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Abstract

We construct a microlocalization of the rational Cherednik algebras H of type S,.
This is achieved by a quantization of the Hilbert scheme Hilb" C? of n points in C*.
We then prove the equivalence of the category of H-modules and that of modules over
its microlocalization under certain conditions on the parameter.
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1. Introduction

Let us recall that Hilb" C?, the Hilbert scheme of n points in C?, is a symplectic (in
particular, crepant) resolution of C*"/S, = S"C?. On the other hand, the orbifold
[C?'/S,] (or the corresponding algebra C[C*"] % S,) is a noncommutative crepant
resolution of C?"/S,,. There is an equivalence between derived categories of coherent
sheaves on Hilb" C? and finitely generated modules over C[C*'] x S, (McKay’s
correspondence; cf. [12]).

The rational Cherednik algebra H, associated with S, is a one-parameter quan-
tization of C[C?"] x1 S,,. We construct a one-parameter quantization 42’/: of O 2
and an equivalence of categories between a certain category of fQZ—modules (good
modules with F-action) and the category of finitely generated H.-modules (under
certain conditions on the parameter c). Note that this is an equivalence of abelian
categories, while the nonquantized McKay’s correspondence is only an equivalence
of derived categories.

The quantization JZZ is a sheaf over Hilb" C2. Locally on an open subset isomor-
phic to T*U, it is isomorphic to the sheaf of microdifferential operators 7 with a
homogenizing parameter .

Note that our construction is an analog of the Beilinson-Bernstein localization
theorem for universal enveloping algebras upon flag varieties:

nilpotent cone .4 C*/s,
enveloping algebra quotients U, (g) | H.
T*(G/B) Hilb" C?
@G/B. A Jzz
@G 37: 3 W CURRUURRRE > U )»( g)
quantization quantization
v 4
T*(G/B) N
resolution
P — B ~ H,
quantization quantization
i v
Hilb" C? C?/s,

resolution
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Let us mention that our constructions give rise to the spherical subalgebra e H.e
of H,., and under certain assumptions on c, the two algebras are Morita equivalent. It
would be interesting to quantize directly the Procesi bundle to obtain H..

Let us now describe some earlier results related to our work. An important achieve-
ment of Etingof and Ginzburg [6] and of Gan and Ginzburg [7] is a construction of a
deformation of the Harish-Chandra morphism for GL,,(C), providing a construction
of the spherical subalgebra eH.e of H. as a quantum Hamiltonian reduction. This
provides a quantization of the Calogero-Moser space, which is itself obtained by
classical Hamiltonian reduction (see Kazhdan, Kostant, and Sternberg [21]).

Gordon and Stafford [8], [9] constructed a one-parameter family of graded (Z)-
algebras 4. that quantize (a graded (Z)-algebra Morita equivalent to) the homoge-
neous coordinate ring of Hilb" C.

In positive characteristic, Bezrukavnikov, Finkelberg, and Ginzburg [4] con-
structed a sheaf of Azumaya algebras on the Hilbert scheme whose algebra of global
sections is isomorphic to H, and obtained an equivalence of derived categories between
modules over that Azumaya algebra and representations of H,.

Let us explain the type of sheaf of algebras used to quantize Hilb” C2. On a
complex contact manifold, Kashiwara [17] constructed the stack & of microdifferential
operators. Locally, amodel for a contact manifold is the projectivized cotangent bundle
P*X, and the stack & comes from the sheaf &' x of microdifferential operators of Sato,
Kawai, and Kashiwara.

On a symplectic variety, Kontsevich [22] and Polesello and Schapira [24] defined
a stack 7 of microdifferential operators with a homogenizing parameter / (making
all objects modules over C((h))). Locally, a model is T*X, and # comes from
microdifferential operators on P*(X x C) which do not depend on the extra variable.

For applications to representation theory, these constructions are unsatisfactory:

. the first construction forgets about the zero section; and
J the second construction gives “too-large” objects (defined over C((%)) instead
of C).

To overcome these difficulties, we consider here symplectic manifolds X with a C*-
action that stabilizes Cwy with a positive weight. We consider the case where the
stack # comes from a sheaf of algebras together with a compatible action of C*,
and we study the corresponding structure, a W-algebra with F-action. The category of
its modules is defined over C, as the F-action induces a C*-action on C((%)) whose
invariant field is C.

Let us now describe the structure of the article.

In the first part of this article, §2, we study a general setting for the quantization
of symplectic manifolds X with a C*-action that stabilizes Cwyx with a positive
weight. We first review the theory of W-algebras on symplectic manifolds in §2.2. In
§2.3, we introduce the notion of W-algebra with F-action. An important point of this
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construction is that the category of % -modules with F-action on a cotangent bundle
(for the canonical structure) is equivalent to the category of modules over the sheaf
9 of differential operators. We adapt in §2.4 the study of equivariance and its twisted
version for the action of a complex Lie group, and we explain how to construct W-
algebras with F-action by symplectic reduction in §2.5. Finally, in §2.6, we provide
sufficient conditions to ensure % -affinity (a counterpart of Beilinson-Bernstein’s
result for Z-modules).

We devote §3 to the construction of Z-modules with an action of the rational
Cherednik algebra H, of type A, or of its spherical subalgebra e H.e. This is related
to the constructions of [4] and [7]. Let V = C", and let g = gl,(C). We construct in
§3.2 a quasi-coherent %, y-module .7, together with an action of H,, building on
the explicit description of the Z-module arising in Springer’s correspondence given
in [14]. We construct a coherent Z y-submodule .7, of ., which is stable under
the action of the spherical subalgebra of H,., and we construct a shift operator in §3.3.
This is achieved by reduction to rank 2.

In §4, we construct a W-algebra with F-action on Hilb" C? by symplectic reduction
from the previous constructions. After recalling some properties of Hilb" C? in §4.1,
we construct in §4.2 a W-algebra DQZ on Hilb" C? by symplectic reduction of %, for
the action of GL,,(C). In §4.3, we present our main results: fQZ—afﬁnity of Hilb" C?,
an isomorphism between global sections of DQZ and the spherical algebra, and an
equivalence between the category of good QZ-modules with F-action and the one
of finitely generated modules over the spherical algebra. We also describe similar
results for H.. So, we have obtained a microlocalization of the rational Cherednik
algebras: we have constructed a W-algebra with F-action over the Hilbert scheme
whose algebra of global sections is isomorphic to H, and whose modules are equivalent
to representations of H,.. Those results are obtained under certain assumptions on c.
We explain in §4.4 how to view sections of our W-algebras over open subsets of the
Hilbert schemes as appropriate fractions in the Cherednik algebra. Finally, we describe
explicitly the constructions for n = 2 in §4.5.

2. F-actions on W-algebras

2.1. Notation
By a manifold M, we mean a complex manifold, equipped with the classical topol-
ogy, and O); is the sheaf of holomorphic functions. We denote by 2, the sheaf of
differential operators with holomorphic coefficients and by &, the sheaf of formal
microdifferential operators on the cotangent bundle 7*M.

We denote by G, the multiplicative group C*.

Given aring A, we denote by Mod,,(A) the category of coherent left A-modules.
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2.2. W-algebras
We review some results on W-algebras. We refer the reader to [24] (where the conver-
gent version is studied, while we use the simpler formal version).

2.2.1

Let kK = C((h)) be the field of formal Laurent series in an indeterminate 7, and let
k(0) = CI[[Rh]]. Given m € Z, we define #7-c»(m) as the sheaf of formal series
dksm h*ay (ar € Or-cr) on the cotangent bundle T*C" of C", and we set #7-cn =
U,, #r+cr(m). Then #7+c» has a structure of k-algebra given by

1
— Jet| a o
aob= E h —a!aga-axb.

n
aeZl,

We have a ring homomorphism Z¢. (C") — #7+c.(T*C") given by x; — x;, % >
h'g.

2.2.2
Let X be a complex symplectic manifold with symplectic form wx. We denote by
X°PP the symplectic manifold X with symplectic form —wy.

A W-algebra is a K-algebra 7 on X such that for any point x € X, there are
an open neighbourhood U of x, a symplectic map f: U — T*C", and a k-algebra
isomorphism g: # |y —> ' Wrecn.

A W-algebra # satisfies the following properties.

@) The algebra # is a coherent and Noetherian algebra.

(i)  # contains a canonical subalgebra % (0) that is locally isomorphic to #7+c«(0)
(via the maps g). We set # (m) = h™"# (0).

(iii)  We have a canonical C-algebra isomorphism # (0)/# (—1) = 0y (coming
from the canonical isomorphism via the maps g). The corresponding morphism
On: W (m) — ™™ Oy is called the symbol map.

(iv)  We have

oo(h'[a, b)) = {oo(a), oo(b)}
for any a, b € #(0). Here, { ., -} is the Poisson bracket.
(v)  The canonical map # (0) — l(iilmaooW(O) /W (—m) is an isomorphism.

(vi) A section a of #/(0) is invertible in #(0) if and only if oo(a) is invertible in
Ox.

(vii) Given ¢ a k-algebra automorphism of %, we can find locally an invertible
section a of #/(0) so that ¢ = Ad(a). Moreover, a is unique up to a scalar
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multiple. In other words, we have canonical isomorphisms

W (0)* /k(0)* /:? Aut(7(0))

Ni lN

WS Au(H)

Ad

(viii) Let v be a k-linear filtration-preserving derivation of #. Then there exists
locally a section a of #(1) such that v = ad(a). Moreover, a is unique up to
a scalar. In other words, we have an isomorphism

W(l)/h_lk(()) ld) Derﬁltered(W)-

(ix) If # is a W-algebra, then its opposite ring # °P is a W-algebra on X°PP,
Conjecturally, (iii) — (v) characterize # (0).
Note that two W-algebras on X are locally isomorphic.

2.2.3
Assume that there exista;, b; € #/(0)(i = 1,...,n)suchthat[a;,a;] =[b;,b;]=0
and [b;, a;] = hd;;. They induce a symplectic map

f = (ooa), ..., 00a); 00(by1), ..., 00(by)) : X - T*C".
Then there exists a unique isomorphism
W= [ W, a; = xi, bi = §&;.

We call (ay, ..., a,; by, ..., b,) quantized symplectic coordinates of W .

Let M be a complex manifold M, and let ), : T*M — M be the projection. We
can associate canonically a W-algebra #7-); with a morphism n;}.@M — Wrey SO
that

T35 Fu(Drg) —— Wrera(m)

Orey " Oy

B—m

commutes. Here, F(%)) is the order filtration of %,,. Note that nA;IQM — Wrem
decomposes into n;,] Dy — Ey — Wrey. The ring #7+y, is flat over nﬂ}] Dy and
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faithfully flat over &',. In particular, for a coherent Zy;-module .# , the characteristic
variety Ch(.#) coincides with Supp(#7+y Rr-igy, nA;l./// ).

Let X and Y be two symplectic manifolds. The product X x Y is also a symplectic
manifold. For a W-algebra # on X and a W-algebra #y on Y, there is a W-algebra
Wy K #y on X x Y. Letting both p;: X x ¥ — X and p,: X x Y — Y be
the projections, #y X #y contains prV/X ®k Py "4 as a k-subalgebra, and it is
faithfully flat over it.

For a #/ -module .# , a # (0)-lattice is a coherent # (0)-submodule .4 of .#
such that the canonical map # Qy (o) .4 — # is an isomorphism.

We say that a % -module .# is good if, for any relatively compact open subset
U of X, there exists a coherent 7 (0)|y-lattice of .# |y. The full subcategory of good
# -modules is an abelian subcategory of the category of % -modules.

The following fact is used in this article (see [20, Theorem 1.2.2], where the
convergent version is proved).

LEMMA 2.1

Let r be an integer; and let .M be a coherent W -module so that é”xtf;,/(///, H)=0
for any j > r. Then J“fsj (M) = 0 for any closed analytic subset S and any j <
codim § —r.

Letk := Un>0 C((h'/™)) be an algebraic closure of k. We sometimes need to replace
W with k' @, # for some field k’ with k C k' C k.

