det〉 =

1

2
+

1

n(n− 1)

∑

r

∑

i,j

(b
(r)
i,j − d

(r)
i,j ).

Proof. By Frobenius reciprocity and Mackey’s formula, we have

Res〈s0〉 χλ =

d∑

i=1

|λ(i)|(n− 1)!
∏d

r=1 |λ
(r)|!

(
d∏

r=1

χλ(r)(1)

)
· deti−1

hence

1

χλ(1)
Res〈s0〉 χλ =

1

n

d∑

i=1

|λ(i)| · deti−1.

We have

Res〈s1〉 χλ =

=
∑

16r6d, |λ(r)|>1

|λ(r)|(|λ(r)| − 1)(n− 2)!
∏d

i=1 |λ
(i)|!

(
∏

16i6d, i 6=r

χλ(i)(1) · ResS2
χλ(r)

)
+

+
d∑

r=1

|λ(r)|(n− |λ(r)|)(n− 2)!

2
∏d

i=1 |λ
(i)|!

(
d∏

i=1

χλ(i)(1)

)
(1 + det)

hence

1

χλ(1)
Res〈s1〉 χλ =

1

n(n− 1)

(
∑

16r6d,|λ(r)|>1

|λ(r)|(|λ(r)| − 1)

χλ(r)(1)
· ResS2

χλ(r)+

+

d∑

r=1

|λ(r)|(n− |λ(r)|)

2
· (1 + det)

)
.

Now, we have (cf. Remark 3.3 and [34, Theorem 10.5.2] for the generic degrees)

1

χλ(r)(1)
〈ResS2

χλ(r) , det〉 =
1

2
+

1

|λ(r)|(|λ(r)| − 1)

∑

i,j

(b
(r)
i,j − d

(r)
i,j )

and the second result follows. �

6.1.2. Assume d 6= 1 and n 6= 1. The braid group BW has generators σ0, . . . , σn−1

and relations [8, Theorem 2.26]

σiσj = σjσi if |i− j| > 1, σ0σ1σ0σ1 = σ1σ0σ1σ0

and σiσi+1σi = σi+1σiσi+1 for i > 1.

The canonical morphism BW →W is given by σi 7→ si.
Put xi = xH0,i, x = xH1,0 and put xH1,1 = −1. Similarly, we will write hi =

hH0,i, h = hH1,0 and assume hH1,1 = 0.

The Hecke algebra H is the quotient of Z[q±1, x±1
0 , . . . , x±1

d−1][BW ] by the ideal
generated by (σ0−x0)(σ0−x1) · · · (σ0−xd−1) and (σi−q)(σi +1) for 1 6 i 6 n−1
(this differs from the algebra H of Section 3.1.1 since we have already specialized
xH1,1 to −1).
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When d = 1, then BW has generators σ1, . . . , σn−1 and relations

σiσj = σjσi if |i− j| > 1 and σiσi+1σi = σi+1σiσi+1 for i > 1.

The canonical morphism BW →W is given by σi 7→ si.
Put x = xH1,0 and assume xH1,1 = −1. Similarly, let h = hH1,0 and assume

hH1,1 = 0.
The Hecke algebra H is the quotient of Z[q±1][BW ] by the ideal generated by

(σi − q)(σi + 1) for 1 6 i 6 n− 1.
When n = 1, then BW is an infinite cyclic group with one generator σ0. The

canonical morphism BW →W is given by σ0 7→ s0.
Put xi = xH0,i and hi = hH0,i.

The Hecke algebra H is the quotient of Z[x±1
0 , . . . , x±1

d−1][BW ] by the ideal gen-
erated by (σ0 − x0)(σ0 − x1) · · · (σ0 − xd−1).

We denote by Ti the image of σi in H. Note that Q(q, x0, . . . , xd−1)H is split
semi-simple [3].

From Lemma 6.1, we obtain

Proposition 6.2. Let λ ∈ P(d, n). We have

cχλ
= d

∑

26r6d

|λ(r)|(hr−1 − h0) − d

(
n(n− 1)

2
+
∑

r,i,j

(b
(r)
i,j − d

(r)
i,j )

)
h.

We put the dominance order E on P(d, n): λE µ if

r−1∑

i=1

|λ(i)| +
s∑

j=1

|λ
(r)
j | 6

r−1∑

i=1

|µ(i)| +
s∑

j=1

|µ
(r)
j |

for all 1 6 r 6 d and s > 0.