2.3. F-actions
2.3.1
Let X be a symplectic manifold. Consider an action of G, on X, viewed as a manifold:
C* >t + T, € Aut(X). We assume that G, stabilizes the line Cwy C H(X, Q%)
with a positive weight m (i.e., T,*wx = t"wy forallt € C*).

We denote by v the vector field given by the G,-action: v(a)(x) = %a(T,(x))L:l.
The Poisson bracket { -, -} is homogeneous of degree —m:

T{a.b) = 1"(T}a, T;b)

and
v{a, b} = {v(a), b} + {a, v(b)} —mia, b} fora,b e Oy.
Let # be a W-algebra.
Definition 2.2

An F-action with exponent m on # is an action of G,, on the C-algebra %,
Fo: T'W =W fort € C, so that F,(h) = t"h and F,(a) depends holo-
morphically on ¢ forany a € #'.
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Let us fix an F-action with exponent m on % . The G,-action induces an order-
preserving derivation vg of # givenby vr(a) = %?t(a)L:l. It satisfies the following
properties:

vp(h) = mh,

(2.1)
ao(vp(a)) = v(oo(a)) fora € #(0).
Remark 2.3
Here, F stands for Frobenius. Note that vy determines the F-action on . However,
for a given v satisfying (2.1), we cannot always find an F-action on 7.

The action of G, on # extends to an action on #/[h!/™] = k(h'/™) @ # given by
g;t(ﬁl/m) — tﬁl/m‘

Definition 2.4

A #[h'/™]-module with an F-action (or simply a (#'[#!/™], #)-module) is a G-

equivariant %/ [h!/"]-module: we have isomorphisms %, : T,'.#/ —> . for t €

C¥*, and we assume that

(a) Z (1) depends holomorphically on ¢ for any u € .# (i.e., there exist locally
finitely many u; such that #,(u) = Y, a;(t)u;, where a;(t) € #[h'/™)
depends holomorphically on t);

b))  F(au) = F (@)F ,(u)fora € W[R'/"],u € M and

© F,o0Fy=F,fort, t' e C*.

We denote by Mody(# [h!/™]) the category of (# [h'/™], #)-modules: morphisms
are morphisms of %/ [h'/"]-modules compatible with the G,-action. We denote by
Modlgpo"d(W[ﬁl/ 1) its full subcategory of good (# [h'/™], #)-modules. These are
C-linear abelian categories. Note that if there is a relatively compact open subset U
of X such that C* - U = X, then a good (#'[h'/™], #)-module admits a coherent
(W (0)[h"/™], F)-lattice.

Assume that X = {pt} so that 7 = k. We have an equivalence
Modg(# [R'/™]) = Mod(C), .# + .#C~, with quasi-inverse given by V >
C(n'’™)y®c V.

Remark 2.5
Kaledin [15] as well as Kontsevich have also studied quantization for a symplectic
variety with a G,-action that stabilizes Cwy with a positive weight.

2.3.2
Let # be a W-algebra with an F-action with exponent m. Let n be a positive integer,
and consider the restriction of the F-action via G, — G, t — t": we have a new
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action givenby 7, = T;» and %, = % ,». This defines an F-action on % with exponent
mn. Then we have quasi-inverse equivalences of categories

Mod(#[h'/"]) <= Modp(#'[h""™]),
M W[ﬁl/nm] Qw [h1/m M
{s e N ;T (s)=sforany ¢ € Cwith¢" = 1} <~ N,

Remark 2.6
The equivalence above shows that the category depends only on the one-parameter
subgroup of Aut(X, #) given by the G,-action.

Let G, = l(ir_nnGm, where the limit is taken over maps f, ,: G, = G, t —
t"/" for positive integers 72, n’ with n’|nn. This is a pro-algebraic group (some sort of uni-
versal covering group of G,,). In terms of functions, we have G,, = Spec (D, 0 Ct?)
with multiplication coming from the coproduct t* — ¢ & t“. Instead of considering
Gn-actions as above, we could consider Gm—actions on X so that T)'wx = twy.
Although theoretically more satisfactory, this more complicated formulation is not
used in the present article.

2.3.3
Let us now give two examples.

Let M be a manifold, let X = T*M, and let # = #7+y. We consider the
canonical Gy-action given by T;(x, &) = (x, t€). There is a unique F-action with
exponent 1 on # with # |4, = id. Then, for any G,-invariant open subset U of X,
we have an equivalence

Mod§™ (¥ 1) => Modgowa(Enlv), M > M.
In particular, we have an equivalence
MOd%’OOd(W) l) MOdgood(-@M)-

Let X = T*C",andlet # = W7« Fixm > 1,and fixly, ..., I, € {1,...,m—
1}. We define a Gy-action by T,((x;), (&) = ((t"x;), (" "&;)). Then T*(wx) =
t"wyx. We define an F-action on % with exponent m by % ,(x;) = tix;, 7 ,(9;) =
t719;, and F,(h) = t"h. (Note that the relation [9;, x;] = 1 is preserved by Z,.)
Then

EndMod,,—(“//[h'/’”])(W[ﬁl/m])opp — (C[h—li/mxi’ ﬁl,‘/mai;i — 1’ o, n] C W[ﬁl/m]’
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which is isomorphic to Z(C"). Moreover, Mod®*(# [1!/™]) is equivalent to
Mod.n(Z(C")) (see Theorem 2.10).

2.4. Equivariance
We discuss G-equivariance of # by adapting [19] and [16], where the Z-module
version is studied.

2.4.1

Let G be a complex Lie group acting on a symplectic manifold X. Given g € G, let
T, be the corresponding symplectic automorphism of X. Let g be the Lie algebra of
G, and assume that a moment map puy: X — g* is given.

A W-algebra with G-action is a W-algebra with an action of G: we have k-algebra
isomorphisms p,: # —> Tg’lW for g € G so that for any a € ¥/, p,(a) depends
holomorphically on g € G. Moreover, we assume that there is a quantized moment
map wy : g — # (1), so that

d
[ (A). al = 2 poan(@)] .
oo(huy (A)) = Aoy,

1oy (Ad(®)A) = pg(ww (A)),

forany A € gand a € # . Note that (1 is a Lie algebra homomorphism.

2.4.2
A quasi-G-equivariant % -module is a # -module .# with an action of G:

pg: M T M

depending holomorphically on g € G and such that p,(au) = py(a)p,(u) fora € #
and u € .. Then we have a Lie algebra homomorphism «: g — Endy(.#) given
by a(A)(u) = %,oexp(m)uL:O for A € gand u € .. It satisfies

a(A)au) = [uy (A), alu +a - a(A)u).
It follows that we have a Lie algebra homomorphism
Yu: 98— Endy (), A a(A) — py(A). (2.2)

The % -module # is regarded as a quasi-G-equivariant % -module. We have
a(A) = ad(uy (A)) and yy (A)a) = —auy(A) (a € #', A € g). Given a G-
module V and a quasi-G-equivariant % -module .7, the tensor product .#Z & V has
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a natural structure of a quasi-G-equivariant % -module. The corresponding y is given
by

VauevA)u V) =y 4,(Au@v+u®Av forue .#,veV,and A € g.

Let A € (g*)°. If y 4 coincides with the composition g A poulda Endy (A),

we say that ./ is a twisted G-equivariant % -module with twist A. For such a coherent
module .7, we have Supp(.Z) C uy'(0).

We denote by Mod(%#, G) the category of quasi-G-equivariant % -modules, and
we denote by Modf(V/) its full subcategory of twisted G-equivariant % -modules
with twist . We denote by Mod?” #*°!(#/) the category of good twisted G-equivariant
# -modules with twist A.

The embedding Mod{ (#) — Mod(#/, G) has a left adjoint

®,: Mod(#, G) — Mod?(#),

2.3
(M) = M (X (v.a(A) = MA)A). @)

Aeg

Let V be a one-dimensional G-module, and let x € (g*)¢ be its infinitesimal
character. Then we have an equivalence

Mod{ (#) —> Mod{,_ (#), M MRV, (2.4)

Let # be a W-algebra with an F-action with exponent m. A G-action on (%, F)
is a G-action on % such that 7; and 7, commute, %, and p(g) commute, and jL» (A)
is & ,-invariant, forr € C*, g € G,and A € g.

We define similarly the notion of twisted G-equivariant (% [h!/™], % )-modules.
We denote by Modg: 800/ [h'/™]) the category of good twisted G-equivariant
(W [hY™], #)-modules with twist A € (g*)°.

2.5. Symplectic reduction

Let X be a symplectic manifold with a symplectic action of G and a moment map
Ux: X — g*. Assume that G acts properly and freely on X (i.e., the map G X
X — X x X defined by (g, x) — (gx, x) is a closed embedding). Then /L}I(O)
is an involutive submanifold. Let Z = M;(O)/G, and let p: M;(O) — Z be the
projection. Then Z carries a natural symplectic structure such that p preserves the
symplectic form (i.e., denoting by w7 the symplectic form of Z, we have p*w; =
wx| u}l(o))' The local form of X is given by the following lemma.

LEMMA 2.7 (see [10, §41])
Locally on Z, the manifold X is isomorphic to T*G x Z. More precisely, for any
point x € /L}l(O), there exist a G-invariant open neighbourhood U of x in X and a
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G-equivariant open symplectic embedding U — T*G x T*C" compatible with the
moment maps.

Let # be a W-algebra on X with a G-action. Let A € (g*)“. Set

L=, =W LW (1w (A) + A(A)).

Aeg
Then %, is a coherent twisted G-equivariant % -module with twist A.
The support of .%, coincides with uy'(0). Let %, (0) be the #/(0)-lattice

W (0)) 3 aeg (—D(w (A) + A(A)) of ;.
Let #; = (( D+ é"ndy,/(.,%\))c)()pp, a sheaf of k-algebras on Z.

PROPOSITION 2.8
() Wy isa W-algebra on Z, and #7(0) == ((p. Endy 0)(-Z,.(0))%) ™.
(i)  We have quasi-inverse equivalences of categories

Mod=2(#5) <> Mod &%),
N D%L ®I)*'W[ P_IJV,
(P omy (2, ///))G M.

(iii)  LetV be a one-dimensional representation with infinitesimal character x. Then
1 0) = (paHomy 0 (Z(0), Loy (©0) @ V) is a #y(0)-lattice of a
coherent  Wz-module N, , = (pHomy(L, Ly ® V)¢ and
N 4 (0)/hA; ,(0) is isomorphic to (P*(ﬁu;‘(O) ® V), the line bundle on
Z associated with V.

(iv)  Assumethat W has an F-action with exponent m compatible with the G-action.
Then W7 has a natural F-action with exponent m, and we have an equivalence
of categories:

Mod§*™ (#7[h'/™]) = Mod 5™ (#/[h'/™)).

Note that Homy (L., H) =~ p‘l((p*%omw(.,?j, ///))G). Hence, if G is con-
nected, we have p, #omy (L, M) >~ (pHomy (L, H))°.

2.6. W -affinity

2.6.1

Let X be a symplectic manifold. Let S be a variety, let f: X — S be a projective
morphism, and let L be a relatively ample line bundle on X. Let # be a W-algebra
on X. The following theorem is an analog of the result of Beilinson and Bernstein [1]
on Z-modules on flag manifolds. We follow the formulation of [16].
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THEOREM 2.9
Forn > 0, let £,(0) be alocally free # (0)-module of rank 1 so that £,(0)/ h.%£,(0) =
L8N Set Lo =W ®w (0) Z,(0).

Consider the following conditions:

for n > 0, there exist a vector space V, and a split epimorphism
%, @V, — W ; that is, W is a direct summand of the direct sum  (2.5)
of finitely many copies of £,;

for n > 0, there exist a vector space V,, and an epimorphism

WV, > 2L, (26)

(i)  Assume (2.5). Then, for every good # -module ., we have R f. (M) = 0
fori # 0.

(i1)  Assume (2.6). Then every good W -module is generated by its global sections
(locally on S).

The proof is given in §§2.6.2 and 2.6.3.
Assume that % has an F-action with exponent m, and assume that S has a G-
action so that f is G-equivariant. Assume, moreover, that there exists o € S such

that every point of § shrinks to o (i.e., lim,_, fx = o for any x € ).
Let %/ = #/[hV/™], and let A = Endyoq, (W)(V/) PP,

THEOREM 2.10
Assume that conditions (2.5) and (2.6) hold. Then A is a left Noetherian ring, and we
have quasi-inverse equivalences of categories between ModgFOOd(W) and Mody,(A),

Mod ™ (#) <= Modeon(A),
% = HomMod\?’p«m(W)(W, %),
W @, M < M.

The proof is given in §2.6.4.

2.6.2. Vanishing theorem

Let # be a W-algebra on a symplectic manifold X. Let .# be a coherent # -module.
Recall that .# (0) is a # (0)-lattice of .# if .#(0) is a coherent # (0)-submodule of
A such that W @) M (0) —> M .

We start with the following lemma.
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LEMMA 2.11
For any coherent W (0)-module .V, the canonical map is an isomorphism

N s lim A RN (2.7)
<—

m

Proof
Let us first show that .4/ — l(ir_nm,/V /" A is a monomorphism. For any x € X,

we have morphisms of #(0),-modules:
Ny — (im A JR" N ), — lim( Ay /R A7),
< <
Since the composition is injective (by the Artin-Rees argument; see, e.g., [25]), the
map AN, — (l(ianJV/ﬁmJV)x is injective.
Let us show now that .4~ — l(i£1mJV /" A is surjective. The question being

local, we can take an exact sequence of coherent % (0)-modules
0> M —>%L— N -0,

where % is a free %/ (0)-module of finite rank. For any Stein open subset U and
m > 0, we have

H'(U, A |(W" L N M) =0,
and
T(U, A )WL N AM))— T(U, A" L N M) is surjective.
Indeed, in the exact sequence
T(U; M )WL O M) — T(Us A ("L N M)
— H'(U; (0" ' L0t |(W" L N M)
— H'(U; A |(R" L N M)
— H'(U; MW" L N A)),
H'\(U; (W' L 0AM) (WL N ) vanishes because ("L N4 (WL M)

is a coherent &'y-module.
It follows that the next sequence is exact:

0->T(U, A /WLNM)— WU, L/NEL)—TWU, N /" N)— 0.
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Since {T(U, A |(F" L N M)}, satisfies the Mittag-Leffler (ML) condition, the
bottom row of the following commutative diagram is exact:

ru,%) rw, )

0 — WmD(U, # /"L 0 M) — UmTU, L/H"L) — GmIU, N /" N) — 0

It follows that T'(U, A4") — 1<i£1mF(U, N AN~ T(U, l<ir_nm</V/ﬁ'"</V) is sur-

jective. O

LEMMA 2.12
Let M be a coherent W -module, and let # (0) be a W (0)-lattice of M . Set M (m) =
h=" #(0), and set M = M (0)) M (—1). Assume that

H (X, #)=0 fori#0.

Then
@) the canonical morphism

T(X, #(0))/T(X, A (—m)) —> T(X, A (0)/ M (—m))

is an isomorphism for any m = 0; and

(i) HY(X,.#(0) =0 foranyi # 0.

Proof
Given m > 0, the exact sequence

0— ML HOV M= —1)— MO M(—m)— 0
induces exact sequences
T(X, A 0)) M (~m — 1)) — (X, HO)] M (~m)) — H' (X, M)
and

H (X, M) — H (X, M) M (—m — 1)) — H (X, M (0)] A (—m)).
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It follows that I'(X, .# (0)/ A (—m — 1)) — U(X, .# (0)/.# (—m)) is surjective for
any m > 0and H (X, .#(0)/.#(—m)) = 0 for any i > 0. Since ['(X, .Z(0)) =
l(iilmF(X, A (0)/ A (—m)) by Lemma 2.11, we obtain (i).

Fori > 0, we have

H'(X, #(0)) = lim H' (X, A (0)/ 4 (—m)) =0

because { H'~'(X, .#(0)/.# (—m))},, satisfies the ML condition. O

2.6.3. Proof of Theorem 2.9

Let us prove (i). The question being local on S, we may assume that there exists a
# (0)-lattice .4 (0) of 4. Set M = .#(0)/h.#(0). Then, for m > 0, we have
R f(L®" ®g, M) =0fori # 0. It follows that

H(f'U,L®*" @, M)=0

for any i # 0 and any Stein open subset U of S. From now on, we assume that m is
large enough so that the vanishing above holds.

Let &, = &ndy(Z,)™, a W-algebra on X. We have &,(0) =
Endoy 0)(ZLn(0))°PP. Let Z,(0)* = Homy ) (L (0), #(0)), an (7, (0), # (0))-
bimodule, and let £ = Homy (L, W), an (%,,, # )-bimodule. We have

Ly > Ay Ragy0) ZLn(0) = ZL,0) Quo) .

Note that the bimodules %), and .Z* give inverse Morita equivalences between .27,
and 7.

Let 4,00 = Z:0) Qy #(0), an <7,(0)-lattice in the .27,-module
My = ZLF Qy M. We have M,(0)/h M,0) ~ L®" Q¢, M ; hence,
Hi(f'U, #,(0)/h.#,0) = 0 for i # 0. Lemma 2.12(ii) implies that
Hi(f~'U, #,,(0)) = 0 fori # 0. Taking the inductive limit with respect to Stein
open neighbourhoods U of s € S, we obtain H'(f~'(s), .#,,(0)) = 0, and hence,

H (f7(s), M) =Kk Qo) H' (f7'(5), A,(0)) = 0. (2.8)

By condition (2.5), # is a direct summand of a direct sum of finitely many copies
of the left # -module .%,,. So, #  is a direct summand of a direct sum of finitely many
copies of the right % -module .Z*, and . is a direct summand of a direct sum of
finitely many copies of .#,, (as a sheaf). Then (2.8) implies that H' (f~!(s), .#) = 0.
This completes the proof of (i).

We now prove (ii). We keep the same notation as in the proof of (i). Since
L is relatively ample, given s € S there exists a surjective map (& xlf-l(s))@’v —»
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(L®" ® M ) sty for some N. On the other hand, Lemma 2.12(i) implies
that T'(f~!(s), #,,(0)) — T(f~'(s), #,,(0)/h.#,,(0)) is surjective. Hence, we
have a morphism ¢,,: 7, (0)®"| -1y — #,,(0)| ;-1(5) such that the composition
Gy (0)N| p-1(5) = (M (0)/ Bty (0))| 415 is an epimorphism. It follows that ¢,
is an epimorphism. Thus, there exists an epimorphism V| -1 — M| r-1(5)-
By applying the exact functor %, ®., -: Mod(<,) — Mod(¥#'), we ob-
tain an epimorphism Z2V| ;1) — .#|s-1(5). The assertion follows now from
condition (2.6). O

2.6.4. Proof of Theorem 2.10

By Theorem 2.9, Mod%,-OOd(%) > M+ f (M) e Mod( f*(ﬁ)) is an exact functor.
By the assumption, o has a neighbourhood system consisting of relatively compact

Stein open neighbourhoods U such that U is stable by 7; (0 < [f| < 1). For such a

U, wehave S = | J,.c. T,U.Forany 4 € Mod";md("};/v), we have

HomModF(«/;)(VF/V, M) ={s € M (f'U);s is F-invariant}.

Here, s € .#(f~'U) is F-invariant if % ,(s) = s for any t € C* with |¢t| = 1.
Fors € A (f~'U), let

dt
f”%t(s)T.

1
pn(s) el ——
2/ —1 Jy=1

We have s = > p,(s), and i="/™ p,(s) = po(h~™/™s) is F-invariant.

LEMMA 2.13
HomMOdgFmd(«/Z)(W, -) is an exact functor.

Proof

Letg: .4 — #' — 0be an epimorphism in Mod™(#), and let s’ € .#'(f~'U)
sothat.# ,(s") = s’ forany t with || = 1. By Theorem 2.9, there exists s € .Z (f~'U)
such that ¢(s) = s’. We have ¢(po(s)) = s’, and py(s) is F-invariant. O

LEMMA 2.14
Any M € Mod¥,’ Od(W) is generated by F-invariant global sections.

Proof

By Theorem 2.9, .# is generated by global sections s; € .#(f~'U). Then .# is
generated by the 7™"/" p,(s;)’s. Indeed, let .4 be the submodule of .# generated
by the p,(s;)’s. This is a coherent submodule of .Z. Let y: .# — .# |V be the
quotient morphism. Then p, ¥ (s;) = ¥ (p,(s;)) = 0 for any n, and hence, ¥ (s;) = 0.
It follows that A = . . O
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We deduce that Hom, d?ud(,;)(i/v, ) is an A-module of finite presentation for any
M € ModS ().

LEMMA 2.15
A is left Noetherian.

Proof

Let / be aleftideal of A. Let .¥ C %' be the image of #' ®4 I — #'. Note that .%
belongs toMod%OOd(W). Since # is cohq{gnt, there exist finitely many a; € I such that
S =W a;. Wehave Homy e 7 (W, fl: >, Aa; C Iby LemmiZ.lj. Since
we have injective maps / — Hom,,_ d{,:)od(a/;’)(W, %) — Hom,,, di?od(ﬂf’yv)(%, W)= A,
we obtain I = ), Aa;. O

Since the good (77, F)-modules are generated by their F-invariant sections,
Homyy,y, (7(#, +) sends ModS™(#) to Modeh(A).
Given M € Mod.,,(A), the canonical morphism

M — Homy s (W', W @4 M)

is an isomorphism because both sides are right exact functors of M and the morphism
is an isomorphism for M = A.

Given # < Mo di()od(% ), the canonical map 77@ 4 Hom, | 5 (W~)(77, M) —
A is an isomorphism because both sides are right exact functors of .# and .# has
aresolution # & — Wm0 s 4 5 0in ModgF(’Od(VZ) by Lemma 2.14.

This completes the proof of Theorem 2.10. a

3. Rational Cherednik algebras and Z-modules

3.1. Definitions, notation, and recollections

3.1.1

Let V= C", let G = GL(V) = GL,(C), and let g = gl(V) = gl,(C). We denote
by e,; € g the elementary matrix with zero coefficients everywhere except in row r
and column s, where the coefficient is 1. We denote by A,; € C[g] the corresponding
coordinate function.

We denote by t = C" the Cartan subalgebra of diagonal matrices of g, and
we denote by W = §, the Weyl group. We denote by s;; the transposition (ij) for
1<i#j<n Wehave C[t] =Clx(,...,x,]and C[t*] = C[yy, ..., yul.

We put 0(x) = ]_[Kj(x,- — x;) € C[t]. We denote by g, the open subset of
regular semisimple elements of g, and we put t e =t N greg = {x € £;0(x) # 0}.

We identify C[t]" and C[g]¢ via the restriction map.

Given M a graded vector space, we denote by M, its component of degree k.
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3.1.2

Let X be a manifold, let i: ¥ < X be a submanifold, and let f: .# — A4 be
a morphism of coherent Zy-modules. Assume that Y is noncharacteristic for .#
and A (ie., for Z = Ch(A) or Z = Ch(./4), we have Z N Ty X C T3X). If
i*(f): i*# — i*.A is an isomorphism (resp., monomorphism, epimorphism), then
so is f on a neighbourhood of Y (see, e.g., [18, Theorem 4.7]).

3.1.3

Let f € H°(X; Ox) be nonzero. We denote by 8(f) the element f~! of the Px-
module Ox[ f~'1/Ox.So, Zx8(f) C Ox[f~']/Ox.More generally, let S be a closed
subvariety of complete intersection of codimension r given by f| = --- = f, = 0 for
fis..., fr € H(X; Ox). Then

Jiﬂsj(ﬁx)=0 for j #r
and

HLO) = OWfi- [ Y. Ol Fio f)7').

1<igr
We denote the last Zx-module by Hsx. We denote by 8(fi)---8(f,) the section
L/(fi--- fr) of Byx.