Lemma 6.3. Let λ, µ ∈ P(d, n). Then λ ⊳ µ and there is no λ′ ∈ P(d, n) with

λ ⊳ λ′ ⊳ µ if and only if one (or more) or the following holds :

(a) there is s < d with

• µ(r) = λ(r) for r 6= s, s+ 1,

• µ(s) = (λ
(s)
1 , . . . , λ

(s)
ls
, 1),

• µ
(s+1)
1 = λ

(s+1)
1 − 1 and µ

(s+1)
j = λ

(s+1)
j for j > 1;

(b) there are s and i with

• µ(r) = λ(r) for r 6= s,

• µ
(s)
j = λ

(s)
j for j 6= i, i+ 1, µ

(s)
i = λ

(s)
i + 1 and µ

(s)
i+1 = λ

(s)
i+1 − 1;

(c) there are s and i < i′ with

• µ(r) = λ(r) for r 6= s,

• µ
(s)
j = λ

(s)
j for j 6= i, i′ and µ

(s)
i − 1 = µ

(s)
i′ + 1 = λ

(s)
i = λ

(s)
i′ .

Proof. Assume λ ⊳ µ and there is no λ′ ∈ P(d, n) with λ ⊳ λ′ ⊳ µ. Take s minimal
such that λ(s) 6= µ(s).

Assume first that |λ(s)| < |µ(s)|. We denote by ms the largest integer such

that µ
(s)
ms 6= 0. If µ

(s)
ms 6= 1, then λ ⊳ ν ⊳ µ, where ν(r) = µ(r) for r 6= s and

ν(s) = (µ
(s)
1 , . . . , µ

(s)
ms−1, µ

(s)
ms − 1, 1), and this is a contradiction. So, µ

(s)
ms = 1. Let
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ξ ∈ P(d, n) be given by ξ(r) = µ(r) for r 6= s, s + 1, ξ(s) = (µ
(s)
1 , . . . , µ

(s)
ms−1) and

ξ(s+1) = (µ
(s+1)
1 + 1, µ

(s+1)
2 , µ

(s+1)
3 , . . . ). Then λE ξ ⊳ µ. So, λ = ξ and we are in

the case (a).
Assume now |λ(s)| = |µ(s)|. Let ξ = (µ(1), . . . , µ(s), λ(s+1), . . . , λ(d)). Then

λ ⊳ ξ E µ, hence ξ = µ. Now, it is a classical fact about partitions that (b) or (c)
holds (cf., for example, [44, Theorem 1.4.10]).

The other implication is clear. �

Proposition 6.4. Assume h 6 0 and hs − hs−1 > (1 − n)h for 1 6 s 6 d− 1.
Let λ, µ ∈ P(d, n). If λE µ, then cχλ

> cχµ
.

Proof. It is enough to prove the Proposition in the case where λ 6= µ and there is
no λ′ with λ ⊳ λ′ ⊳ µ. We use the description of Lemma 6.3.

Assume we are in case (a). Then

cχλ
− cχµ

= d(hs − hs−1) + dh(ls + λ
(s+1)
1 − 1).

In case (b), we have

cχλ
− cχµ

= −dh(µ
(s)
i − µ

(s)
i+1)

and in case (c), we have

cχλ
− cχµ

= −dh(i′ − i+ 1).

The Proposition follows easily. �

Remark 6.5. One should compare the above order on P(d, n) depending on h
and the hi’s to the order given by Jacon’s a-function [43, Definition 4.1] and to the
order defined by Yvonne [60, Section 3.3].

6.2. The “classical” q-Schur algebras.

6.2.1. We recall here a generalization of Dipper and James’ construction (cf. [20])
of q-Schur algebras for type An−1 (case d = 1 below). As a first generalization,
q-Schur algebras of type Bn (case d = 2 below) have been introduced by Dipper,
James, and Mathas [16], and Du and Scott [26]. The constructions have been then
extended by Dipper, James, and Mathas to the complex reflection groups Bn(d)
[15].

6.2.2. The subalgebra of H generated by T1, . . . , Tn−1 is the Hecke algebra of
Sn, viewed as a Coxeter group with generating set (s1 = (1, 2), . . . , sn−1 =
(n − 1, n)). Given w = si1 · · · sir

∈ Sn, we put Tw = Ti1 . . . Tir
. We put Li =

q1−iTi−1 . . . T1T0T1 . . . Ti−1.

Let λ ∈ P(d, n). We put mλ =
(∑

w∈Sλ
Tw

)(∏d
i=2

∏ai

j=1(Lj − xi)
)
, where

ai = |λ(1)| + · · · + |λ(i−1)|.
We put M(λ) = mλH, a right H-module, and P =

⊕
λ∈P(d,n)M(λ). Let S =

S(d, n) = EndHopp(P )opp (Dipper, James, and Mathas consider a Morita equivalent
algebra, where in the definition of P the sum is taken over all multicompositions
of n).
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Theorem 6.6. (S, P ) is a quasi-hereditary cover of H, for the order given by the

dominance order on P(d, n).
Assume k is a complete discrete valuation ring such that

(q + 1)
∏

i 6=j

(xi − xj) ∈ k× and

n∏

i=1

(1 + q + · · · + qi−1)
∏

16i<j6d
−n<r<n

(qrxi − xj) 6= 0.