3.2. Construction of some P-modules
3.2.1
Givenc € C, we denote by H, the rational Cherednik algebra of (t, W) with parameter
c: this is the C-algebra quotient of T(t* @ t) X W by the relations
[)C,',Xj]:O, [Yz,y]]:(),
[yi,xj1=cs;; fori # j,

i, xi]=1 _Czsik-

ki

We have a vector space decomposition (“PBW property”) (see [6, Theorem 1.3])
H.=C[t]® C[t*] ® C[W].

There is an injective algebra morphism (given by Dunkl operators) (see [6, Proposi-
tion 4.5])

0.1 Ho = D(treg) X W C Ende(Clt 1, ])
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given by the canonical map on C[t] x W and by

1
Oe(yi) =0y, —c Y (1 = 5. 3.1)
e Tk

It induces an isomorphism of algebras after localization
Clt el ®cre 1 He = D(treg) X W.

We introduce the idempotents e := (1/n!) ZwEW w € C[W] C H, and ey :=
(1/n) Y, cw det(w)w € C[W] C H, corresponding to the trivial representation and
the sign representation of W.

We have an injective morphism C[t |V — eH_ e, a + ae, and we identify C[t]"
with its image. We put y*> = Z?zl yi2 € H,.Recall that e H_ e is generated by C[t]Ve
and C[t*]Ve (cf., e.g., [4, proof of Proposition 5.4.4]). On the other hand, we have an
isomorphism of C[W]-modules (cf., e.g., [2, Corollary 4.9])

(ad(y?)": Clt1 => C[t"]s. (3.2)

Itsends a(xy, ..., x,) to 2*kla(y,, ..., y,). Hence, e H.e is generated by C[t]" e and
ye.

We denote by & +— h* the anti-involution of H, given by x; — x;, y;i — —V;,
w w i (we W)

3.2.2
We identify g and g* via the G-invariant bilinear symmetric form g x g 3 (A, A”) >
tr(AA’).

A pair (A, z) denotes a point of g x V. We identify T*(gx V) withgx gx V x V*;
accordingly, we denote a pointin T*(g x V) by (A, B, z,¢).Letu: T*(gx V) — ¢*
be the moment map. It is given by u(A, B,z,¢{) = —[A, B] —z 0 ¢.

Let us denote by

Mp: g — @ng(g X V)

the Lie algebra homomorphism associated with the diagonal action of G on g x V.
Let us consider the Z,y-module .. = P, vu,. given by the defining equation

(ko (C) +ctr(O))uc =0 (C € g).

More formally, we have £, = Zyuv /(Pgxv(itp + c tr)(g)), and u. is the image of 1
in .%..

We consider .Z, as a twisted G -equivariant _@gx v-module with twist ¢ tr, where u,.
is a G-invariant section of .Z,. Since any a € C[g]° commutes with p(C) (C € g),
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the map u. > au, extends to a ;v -linear endomorphism of .Z,. Hence, .Z, has a
(C[t]Y ® Dyxv)-module structure.
The characteristic variety Ch(.Z.) of .Z. is the almost-commuting variety:

Ch(Z) = 1™ '(0) = {(A, B, 2, £);[A, Bl +z0¢ =0},

This is a complete intersection in 7*(g x V) (see [7, Theorem 1.1]).

LEMMA 3.1
Let g be the open subset of g of elements that have at least (n — 1) distinct eigenvalues.
We have

<%00

(g\greg)x

W(ZL)=0 and !

(g\g1)x

(L) =0,

Proof
Since Ch(.Z,) is a complete intersection, we have (see [18, (2.23)])

Extly (Lo Dyv) =0 for j # codimyeguvy ' (0)=n*.  (33)

Let y: g — t/W be the canonical map associating to A € g the eigenvalues
of A. Let y: u='(0) — t/W be given by (A, B, i, j) — y(A). Then 7 is a flat
morphism (see [7, Corollary 2.7]).

Let S be a closed subset of t / W. Since y is flat, we have

codimT*(gxw(y“(S) Xg Ch(.ﬁfc)) — codimyz«gxv) Ch(Z,) = codimy,w S.
Lemma 2.1 applied to ¥ ~'(S) x4 Ch(.%.) implies that
%{I(S)Xv(ﬂ.) =0 for j < codimyw S,
and the lemma follows. O

3.2.3

Let us recall some constructions and results of [14]. Let io: g — Py q(t X g) be the
morphism given by the actionof G ont x g, g - (x, A) = (x, Ad(g)A). We consider
the 7 «4-module generated by 8o(x, A) with the following defining equations:

Ho(C)p(x, A) =0 foranyC € g
and

(P(A) = P(x))do(x, A) =0,
(P(34) = P(=8,))80(x, A) = 0,

for any P € C[g]°.
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Then Py «¢80(x, A) is a simple holonomic Z; . g-module with support t X,y g.
Its characteristic variety is the setof (x, y, A, B) suchthat[A, B] = 0, and there exists
g € G suchthat Ad(g)A and Ad(g) B are upper triangular and x and y are the diagonal
components of Ad(g)A and Ad(g)B. Note that Z;,480(x, A) C PBix,,yaltxg bY
So(x, A) > [1/_; 8(P:(x) — P;(A)) (see §3.1.3), where P, € C[g]® (i = 1,...,n)
are the fundamental invariants given by det(1 +7A) = >_; , Pi(A)t'.

We need to consider the P, g« v-module Z,480(x, A) X Oy, generated by
8(x, A):=60(x, A)X1 which satisfies the same equations as §o(x, A) and 9,,8(x, A) =
0. In particular, up(C)8(x, A) = 0 forany C € g.

3.2.4
Let us set

q(A,z) =det(A" 'z, A"z, ..., Az, 2).

We have g(Ad(g)A, gz) = det(g)q(A,z) for g € G and [up(C), q(A,z)] =
—tr(C)q(A, z) for C € g.

Consider the Py «gxv-module Z 4 vq(A, 2)°8(x, A). A precise definition is as
follows. Let us consider the left ideal .# of Z; .4 v ® C[s] (s being an indeterminate)
consisting of those P(s) such that P(m)q(A, z2)"8(x, A) = 0 for any m € Z,. We
now define Z v (A, 2)°8(x, A)as (D xgxv ®Cls1) /(I + D xgxv QCls](s —0)).
It is a holonomic Z; ,¢xv-module.

The element g(A, z)°6(x, A) satisfies

(/,LD(C) + ctr(C))q(A, 2)°8(x, A) =0 forany C € g,
(P(A) — P(x))q(A,z)°8(x, A) =0 forany P € C[g]°.

We put v. = g(A, 2)6(x, A). Let po: tes X g X V — g x V be the projection. Let
us consider the %, y-module

'%c = (pO)*(@t,egxngvc) = (pO)*(@t,egxngQ(A’ Z)Ca(xa A))

By the definition, we have an isomorphism ., —> j,.j~'./,, where j: greg X V <
g x V is the open embedding. This is a quasi-coherent % y-module whose charac-
teristic variety is contained in the almost-commuting variety 1 ~'(0).

The action of W on t,, induces a W-action on M. Here, W acts trivially on v,.
Hence, the Z;,y-module M, has a module structure over Z(t reg) X W. Therefore,
H. acts on ./, via the canonical embedding 0, : H, — P(t.) X W.
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3.3. Spherical constructions and shift
3.3.1
There is a P v-linear homomorphism

. L - M., Ue > V.. (3.4)

We regard ./ as a twisted G-equivariant Z,y-module with twist ¢ tr, where sections
in D (t o)V, are G-invariant. Then the morphism above is G-equivariant. Moreover,
it is C[t]"-linear. Hence, ¢ induces an epimorphism of (Z(te) X W) ® Zyuv)-
modules:

g(treg) ®C[t]“’ Z‘ - %C.

LEMMA 3.2
The morphism of (C[W] ® Yyxv)-modules

1®¢: Clt] ®cpgw Lo — .

is an isomorphism on gres X V.

. . . Uc> Ve UcH>0(x)ve
In particular, the induced morphisms £, —— e M, and L, ————> eger M.
are isomorphisms on g, X V.

Proof
Leti: te, x V < g x V be the embedding. Note that i is noncharacteristic for
Z. and M. Since G - t;;y = grep, it is enough to prove that the canonical map
Clt reg] QCLt ] i*%. — i* .M, is an isomorphism (cf. §3.1.2).

We have i*up(e,s) = (A, — Ag)0a,, — 250;,. It follows that we have an isomor-
phism

@’tregXV/(Z @treng(ziaz, - C)) ; l*c‘%" 1 = i*MC'

Leti”: trey X treg = t x g be the embedding. Since the Jacobian

I(P1(x), ..., Py(x))/0(x1, ..., x,)

is equal to 0(x) (e.g., see [5, Chapter V, §5.4, Proposition 5]), we have an isomorphism

. So(x, Ay~ (@) 18w x—a)
i" D gbo(x, A) P 2.

S(w™'x —a),

reg
weW

where §(w™'x — a) = 8§(x,1) — a1) -+ S(Xue) — an)-
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Let us denote by i’: tyee X treg X V > tp X g X V the embedding. We have
an isomorphism

. v Y, v,
l,*-@t,egngch f) @ -@t,egxtrengv:ua (3.5)
weW
where v, = 0(a) 'z - - 2,)°8(w~'x — a) has the defining equations

1 /
(ax""“ 0 — (e = 1)231‘ - aj)v"’ =0
JF#i
(Xwiy — ai)v, =0,

(Ziaz, - C)v;) = 07
foranyi =1, ..., n. In particular, we have

Fe, =@ f)aw, forany f e C[t]. (3.6)

We obtain finally an isomorphism

. Vb3, Uy
i* M. %) @ Doy x vV,

weW

This is compatible with the action of W, where w'(v,) = v,,,. Moreover, each
D, xvV,, is isomorphic to i*.Z, by v], +> u.. Hence, we obtain an isomorphism of
(% xv ® C[W])-modules

i* M= CIW]|Qi*%L..

The composition i *(C[t 1Qcy¢ v -Z.) — i* A, = CIW]Qi*.Z. is givenby a®Qu, —
Dowew W ® (w™'a)u, in virtue of (3.6). Then the lemma follows from the fact that
Clt] ®ciev Cltreg]l = C[W] ® Clt ] givenbya @ b > Y,y w @ (w™'a)b is
an isomorphism. a

LEMMA 3.3

The morphismi: £, — M, is injective, and its image is stable by e H.e. Furthermore,
eH_e acts faithfully on Z..

Proof
The injectivity of ¢ follows from Lemma 3.2 because %, does not have a nonzero
submodule supported in (g \ greg) x V by Lemma 3.1.
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Since e H,e is generated by C[t]" and y?e (cf. §3.2.1), the stability result follows
from the following result (cf. [4, Proposition 5.4.1], [6, Proposition 6.2]):

Yu. = Agu,. (3.7)

2

Here, Ag =), .., dA?—dA, is the Laplacian on g.

Finally, the faithfulness of the action of e H e follows from the faithfulness of the
action of H,. on H.v. C ... With the notation of the proof of Lemma 3.2, we have
an isomorphism i*.#. ~ %, v X W compatible with the action of Z; , x W, and

the faithfulness follows from that of 6,. O

Remark 3.4

@) In other words, the subalgebra of End@ng(,ﬁfc) generated by C[t]" and by
the endomorphism u. — Agju,. is isomorphic to e H.e.

(i)  The action of the algebra eH.e on .Z. can be described as follows. Let
ko: C[t]" = Clg)l® — Z(g) and «;: C[t*]¥ = C[g*]® — Z(g) be
the canonical morphisms. We have

(ae)u, = ko(a)u, fora e C[t]V,

(be)u, = k1 (b*)u. forb e C[t*]V. G:5)
The first equality is clear. We have a commutative diagram
CiyY Clalf
(ad<y2>)k l l (ad(A@)k (3.9
Cle-1y Clg"I¢

From (3.7) and the first equality, we deduce that
k k
(ad(Ag))" (ko(@))ve = (=1 (ad(y*))" (a)v,

fora € (C[t],‘f/. This gives the second equality.

332
The morphism ¢ gives rise to an (H, ® Y,y )-linear morphism

Hce ®eHCe Z - '%c (310)
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Consider the following conditions:
H.eH.= H,, (3.11)
eH.eqoH.e = eH_ e and egetHe e Hoegey = €ger Ho€4ex. 3.12)

LEMMA 3.5
If (3.11) is satisfied, then the morphism (3.10) is injective.

Proof

Since H.e is a projective e H.e-module, any coherent submodule of H.e ®,p . -Z.
vanishes as soon as it is zero on gy, X V by Lemma 3.1. Hence, it is enough to
show that the morphism (3.10) is injective on gy, X V. Then the result follows from
Lemma 3.2 and the fact that the multiplication map gives an isomorphism of right
(eH.e ®ciijv Cltee]")-modules

Clt] ®cpijw eHee ®cpiw Cltregl” —> Hee @cpipw Cltreg]"™ . O

PROPOSITION 3.6

Condition (3.11) holds if and only if eH, gives a Morita equivalence between H,
and eH_e. Similarly, condition (3.12) holds if and only if eH_.eqo gives a Morita
equivalence between eqei H 4o and e H.e.

This follows from the next lemma.

LEMMA 3.7
Let A be a ring, and let ey and e, be idempotents in A. Assume that

e1AeyAe) = e Aey and eyAeiAey = ey Aes.

6 For any A-module M, we have
€2A€1 ®e|Ae] elM l) €2M.

(i) Two bimodules e Ae, and e,Ae, give a Morita equivalence between
Mod(e; Aey) and Mod(e, Aes).

Proof
(i) The surjectivity follows from e, M = e;Ae; M = ey AeiAea M C (epAer)(er M).
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Let us show its injectivity. By the assumption, there exist finitely many elements
a; € e;Aey and b; € ejAe; such thate, = ) . a;b;. Consider now u = Zj X;®v; €
erAe; ®, 40, 1M (Where x; € e;Ae;, v; € ey M). Assume that Zj xjv; = 0. Then

u = Za,-bixj (24 'Uj' = Zai ®bi.XjUj = 0
i i
(ii) It is enough to show that the multiplication maps e;Ae; Qg ac, €142 — e2Ae;
and ejAe; ®,, 4, €2Ae] — e1Ae; are isomorphisms. For the first one, we apply (i) to
M = Ae,. The second one can be handled similarly. O

The previous result can be expressed in terms of bimodules.

PROPOSITION 3.8

Let A and B be rings, let P be an (A, B)-bimodule, let Q be a (B, A)-bimodule, let
@: PQ®p Q — A be amorphism of (A, A)-bimodules, and let : Q @4 P — B be
a morphism of (B, B)-bimodules. Assume that ¢ and \r are surjective, and assume
that the following diagrams commute:

QP (1210}
PRprQO®1 P ——> AQ®u P Q@A P®Q — B®p QO
l/ PRV can and l 0®¢ l can
PRz B ————> P 0R4A ——> Q
can can
1) Then ¢ and ' are isomorphisms, and P and Q give a Morita equivalence

between Mod(A) and Mod(B).
(i)  Let M be an A-module, let N be a B-module, and let f: Q @4 M — N and
g: P ®p N — M be morphisms so that the diagrams

oM YN
PR QOsM — AQsM Q0®4 PRy N —— BQ®zN
l P®f l can and \L 0®g l can
g f
PN ————> M o/ M —— N

are commutative. Then f and g are isomorphisms.
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Proof
. AP\ . M 10
Apply Lemma 3.7 to the ring (Q B), its module <N>, and e; = (o o) and e; =

(o)) 0

Remark 3.9
@) It would be interesting to describe the image of the morphism (3.10).
(i) Let

w=|%|mdez2<d<n o =1.m<o}

It is known that condition (3.11) holds for ¢ & %/, while condition (3.12) holds
whenc — 1 ¢ % (cf. [8, Theorem 3.3], [2, Theorem 8.1], [3]).

3.3.3
Let us consider the (Z(t reg) ® Py« v)-linear morphism

o: M. — M._; Qdet(V),
ve =q(A,2)8(x, A) > q(A,2)  q(A, ) '8(x, AR = (A, D)v_ R L.

Here, ! € det(V):= /\" V is the element such that (A, )l = A" 'z A A" 2z A A
Az A z. In particular, g(A, z) ® [ is a G-invariant section of O,y ® det(V).

So, the morphism o is G-equivariant. We endow .#._; with an H.-module
structure via the embedding 0,.: H. — Z(t,,) X W.Then o is H, -linear.

Remark 3.10

Note that .4, — #._; ®det(V) is an isomorphism on {g(A, z) # 0}. However, with
our definition of .#,, the morphism .#, — .#,._; ® det(V) is not a monomorphism
for certain ¢ (e.g., ¢ = 0). Let us show this after restriction to t,, X V. We have
q("A, 9,)q(A, 2)v._; = 0 for ¢ = 0 by (3.5), while the support of g(* A, 9,)v, is the
subvariety {g(A, z) = 0}.

Let Dguv(0(x)v,_1) be the Zy,y-submodule of .Z._; generated by 0(x)v._;.

LEMMA 3.11

@) Dyxv(@(x)v,_1) is invariant by eqei Hger.

(i) The morphism Z._; — Dgxv(@(x)v._1) given by u._y + 0(x)ve_ is an
isomorphism.
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Proof
Note that eg4e0(x)v.—; = 0(x)v._;. The key point is the following (cf., e.g., [13,
Theorem 3.1]):

Y (0)ve—1) = Ag(0(x)v ). (3.13)

The proof is then similar to that of Lemma 3.3. O
By [2, Proposition 4.1], there is a (unique) isomorphism

f: edechedet — €H071€

such that ._;(f(a)) = 0(x)"'0.(a)0(x) for a € ey H e4e.

The isomorphism .Z,_; = Dyxv(0(x)v.—1) of Lemma 3.11 is compatible with
f, and we sometimes view .Z,._; as an (ege Hoe4e; ® Dyxv)-module.

By Lemma 3.2, the image of the morphism

edetHce ®2Hue Z'gmng - %c|greg><Vy a® Ue = av,

is contained in @gmng(D(x)vc). It follows from Lemma 3.11 that over g, X V, the

composite morphism egei Ho€ Q. p.e L. — Mo — M. ® det(V) factors through a
morphism

Q- edeche ®eH(e Z‘|gmng — egc—l ® det(V)Igreng' (314)
Similarly, we have the morphism

Vi eHeeger QepHoean Lo—1 ® At(V)] (44,0200 = Leliga,z20)s

(3.15)
a@ue Q1 (ad(x))q(A, ) ue.

The morphism ¢ is linear over ego H €4 =~ e H._ e, and the morphism v is linear
over ¢eH.e. We have

(p(b(x)e ® uc) =q(A, Due_1 Q1
and
9(A, DY (0(X)eq ® ey ®1) = 02(A)ut,

where 0?(A) is the discriminant of the characteristic polynomial of A.



554 KASHIWARA and ROUQUIER

Note that the following diagrams commute on gy, X V N {g(A4, z) # 0}:

eHeje Q@ egqHee @ L, eHe @ %,

edet H-€qer eH.e eH.e

l ¢ l can (3.16)

eHeqw & (Lot ®de(V)) Z.

edet Heder

and

eqiHee ® eHeeqw ® (Lot ®det(V)) — eqeHeeqr ® (Lot @ det(V))
eH.e eqe H, eder Heger

Cdet H€det

l v can (3.17)

edechegge £ L1 @ det(V)

PROPOSITION 3.12
The morphism @ extends uniquely to a morphism of Dy -modules:

@ eqeHee ®€H(»€ Z; — Z—l & det(V) (318)

The proof proceeds by reduction to rank 2. Recall that g, denotes the open subset of
g of matrices with at least (n — 1) distinct eigenvalues. Then g \ g; is a closed subset
of g of codimension 2.

We prove first the following lemma.

LEMMA 3.13
After restriction to g x V, we have an inclusion of submodules of M,

Hc@ngvc C C[t]@ngvc + C[t]@nga(x)Uc—l;

where V. = q(A, Z)Vc_1.

Proof
Since H, = C[t]C[t*]C[W], it is enough to show that

Clt"1Ygxv v, € Clt1Dgxv V. + Clt 15y 0(x)ve—y ong; x V. (3.19)

Here, the action of C[t*] is through C[t*] < H. L, D(treg) X W.
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Let us assume first that n = 2. We have
q(A,z) = —A21Z% +(An — An)ziz2 + Alzzﬁ.
We put
q(04,2) = —Z%aA12 + 2122(04,, — 0a,,) + z§8AZI.
We show that
0y, — 0x,)q(A, )V = —q(da, D)X — X2)Ve_1. (3.20)

This is an equality in the .y -submodule ((Z,_;) of .#._,. Note that (y; — y2)v._; =
(axl - 8)(2)1)5,1.
By §3.2.3, we have

Vet = q(A, 2718 (x1 + xp — tr(A)) 3 (x1x2 — det(A)).

Since g(94, 2)q(A, 2) = q(94,2)tr(A) = 0 and (94, z) det(A) = —q(A, z), we
obtain

q(da, Dve—1 = q(A, 2)°8(x1 + x5 — tr(A)) 8 (x1x2 — det(A)).
On the other hand, we have
(3, — 04)q(A, V1 = (2 — x1)q(A, 2)°8(x1 + x2 — tr(A))8 (x1x2 — det(A)).

Equality (3.20) then follows.
We assume now that n 2> 2. Let S be the locally closed subset of g of matrices

A0 O
0 as 0

Qp

where A’ is a (2 x 2)-matrix, a; # a; (3 < i < j < n), and g; is not an eigenvalue
of A/for3 <i<nLett;=tNS=1{xet;x;#x;fori <jand3 < j}. Let
x'=(x1,x2),letx” = (x3,...,x,),and leta” = (as, ..., a,).

Wehave G- § = g;. Leti: § x V < g x V be the inclusion map. Then i is
noncharacteristic for .Z, and .#._, because we have T, S + T (G - x) = T,g for any
x e S.

Denote by g’ the subalgebra of g of matrices (A;;) with A;; = O wheneveri > 2or
J > 2. We identify g’ with g[,(C). Given an object Z defined earlier for g, we denote
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by Z” the corresponding objects for g’ (i.e., the case where n = 2). For example, W’
is the subgroup of W generated by s5.

Leti”: t x § — t x g be the embedding. We have an isomorphism of Z; ,s-
modules compatible with the action of W (cf. proof of Lemma 3.2):

i"* Dy (x, A)

T D s8(x', ANS(x" —a”).

w

S(x, A Y, TE01 (A a") ™' 8(x', A)S(x" —a") @

- weW\W
Here, T, is the automorphism of t given by w,and 0,(A’, a”) = 0(a”) ]_[;;3 det(a; I, —
AN, 8(x", A" = 8(x1 + xo — tr(A"))8(x1x, — det(A")).
Let A € S. We have

q(A,20)=q' (A", 2) - qi(A, 2),
where
q1(A,z) = (z3- - z)0(A', d").

Note that 0,(A’, a”) is invertible on S.
Let p: tegxSxV — SxV bethe projection. We have a (Z(t 1e,) ® s v )-linear
isomorphism compatible with the action of W':

ox V> e®U, -
i* Mo === CIW] ®@cyw) pu(Diyxsxv o), (3.21)

where U, = v. q1(A, 2)° 0,(A’, a”)" 1 §(x” — a”) with v, =¢q'(A',Z)°6(x', A"). Note
that s, acts trivially on U,.. The action of Z(t rog) X W on C[W]®cw) P+(Di oy x5xv Ve)
is given by

(@®w)(w ®s) = (ww)® ((ww)'a)s)

forw,w € W,a € D(twe), s € p(Di, xsxve)-

Note that Zs, 7. is stable by C[t;]"" as a submodule of P«(Di yxsxve). Since
Clt,] = C[*]C[£,1", C[£]1%sy V. is stable by C[t,].

Let us still denote by v, = g(A, z)V._; the image of V..