Then (kS, kP ) is a 1-faithful quasi-hereditary cover of kH.

Proof. The first assertion is known [51, Theorems 4.14 and 5.3]. The non-vanishing
assumption is exactly the condition required to ensure that KH is split semi-simple
[1], where K is the field of fractions of k. By [50, Corollary 6.11 and Theorem
6.18], given T a tilting module for kS, there is some kH-module M such that
HomkH(HomkS(kP, kS), M) ≃ T . The second part follows now from Propositions
4.40 and 4.42. �

Remark 6.7. In type A, these results are classical. Under the assumption that
(1 + q)(1 + q + q2) 6= 0 and k is a field, then kS(1, n) is a 1-faithful cover [40,
Theorem 3.8.1]. See also [21, Section 10] for a different approach.

We put S(λ) = HomS(P, ∆(λ)).

6.3. Comparison. In Section 6.3, we take k, k′ as in Section 5.2.1.

6.3.1. The following result identifies category O under certain assumptions.

Theorem 6.8. Assume (q+1)
∏

i 6=j(xi −xj) 6= 0. Assume h 6 0 and hs+1 −hs >

(1 − n)h for 0 6 s 6 d− 2.
Then kO and kS-mod are equivalent highest weight covers of kH: there is an

equivalence kO ∼−→ kS-mod sending the standard object associated to χ ∈ Irr(Sn)
to the standard object associated to χ.

Proof. By Theorems 5.3 and 6.6, O and k′S-mod are 1-faithful highest weight
covers of k′H. The order on irreducible characters in k′H coming from k′S is a
refinement of the one coming from O, by Proposition 6.4. The theorem follows now
from Theorem 4.49. �

Note that, under the assumptions of the theorem, O and k′S-mod are equivalent
highest weight covers of k′H as well.

Remark 6.9. Using Proposition 5.8, we obtain other parameter values for which
kO is equivalent to kS-mod (for example, replacing h by −h in the theorem). The
theorem should hold without the assumption (q + 1)

∏
i 6=j(xi − xj) 6= 0, but the

methods developed here cannot handle this general case.

Remark 6.10. This suggests to look for a construction similar to that of Section
6.2 of q-Schur algebras of type Bn(d) for orders on P(d, n) coming from other
choices of h and hi’s. Recent work of Gordon [37] provides an order based on the
geometry of Hilbert schemes that is probably more relevant that the orders used
here.

It might be possible to produce explicit “perverse complexes” and obtain the
other q-Schur algebras by perverse tilts (cf. Conjecture 5.6).
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6.3.2. Let us restate the previous Theorem in the case W = Sn. In that case,
S(1, n) is the q-Schur algebra of Sn, Morita equivalent to a quotient of the quantum
group Uq(gln). The following result solves a conjecture of [36, Remark 5.17] (under
the assumption h /∈ 1

2 + Z).

Theorem 6.11. Assume h /∈ 1
2 + Z. Then there is an equivalence of highest

weight categories kO ∼−→ kS(1, n)-mod sending the standard object associated to

χ ∈ Irr(Sn) to the standard object associated to

{
χ if h 6 0,

χ⊗ det if h > 0.

This shows the characters of simple objects of O are given by canonical basis

elements in the Fock space for ŝlr, where r is the order of k in C/Z, according to
Varagnolo-Vasserot’s proof [57] of Leclerc-Thibon’s conjecture [46] (a generalization
of Ariki’s result [2] proving Lascoux-Leclerc-Thibon’s conjecture [45]). Cf. Section
6.5 for a conjectural generalization to the case d > 1.

Gordon and Stafford [39, Proposition 6.11] deduce from this result a description
of the maximal dimensional components of the characteristic cycle of the simple
objects (a cycle in Hilbn

C2). If these characteristic cycles were equidimensional,
they would thus be known and one could deduce what are the support varieties in
C2n/Sn of the simple objects in O.

Remark 6.12. One can expect to obtain a different proof of Theorem 6.11 via the
work of Suzuki [55], which relates representations of rational Cherednik algebras of
type A with representations at negative level of affine Lie algebras of type A.

Note that an analog of Theorem 6.11 has been proven by Varagnolo and Vasserot
for trigonometric (or elliptic) Cherednik algebras [58].