Letussety; = 8,, — c(x; —x2) 7' (1 —syp) and ¥, = 9, — c(xp —x1) "' (1 — s12)
as partial Dunkl operators, and let R be the algebra generated by yy, ¥, and 9,
(i = 3,...,n). Then sy, acts on R by the permutation of y; and y,. We have
R=R" &G —5)R".
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Let

N = Clt]Dsxv¥e + (51 — F)CIt1D s/ Ve
= Clt1%sxv V. + Clt1Dsxv (¥1 — 72)V,
= C[t]@SxVic + (C[t]@SXV(axl - 8xz)?jc

be a submodule of p.(Zi,,xsxvVc-1). Since (¥ +§2)75c, ViY2V, and 9,V (i =
3,...,n)belong to C[t]%s, vV, (cf. Lemma 3.3), ./ is invariant by R.

Set A = C[W] Qcpw A . Let us show that .4 is invariant by the action of
C[t*] C H. C D(trey) ¥ W. For any i, we have

yw®nN=w®d _ 1—c Z Wl + $u-1-100) ® (K1) — Xur 1) 't
ki

forany w € W andt € A . Since (x, —xp) ' € C[t,] whenaorbisin{3,...,n},
we have y;(w ® t) € A when w='(i) # 1, 2. If w=!(i) = 1, then

Vw1 =w®dt —cw(l +512) ®(x; —x2)"'t (mod A)
=w ®F)\7’11 e N,

The case of w™!(i) = 2 is similar. Hence, we have shown that .4 is invariant by
C[t*]. Thus, we obtain

Clt*l(e®7v.) C AN .
The study of rank 2 above (i.e., (3.20)) shows that
(31 = ) C Clt]1%5xv Ve + Clt 155y (X1 — X2)V—1-
Hence, we obtain
N C N = Clt1Dsxr Ve + Clt1Dscv 90XV,
which implies that
Clt* (e ®7,) C N :=C[W]® A (3.22)

We have a commutative diagram, where the horizontal map is an isomorphism,

(w,x)—>(w(x),x)

W xw t tXt/th/W/

~

t
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The diagram above is W-equivariant for the action of g € W given by

g’(wsx):(ng-x) for(wax)GWXW’tlv
g'(xax,):(g(x)vx,) for(xﬁx,)Et Xt/th/W,'

It follows that we have an isomorphism of C[t]-modules
Clt] ®cpyw Clt4]" = CIW] @cyw Clt 1],

a®a — Z ww (a).

weWw/ W’

In particular, we have C[W]®cw C[t ] = C[t]- (e ® C[t]""). Since C[t,]"'V, C
Dssv Ve and C[411Y0(x)Vesi C Digyy 0(x)Ve— 1, we deduce that

N =Clt](e ® DsxvVe + € @ Dsyxyd(x)e_1).
Together with (3.22), we obtain
Clt*1Zsxv(e @ V) C Clt](Dsxv(e @ Ve) + Dsuv (e @ (x)Ve—1)).
Via the isomorphism (3.21), this shows that
i*(Clt*1Zgxvv.) Ci*(Clt1Dgxv e + Clt 1Dy 0(x)ve_y).

Since = '(0)N T, ,(gx V) C Tg*xv(g x V), the noncharacteristic condition implies
the desired result (3.19) (cf. §3.1.2). |

Proof of Proposition 3.12
By Lemma 3.13, we have,on g; x V,

edetHc@ngvc C edetc[t]@ngvc + edetc[t]@ngb(x)vc—l
C C[t]wa(x)@ngvc + C[t]w ngD(x)vc—l = @nga(x)vc—l

since egC[t]e = C[t]"0(x)e and e4C[t Jeqer = C[t]" eger. Hence, ¢ extends to a
morphism defined on g; x V. Then the desired result follows from ,%f é\ axV (Z_) =
0 (see Lemma 3.1). a

4. Cherednik algebras and Hilbert schemes
4.1. Geometry of the Hilbert scheme

4.1.1
We refer to [23] and [11] for basic results on Hilbert schemes of points on C2.
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Let us recall that
X={(A,B,z,0)egxgxV xV5C(A,B)z=V]

is the set of stable points for the action of G on T*(g x V), relative to the character
det of G. The group G acts freely on X. Let ;15 : X — g be the moment map

nwx(A,B,z,0)=—[A,B] —zo0¢.

It is a smooth morphism. Let Hilb"(C?) be the Hilbert scheme classifying zero-
dimensional closed subschemes of C? with length n. Then we have an isomorphism
Hilb"(C?) —> n%'(0)/G. Note that we have ¢ = 0 on u3'(0) (cf. [7, Lemma 2.3]).

We write Hilb instead of Hilb" (C?) for short. Let us denote by p: u;l (0) — Hilb
the quotient map.

Let us recall the construction of p. For (A, B, z,¢) € ,u;l(O), we regard V as a
C[X, Y]-module by X > A and Y + B. Then z gives an epimorphism C[X, Y] —
V of C[X, Y]-modules. Hence, V gives a closed subscheme of C> = Spec(C[X, Y])
of length n, which is the corresponding point of Hilb.

Let w: Hilb — (t x t*)/W be the Hilbert-Chow morphism. Then Hilb is a
resolution of singularities of (t x t*)/W =~ (C?)"/S,, the scheme of n unordered
points in C2. We have canonical isomorphisms

(13 0). G,21) "> T(Hilb, Gring)—>T (¢ xt*)/ W, e xioryw) —>Clt xt 1"

Let (t x t*),, be the open subset of t x t* where the action of W is free. The Hilbert-
Chow morphism 7 is an isomorphism over (t X t*),/W. Let E := a! (((t x t*)\
(t X t%)reg)/ W) be the exceptional divisor. It is a closed irreducible hypersurface
of Hilb. The line bundle L on Hilb associated with the G-equivariant line bundle
Cx ® det(V) on X is a very ample line bundle on Hilb.

Let us set

Cluz' (0]9% = {p(p) € Clux' (0)]; ¢(gp) = det(g)¢(p) forany g € G .

This algebra is isomorphic to I'(Hilb, L) ~ ((C[;ng1 0)]®det(V))C. Leti: t x t* x
V < g x g x V x V* be the embedding with the last component { = 0. Then
i~!(1u%'(0)) contains (try x t* Ut x t7,) x (C*)". For any ¢ € Cluz'(0)]9%,

we have (i*¢)(x, y, gz) = det(g)(i*¢)(x, y, z) for any invertible diagonal matrix g.
Hence, we have

(P)(x, y,2) = alx, y)(z1 - 2n)

for some rational function a(x, y) that is regular on (t ., x t*) U (t x t,

), an open
reg
subset of t x t* with complement of codimension 2. Hence, we have

a(x,y) e Clt x t*]Wd = {a € C[t x t*]; wa = det(w)a for any w € W}.
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Thus, we obtain a map that is known to be an isomorphism (cf., e.g., [7, Proposi-
tion 8.2.1]), and we denote its inverse by i;:

Cluz (01°% ® det(V) = C[t x t*]"%, "

¢®ZP—> (l,Zl/\"-/\Zn)a-

Similarly, we have an isomorphism (cf., e.g., [7, Lemma 2.7.3]) whose inverse
we denote by i;:

Clp'(0)]° = C[t x t*17. (4.2)

Summarizing, we have the isomorphisms

~

ig: Clt x t*]"% = Cluz' (0)]9% @ det(V) ~ T(Hilb, L),
(4.3)
is: C[t x t*1V = Cluy'(0)]° = Ouyp(Hilb).

4.1.2
For a subset Y of Z>( x Zx( with cardinality n, set py = det(x,’;y,{)(i,j)ey,kzl ,,,,,
C[t x t*]"% and sy(A, B, z, ) = det(A'B/z)¢ jey € (C[/L;el(O)]G’det = L(Hilb).
Then {pyly is a basis of C[t x t*]":%! as a vector space, and iz(py) = sy. The
Ouin-module L is generated by {sy }y, where Y ranges over the set of Young diagrams
of size n. Here, we regard a Young diagram Y as a subset of Z> X Zx so that
(i, j) € Yassoonas (i, j+ 1)or (i + 1, j) belongs to Y.

There is a canonical global section t € I'(Hilb; L®~2) satisfying the following
property:

ig(a))iq(ax)t = is(a1ax) forany a;, a, € C[t x t*]"4, 4.4)

Note that 7 is identified with a function on ,u;l(O) such that T(gp) = det(g)>t(p)
(p € nx'(0)and g € G).

The exceptional divisor E coincides with the set of zeros of 7, and we obtain an
isomorphism

L®2 l> ﬁHilb(_E)~

Let us denote by 0%(A) the discriminant of the characteristic polynomial of A, and
similarly for 9%(B). Then we have

i«(0(0) =q(A.2),  ia(0(y) =q(B.2),
i;(0(x)?) =0*(4),  i,(d(y)’) = 9*(B).
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Hence, we have
’(A)=q(A,z)’t and  0*B) =q(B,2)’t.

LEMMA 4.1

1) The hypersurface ofua_el (0) defined by q(A, z) = O is irreducible, and p~"E N
{g(A, z) = 0} is of codimension 2 in M;I(O).

(i)  The hypersurface of,u;I(O) defined by 9*(A) = 0is p~'E U {q(A, z) = 0}.

(iii)  The intersection M;I(O) N{q(A,z) = q(B,z) = 0} is of codimension 2 in
(0}

Note that (i) follows from the fact that g(A, z) does not vanish on the irreducible
hypersurface p~'E of M;(O), and g(A, z) is irreducible on M;I(O) \ p~'E. Statement
(ii1) follows from [11, Lemma 3.6.2].

4.2. W-algebras on the Hilbert scheme
4.2.1
In §4.1, we have regarded X, Hilb, and so on, as schemes. Hereafter, we regard
them as complex manifolds. Note that the previous constructions and results would
remain valid in the analytic category. Let #% be the # -algebra on X associated with
Dgxv. Denoting by m: X — g x V the projection, we have a ring homomorphism
7' Dyxy — W5 respecting the order filtration. The ring #% is flat over 7' Zy.
The action of G on g x V induces an action of G on #%, and there is a quantized
moment map [y : g —> #x.

We have morphisms

Kko: C[t]V = Clgl® — #%(X)
and
k12 C[t]Y =5 Clg*l® — Zy(g) - #x(X).

Note that «(y*) = Ag.

For k € Z>, let (C[t*],fv be the homogeneous part of C[t*]" of degree k. Then
ko sends C[t]" to #%(0) and «; sends C[t*]} to #%(k), and we have the following
commutative diagrams:

Ko

CH]Y —— #4(0) CLeYY —— Hak)

\ J/ o and l o 4.5)
Rk

ﬁ% ﬁikﬁx
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Let us consider #x ®g,,, -Z., which we denote by the same letter .Z;.. With the
notation of §2.4.2, we have .Z. = ®.(#%). Hence, .Z. is a twisted G-equivariant
#Wx-module with twist c tr. Let u. be the canonical section of .%., and set .Z.(m) =
W5 (m)u.. Then we have an isomorphism

Z(0)/Z(—1) > O30

The support of %, is ' (0). The #%-module %, has a left action of e H.e by Lemma
3.3. Via the anti-involution & > h* of H,, we regard .Z. as a (#%, e H.e)-bimodule.
Similarly, .Z,_; has a structure of (#%, eqet Ho€4e1)-bimodule (see Lemma 3.11). These
actions are explicitly given by

u.ea = ko(a)u, fora e C[t1¥ C H,,

uceb = iy (byu, forb € C[t]" C H,; “0
Up_y€ged = Ko(@)u,_; fora e C[t]Y C H,, 47
Up_1€geth = K1 (D)u._, forb e C[t*]V C H..
Since M;I(O) is smooth, we have
Extly, (Lo, Wx) =0 for j # codimz(1x'(0)).
Hence, for any closed subset S C ,u;l (0), we have, by Lemma 2.1,
(L) =0 for j < codim, i) S. (4.8)
In (3.18) and (3.15), we defined the following morphisms:
¢0: % ® eHeegy —> L1 @ det(V) (4.9)

eH.e

and

Vi (Lo ®@det(V)) ®  eqeHeelganzg —> Liliganzo)-

edet Heeger

PROPOSITION 4.2
The morphism r extends uniquely to a morphism defined on X.

Proof
We have

q(A, DY ey ® a) = u, - (0(x)a)

for any a € e4 H e.
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Now, let us show that

(ad(Ag)*q(A, )Y (ue—t ® a) = u, - ((ad(y*)*o(x))a) 4.10)
holds on {g(A, z) # 0} by the induction on k.
We have
(ad(A)'q(A, )Y (ue—s ® a)
= A (ad(Ag)'g(A, D) Y (uer ® @) = (ad(Ag)'q(A, D) Ag¥ (ue1 @ ).

The first term is calculated as

Ag(ad(A) ' g(A, )Y (uer ® a) = Aqu, - ((ad(y>) " '0(x))a)
= u;y” - ((ad(y?)'o(x))a)
= u. - (Y2 (ad(y*)*'0(x))a).

The second term is calculated as

(ad(A) 'q(A, 2)) Ag¥ (U ® a) = (ad(Ag)'q(A, 2) Y (Aguc_s ® a)
(ad(Ag)'q(A, )Y (uc_1y* ® a)

(ad(Ag)'q(A, 2)) ¥ (ue1 ® y7a)

ue - ((d(y>) 'o(x))y’a).

Hence, we obtain (4.10). In particular, letting k be n(n — 1)/2, the degree of 0(x), and
using the fact that ad(A4)"" V2 (A, z) is equal to (34, z) up to a constant multiple
(see, e.g., (3.2) and the sentence below), we obtain

q@a, DY (e ® a) = u. - (0(y)a). (4.11)

Hence, ¥ (u._; ® a) extends to a section of .Z, outside g(B, z) = 0.

Thus, we have shown that ¥ (u._; ® a) is a section defined outside {g(A, z) =
0}N{g(B, z) = 0}. Since {g(A, z) =0} N{q(B,z) =0} N ,u;l(O) is of codimension
2in ,u;l (0) (see Lemma 4.1), it follows that ¥/ (u#._; ® a) extends to a global section

of .Z. by (4.8). O
Remark 4.3
@) So, we have obtained a structure of the ((e + eger) H-(€¢ + eg4er))-module on

L. ® Ly @det(V).
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(i)  We have
(p(uc b ea(x)) = q(A, e,
(e ® ed(y)) = q(da, Dt
and (4.12)
C](A’ Z)W(uc—l ® Cl) = U - (D(X)Cl),
G0, DY (e ® @) = u, - (0(y)a),

fora € ege H,e.
(iii)  Diagrams (3.16) and (3.17) commute on X.

By Propositions 3.12 and 4.2 and Remark 4.3(iii), we obtain the following proposition
(see Proposition 3.8).

PROPOSITION 4.4
Assume that condition (3.12) holds. Then we have isomorphisms of twisted G-
equivariant Wy-modules with twist c tr:

Q: o% ®eHL.e eHcedet l) c—1 &® det(V)
and

W : (Z‘—l by dCt(V)) ® edetHce ; Z

edet Heeget

4.2.2
Let us consider

Ao = (pu(Endy (ZL)°)™.

It is a W-algebra on Hilb by Proposition 2.8. Let 27.(0) be the subring of sections of
order at most zero. Form € Z, %, ® det(V)®~" belongs to ModCGtr(Wx) (cf. (2.4)).
Set

Lycim = (P omy (Lry Lrp @ det(V)®) .

Then o7, 4, is an (., A, ,)-bimodule. Let 7, o4, (0) = (piomy0)(Z(0),
Lm0 ® det(V)®_"’))G. Then 4, .y,(0) is an o7.(0)-lattice of <. .., and
Ly cim(0)) Ly cim(—1) =~ L™ the associated line bundle on Hilb to ﬁﬂ}n(o) ®
det(V)®~" (cf. Proposition 2.8(iii)).



MICROLOCALIZATION OF RATIONAL CHEREDNIK ALGEBRAS 565

4.3. Affinity of %,
4.3.1
As an application of Theorem 2.9, we obtain the following vanishing theorem.

THEOREM 4.5

Assume that condition (3.12) holds for ¢ +m ( for allm € Z..).

(1) For any good <f.-module M, l(ln xH (K, #)=0fori > 0. Here, K ranges
over compact subsets of Hilb.

(i)  Anygood o.-module M is generated by global sections on any compact subset
of Hilb.

Proof

By Proposition 4.4, for any m > 0, Z,,,, is a direct summand of a direct sum of
copies of Z,. 1 ® det(V), and Z.,,,_1 ® det(V) is a direct summand of a direct
sum of copies of .Z,,, in the category Mod(GC wmye(#x). Hence, £, ® det(V)®™"
is a direct summand of a direct sum of copies of .Z., and %, is a direct summand
of a direct sum of copies of .%,.,,, ® det(V)®™™ in the category Mod’ (#%) for any
m > 0. It follows that .27, ., ,, is a direct summand of a direct sum of copies of .27, and
&, is a direct summand of a direct sum of copies of &7 ., for any m > 0. Moreover,
. c1m 18 a good f,-module whose symbol is L&,

Theorem 2.9 now gives the conclusion. O

4.3.2
Let us give an F-action on #x by 7 ,(A;;) = tA;j, F1(0a,;) = t_laA,.j, F(z) = tz;,
F(d,) = t7'9,, and F,(h) = *h fort € G, = C*. Since B;; = oo(hda,)
and ¢ = op(hd,,), the corresponding action of G,, on X is T,((A, B,z,¢)) =
(tA,tB,tz,tZ). Its induced Gp,-action on Hilb coincides with the action induced
by the scalar G,,-action on C?. We define the F-action on ., by Z,(u.) = u..

Note that

Endwtod, o#e i) (#a[11/?]) = EndModp(WT*(gXv)[ﬁl/Q])(WT*(gxV)[ﬁl/z])
~ Clh™'? Ay, 1?05, P2, B0, 1 ~ D(g x V).
The F-action on #% is compatible with the G-action on %, and hence, <. is also
a W-algebra on Hilb with F-action (cf. Proposition 2.8(iv)). We define the F-action

on.Z, | ®det(V)by F,(u._1 ® ) =t "u._; ® . Hence, o, . has a structure of
2.-module with F-action.
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4.3.3
The ((e + egqer) Ho-(e + €4er))°PP-module structure on .Z, @ (Z._1 ® det(V)) gives a
ring homomorphism

(¢ + eqer) He(e + e4er) — End oy (o, © oo ).

Since it is not compatible with the F-action, we modify «.
Set

= AP and A = e [

Let H. LN k[/'/?] ®c H. be the ring homomorphism given by x; — h~'? ® x;,
yir B2@y,wi 1w @w e W).

LEMMA 4.6
The composition

D (e+ee) Holetea) 2 KIHP1@c(e+eqe) Hole+ege) ~> End (A @Fpp )™
sends (e + ege) He(€ + eger) to Endyyog,.( QZ)(QQZ &) .QZ e—1)°PP.

Proof

First, let us show that ® sends eH.e to Endy., ggj)(,g%Opp. For a homogeneous
element a € C[t]V of degree k, ®(ae)(u,) = h~*?a(A)u., where a(A) is the
element of C[g]® such that d@|; = a. Since @(A) is also homogeneous of degree
k, h™*2a(A) is F -invariant, and ®(ae) belongs to Mod(.57,). On the other hand,
we have ®(y*e)(u.) = hAgu., and hA, is F-invariant. Hence, ®(y’e) belongs
to Modp(.QZ).fVSince eH.e is generated by C[t]"e and y?e, we have ®(eH.e) C
Endyoq,. (7 (). s

Similarly, we have ®(egeiH eqer) C Endyjog,.( gz)(;zfcyc_l).

Let us show that ®(ed(x)) € HomModF(tQZ)(,QZ, L;ZZ c—1). This follows from
P(ed(xX)ue) = K" VAG(A, Duey ® 1, F(q(A, 2)) = """ "D2g(A, z), and
F e 1 QD =1t"u._; 1.

For a € eqH.e, let us show that ®(a): ,QZC,l — sszelongs to Modp(,QZ).
Since ®(ae0(x)) belongs to Modp(saZ) and ®(e0(x))|(gca,r)=0y 1S an isomor-
phism in the category Modp(tQZI{q(A,z)#o}), it follows that ®(a)liya.-)z0; is in
MOdF(JZZ:] {q(4,2)201)- Hence, we conclude that ®(a) is in Modﬂsz). Similarly, one
shows that ®(e H eqer) is contained in Homyy,q,.( %)(QZ ;ZZ —1)- a

In particular, we obtain a morphism of algebras

eH.e — Endyq, .7 (Z).
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We denote by ¢ and ¥ the modified morphisms in Mod (,QZ) given in Lemma 4.6:

91 L ®une eHeg — Loy @ det(V),
‘& : (Zfl ® det(V)) ®ede[Hcedﬂ edetHce — Z

We define the order filtration F(eH.e) on eH.e by assigning order 1/2 to x;
and y;. Then the morphism e H.e — Endy,q, (7 (2%.)°" is compatible with the order
filtrations, and the symbol map C[t x t*]" >~ Gr’(eH.e) — Gr" Endyqq, (7(%) C

['(Hilb, O, )[A*!/?] coincides with C[t x t*]} LN h~*T(Hilb, Oip) by (4.5).
Here, k € Z/2.

LEMMA 4.7
The morphism eH.e — Endyq,.( QZ)(;%C)OPP is an isomorphism.

Proof

Note that the subspace Gr” Endyq, (.7(#%) C T'(Hilb, Oyyp)[A*!/?] is contained in
Dics 1, T'(Hilb, Oy )i %, where T'(Hilb, Oy )x is the homogeneous part of weight
2k with respect to the G,-action. Hence, we have a chain of morphisms

Clt x 1" = Grf'(eH.e)

— Gr" (BEndygog, (o75()) = @D T(Hilb, Gy)ii ™ > Clt x 117
keZ/]2

Since the composition is the identity, the map Gr* (e H.e) — Gr” (Endyoq,.( QZ)(JZZ)OPP)
is bijective. Hence, the morphism e H.e — Endy;yq, (7 (#)" is an isomorphism.
Note that (1), Fx(Endyg,7)(#%)) = 0. O

Remark 4.8
A similar argument shows that there is an isomorphism

eHcedel — HomModF(,;zZ)(f%’ ‘!MC,C*I)

(see §4.4).

Leto € (t x t*)/ W be the image of the origin of t x t*. Then the Hilbert-Chow
morphism 7 : Hilb — (t x t*)/ W is C*-equivariant, and every point of (¢ x t*)/ W
shrinks to o.

Now, the following theorem is a consequence of Theorem 2.10.

THEOREM 4.9
Assume that condition (3.12) holds for ¢ + m for all m € Z.q. (This is the case if ¢ &
(1/nY)Zy.) We have quasi-inverse equivalences of categories between Mod%pmd(szfc)
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and Mod.q,(e H,e),

Mod% (7)) <> Modeon(eHe),
% = HomMOdifmd(p’Z)('%’ %),
JZ{C ®£’,HL»€, M << M.

Under this equivalence, <7, and .. | correspond to eH.e and eH, eqe, respec-
tively.

THEOREM 4.10

Assume that condition (3.12) holds for ¢ + m (for all m € Z.). Assume also that
condition (3.11) holds. (These assumptions are satisfied if c € (1/n\)Z_.) Let B. =
énd 7 JZZ Qen,e eH.)PP. We have quasi-inverse equivalences of categories between
Mod™(%.) and Mod.a(H,),

Mod2(%,) <=> Modeo(H,).

% xd HOInMOd%_ood(gc)(gc, %),
B Qu M <~ M.

Remark 4.11
It would be very interesting to have a more direct construction of %7, ®, He €H..

4.4. W-algebras as fractions of eH.e
We explain how sections of QQZ over open subsets of Hilb can be obtained by inverting
elements in the Cherednik algebra.