6.4. Orbit decomposition. Let s ∈ {0, . . . , d−1} such that (qixr−q
i′xr′) ∈ k×

for 0 6 r < s, s 6 r′ < d and 0 6 i, i′ 6 n. There is a bijection

n∐

m=0

P(s, m) × P(d− s, n−m)
∪
−→
∼

P(d, n),

(α(1), . . . , α(s)), (β(1), . . . , β(d−s)) 7→ (α(1), . . . , α(s), β(1), . . . , β(d−s)).

We write Hx0,...,xd−1
(n) for the algebra kH (which depends further on q).

In [17, Theorem 1.6], Dipper and Mathas construct an equivalence

F :

(
n⊕

m=0

Hx0,...,xs−1
(m) ⊗ Hxs,...,xd−1

(n−m)

)
-mod ∼−→ Hx0,...,xd−1

(n)-mod

with the property that F (S(α)⊗ S(β)) = S(α ∪ β) [17, Proposition 4.11].

Assume we are in the setting of Section 5.2.1. We write Oh0,...,hd−1
(n) for the

category kO.

Theorem 6.13. Assume (q + 1)
∏

i 6=j(xi − xj) 6= 0. Let s ∈ {0, . . . , d − 1} such

that qixr 6= qi′xr′ for 0 6 r < s, s 6 r′ < d and 0 6 i, i′ 6 n. Then there is an



q-SCHUR ALGEBRAS AND COMPLEX REFLECTION GROUPS 155

equivalence of highest weight categories
(

n⊕

m=0

Oh0,...,hs−1
(m) ⊗Ohs,...,hd−1

(n−m)

)
-mod ∼−→ Oh0,...,hd−1

(n)-mod .

It sends ∆(α) ⊗ ∆(β) to ∆(α ∪ β) and it is compatible with F .

Proof. Fix m and consider α ∈ P(s, m) and β ∈ P(d− s, n−m). We have

cχα

s
+

cχβ

d− s
=
∑

26r6s

|α(r)|(hr−1 − h0) +
∑

s+16r6d

|β(r−s)|(hr−1 − hs) −

−

(
m(m− 1) + (n−m)(n−m− 1)

2
+
∑

r,i,j

(b
(r)
i,j − d

(r)
i,j )

)
h

so

d

(
cχα

s
+

cχβ

d− s

)
= cχα∪β

+ d(n−m)(h0 − hs) +m(n−m).

We deduce that if χα 6 χα′ and χβ 6 χβ′ , then χα∪β 6 χα′∪β′ .
The result follows now from Theorems 5.3 and 4.49. �

Remark 6.14. The theorem should hold without the (q + 1)
∏

i 6=j(xi − xj) 6= 0
assumption.

Remark 6.15. Note that this theorem applies to more general 1-faithful highest
weight covers (in particular, to the classical one, where we recover [17, Theorem
1.5], with the additional assumption that (q + 1)

∏
i 6=j(xi − xj) ∈ k×).

Remark 6.16. We put an equivalence relation on {0, 1, . . . , d− 1}: r and r′ are
equivalent if there is a ∈ {−n, . . . , n} such that xr′ = qaxr. Then O is equivalent
to ⊕

m : ({0,...,d−1}/∼)→Z>0
P

I m(I)=n

⊗

I∈{0,...,d−1}/∼

O{hi}i∈I
(m(I)).

6.5. Uglov’s higher level Fock spaces. Let e > 1 be an integer and let s• =
(s0, . . . , sd−1) ∈ Zd. Let h = 1

e and hj =
sj

e − j
d . Uglov [56] has introduced a

q-deformed Fock space of level d associated to the multicharge s•, together with a
standard and a canonical basis, both parametrized by d-multipartitions.

Yvonne [60] conjectured that, for suitable values of the si’s, the multiplicities of
simple modules in standard modules for classical q-Schur algebras are equal to the
corresponding coefficients of the transition matrix between the standard and the
canonical basis. He showed that this is compatible with the Jantzen sum formula.

Now, Theorem 6.8 shows that Yvonne’s conjecture can be restated for category
O and particular values of the si’s. We conjecture that, for arbitrary si’s, the multi-
plicities of simple modules in standard modules in O are equal to the corresponding
coefficients of the transition matrix between the standard and the canonical basis.
We also expect that the q-coefficients measure the level in the filtration induced by
the Shapovalov form. It should be possible to prove a sum formula for Cherednik
algebras and obtain a result similar to Yvonne’s.
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Remark 6.17. In order to prove the conjecture (in the case “(q+1)
∏

i 6=j(xi−xj) 6=

0”), it would suffice to construct a (deformation of a) highest weight cover of the
Hecke algebra of a geometrical nature, where character formulas can be computed.
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