Let {F;(H.)};ez,» be the filtration of H, consisting of elements of order < j,
where we give order 1/2 to x;, y; and order zero to w € W. Then we have a canonical

isomorphism o : Gr (H,) > C[t x t*] x W. We have induced filtrations on ¢ H,e
and e H eq4e, and o induces the isomorphisms

Grf(eH.e) = C[t x t*]",
Grf(eH, eq) —> C[t x t*]"-det,

Composing with the morphism C[t x t*] — C[t x t*][f#~!/?] given by a(x, y) >
a(h~'2x, h~'/2y), we obtain the homomorphisms

Grf(eH.e) — C[t x t*1"V[h?],
Grf'(eH eq) —> C[t x t*]V- 4 [p~1/2].
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We set Wy = Wx[ﬁl/z] and We(0) = We(0) + B2 H5(0). We set Z =
”//35 ®w, Z.. Then .i” @ Z 1 ® det(V) has a structure of the (Wx (e +
edet)H (e + eger))-bimodule. The action of e H.eq4 is given by @ : .i” QeH,ceH, €ger —>
.,% 1 ® det(V). On the other hand, we have canonical 1somorphlsms Grf (3 ) ~

Grf(Z_ ) 0 71(0)[71*1/ 2]. Here, F(.Z) (resp F(Z._))) is the order filtration
given by Fi (2 = " We(O)u, (resp., F (L ) = W WO, ,) for k € 7]2.
We have a commutative diagram

Grf () ® Grf (eH,e) —— 0,201 Clt x t*1V[h™'/2]

!

Grf (2. ® eH.e) i (4.13)

l

Gr* (Z) A L

The morphism @ is order-preserving, and we obtain a commutative diagram

GrF(Z)(gGrF(chede[) E— @’ 71(0)[)‘#'/2]@@[{ x t¥]W-det[ =172

!

Gt (Z. ® eH.eqn) i (4.14)
| e

Gt (L, @ det(V))

0,20l @ det(V)

Hence, for any a € eH_eg., the morphism a: ,,Q: — 2_1 ® det(V) is an isomor-
phism on {i (o (a)) # 0}. Then, for b € e H.eq4, we can define

—1 — 72 opp
ba™" € Endyioas 71 0wy (Ze liao@)zo))

as the composition
b L1 ® det(V)

Thus, we obtain ba~! as an F-invariant section of JZZ defined on {i (0 (a)) # 0}. Note
that ba~! = bc(ac)™! for a nonzero element ¢ € eqe H,e. Note also that the image
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of ac € eH.e in I'(Hilb; JZZ) is invertible only on {i (o (a)) # 0} N {iz(o(c)) #
0} N (Hilb \ E).

Remark 4.12
The morphism 1/7 (L1 ®det(V) Qg Hoey,, Caet Hee = £ is also order-preserving,
and it induces a commutative diagram

GrF (ot ® det(V)) ® Gr” (eqet Hee) —————> ﬁug(o)[hﬂ/z] ® det(V) @ C[t x t*]%-det[#-1/2]

|

G (Fi1 © det(V) ® eget Hee) vig
| v
Gl‘F(,g’c) ﬁu;(o) [ﬁ:l:l/z]

Hence, for any b € ey H e, the morphism b: Z,l ® det(V) — .,Z is never an
isomorphism on the exceptional divisor E.

4.5. Rank 2 case

Letus consider the case wheren = 2. Let xg = x;+x2,x = X1 —X2, Y0 = (V1 +y2)/2,

and y = (y; — y2)/2 € H.. Then [yy, xo] = 1, [y, x] = 1 — 2c¢s, where s = sy5.

Since y, x, and s commute with C[xg, yo], we have an isomorphism of algebras

Clxo, yol ® H, — H., where H ! is the subalgebra of H. generated by x, y, and s.
We have

1
eH.eq H.e = eH.e < H.equH. = H. < ¢ 7& Ea

eqe HeeHeegey = €ge Heegey ¢ HeeH, = H. < ¢ # _%'
Indeed, the first equivalences follow from the fact that yejx — xeqey = e[y, x] =
(1—2c)e,and when ¢ = 1/2, there is a one-dimensional representation with x, y + 0,
s = 1. The second follows from the first by the isomorphism H, >~ H_. given by
s > —s. It follows that condition (3.12) is satisfied for all ¢ +n (n € Z.¢) if and
onlyifc # —1/2,-3/2,....
Note that x, y € C[t x t*]"%t and Hilb = {is(x) # 0} U {iz(y) # 0} be-
cause ,u;l(O) N{g(A,z) =q(B,z) =0} C {(A,B,z,0) € X; Az, Bz € Cz} = 0.
Quantized symplectic coordinates of @Z are given by

2
(e, n2ex; —h%x, B 2eyp) on {ig(x) # 0}
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and
1 12 hey* i .
((ex)tey)™, B 2exos =5 1'2eyo ) o {ia(y) # O},
Indeed, we have [—ex?/2, (ey)(ex)~!] = e because
(ey)(ex) ™" (ex?) = (ey)(ex) ™" (ex)(equx) = eyx
and

(ex?)(ey)(ex)™" = (ex?y)(ex) ™" = (eyx? — 2ex)(ex)™!
= (eyx)(ex)(ex)™' —2e = eyx — 2e.

Note that this provides an isomorphism Hilb —> T*(P' x C). The projection
Hilb — P! is given by [i;(x) : i4(y)] with the notation of homogeneous coordinates.
By the isomorphism above, we have E ~ T P! x T*C.

Note that (xe)~!(ye) is invertible only on {i;(x?) # 0} = {is(x) # 0} \ E
for ¢ # —1/2 because exyx = ex(xy + 1 — 2cs) = ex?y + (1 + 2c)ex and
(xe)"'(ye) = (x*e) ! (xye) = (ex?)!(exyx)(ex) ™" = (ey)(ex) ' +(1+2c)(ex?) .

Set (a, 3,) = ((ey)(ex)™!, —ex?/2), set (b, 3;) = ((ex)(ey)~', ey?/2), and set
A = c — 1/2. Then we have

b=a" and 9, = —a(ad, — A). (4.15)
Indeed, we have

—1,.2
—a(ad, — 1) = (ey)(ex)_1 (M +c— %)

2

_ 1 )—1 2¢ — 1) = 1 ) -1 _ ey
= H(ey)(ex) (eyx +2c — 1) = S(ey)ex)” (exy) = —-.

Recall that o € (t x t*)/ W is the image of the origin of t x t*. The inverse image
7' (0) by the Hilbert-Chow morphism 7 is 75 P' x {0} C T*P' x T*C. We identify
it with P!, Then (4.15) gives an isomorphism

gndF(«QZNn—l(o) = D5 ® Clxo, yol

with A = ¢ — 1/2. Here, D1 is the twisted ring of differential operators (e.g., see
[16, §2]). If A is an integer, then i ; ~ Op(L) @ D1 @ Opi(—A). Hence, we
have a ring isomorphism eH/e >~ I'(P'; Zp: ;) and an equivalence ModiOOd(JzZ) ~
Modgood(Zp1, 5 ® Clxg, yol). It is well known (cf., e.g., [16, §7]) that Modgood(Zp1 5.)
is equivalent to Mod.on(I(P!; 1 ;) if and only if A # —1,-2,... (i.e., ¢ #
12,2372, ...



572

KASHIWARA and ROUQUIER

Acknowledgments. We thank Pierre Schapira for some useful discussions. Kashiwara

thanks Shigeru Mukai for his comments on Hilbert schemes. Rouquier thanks the

Research Institute for Mathematical Sciences, Kyoto University, for its hospitality.

References

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

A. BEILINSON and J. BERNSTEIN, Localisation de g-modules, C. R. Acad. Sci. Paris
Sér. I Math. 292 (1981), 15—-18. MR 0610137

Y. BEREST, P. ETINGOF, and V. GINZBURG, Cherednik algebras and differential
operators on quasi-invariants, Duke Math. J. 118 (2003), 279 —337.

MR 1980996

R. BEZRUKAVNIKOV and P. ETINGOF, Parabolic induction and restriction functors for
rational Cherednik algebras, preprint, arXiv:0803.3639v1 [math.RT]

R. BEZRUKAVNIKOV, M. FINKELBERG, and V. GINZBURG, Cherednik algebras and
Hilbert schemes in characteristic p, with an appendix by P. Etingof, Represent.
Theory 10 (2006), 254—-298. MR 2219114

N. BOURBAKI, Lie Groups and Lie Algebras: Chapters 4— 6, Elem. Math. (Berlin),
Springer, Berlin, 2002. MR 1890629

P. ETINGOF and V. GINZBURG, Symplectic reflection algebras, Calogero-Moser space,
and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002),
243-348. MR 1881922

W. L. GAN and V. GINZBURG, Almost-commuting variety, 9-modules, and Cherednik
algebras, with an appendix by V. Ginzburg, IMRP Int. Math. Res. Pap. 2006, no.
26439. MR 2210660

I. GORDON and J. T. STAFFORD, Rational Cherednik algebras and Hilbert schemes,
Adv. Math. 198 (2005), 222 -274. MR 2183255

, Rational Cherednik algebras and Hilbert schemes, 1I: Representations and
sheaves, Duke Math. J. 132 (2006), 73 —135. MR 2219255

V. GUILLEMIN and S. STERNBERG, Symplectic Techniques in Physics, 2nd ed.,
Cambridge Univ. Press, Cambridge, 1990. MR 1066693

M. HAIMAN, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J.
Amer. Math. Soc. 14 (2001), 941 -1006. MR 1839919

, Vanishing theorems and character formulas for the Hilbert scheme of points
in the plane, Invent. Math. 149 (2002), 371 -407. MR 1918676

G. J. HECKMAN, “A remark on the Dunkl differential-difference operators” in
Harmonic Analysis on Reductive Groups (Brunswick, Me., 1989), Progr. Math.
101, Birkhauser, Boston, 1991, 181 -191. MR 1168482

R. HOTTA and M. KASHIWARA, The invariant holonomic system on a semisimple Lie
algebra, Invent. Math. 75 (1984), 327-358. MR 0732550

D. KALEDIN, Geometry and topology of symplectic resolutions, preprint,
arXiv:math/0608143v1 [math.AG]




MICROLOCALIZATION OF RATIONAL CHEREDNIK ALGEBRAS 573

[16] M. KASHIWARA, “Representation theory and D-modules on flag varieties” in Orbites
unipotentes et représentations, 111, Astérisque 173 —174, Soc. Math. France,
Montrouge, 1989, 55—-109. MR 1021510

, Quantization of contact manifolds, Publ. Res. Inst. Math. Sci. 32 (1996), 1 7.

MR 1384750

, D-Modules and Microlocal Calculus, Transl. Math. Monogr. 217, Amer.

Math. Soc., Providence, 2003. MR 1943036

, “Equivariant derived category and representation of real semisimple Lie

[17]

(18]

[19]
groups” in Representation Theory and Complex Analysis (Venice, 2004), Lecture
Notes in Math. 1931, Springer, Berlin, 2008, 137 -234.

[20] M. KASHIWARA and T. KAWAI, On holonomic systems of microdifferential equations,
1I1: Systems with regular singularities, Publ. Res. Inst. Math. Sci. 17 (1981),
813-979. MR 0650216

[21] D. KAZHDAN, B. KOSTANT, and S. STERNBERG, Hamiltonian group actions and
dynamical systems of Calogero type, Comm. Pure Appl. Math. 31 (1978),
481-507. MR 0478225

[22] M. KONTSEVICH, Deformation quantization of algebraic varieties, Lett. Math. Phys.
56 (2001), 271 -294. MR 1855264

[23] H. NAKAJIMA, Lectures on Hilbert Schemes of Points on Surfaces, Univ. Lecture Ser.
18, Amer. Math. Soc., Providence, 1999. MR 1711344

[24] P. POLESELLO and P. SCHAPIRA, Stacks of quantization-deformation modules on
complex symplectic manifolds, Int. Math. Res. Not. 2004, no. 49, 2637 —2664.
MR 2077680

[25] P. SCHAPIRA, Microdifferential Systems in the Complex Domain, Grundlehren Math.
Wiss. 269, Springer, Berlin, 1985. MR 0774228

Kashiwara
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan;
masaki@kurims.kyoto-u.ac.jp

Rouquier
Mathematical Institute, University of Oxford, Oxford OX1 3LB, United Kingdom;
rouquier@maths.ox.ac.uk






