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Categorification of sl; and braid groups
Raphaél Rouquier

ABSTRACT. We describe categorifications of sl and braid groups. In a first
part, we give a survey of the case of slp (joint work with Joseph Chuang
[ChRou]) and explain how it leads to the construction of derived equiva-
lences. The second part points out the existence of “higher symmetries” in the
examples of braid group actions on triangulated categories.
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1. Introduction
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It is classical that various actions of Weyl groups or Lie algebras on
vector spaces come from functors acting on abelian or triangulated categories of
algebraic or geometric origin, whose Grothendieck group is that space. We want
to explain that the natural transformations between these functors should satisfy
certain “nice” algebraic relations, leading to a better control of the triangulated
categories acted on. Namely, we believe there is a “canonical” categorification of a
number of classical algebras or groups, in particular Kac-Moody algebras, Coxeter
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groups, braid groups (a monoidal category given by generators and relations). We
describe here the case of the Lie algebra sl and braid groups.
The idea of categorifications has been advocated by I. Frenkel (cf e.g. [CrFy])

and has already found deep applications in low dimensional topology in the work
of Khovanov [Khov].

1.2. In a joint work with Joseph Chuang, we explain the setting for sly, which
leads to a construction of some equivalences of derived categories of representations.
Let us explain more precisely one of the main applications of slp-categorifications:
let p be a prime number and Fp an algebraic closure of F,. The following result
is a simplified version of a theorem asserting that the derived category of a block
of a symmetric group depends only on the defect group, up to equivalence (as
conjectured by Broué).

THEOREM 1.1. Let A and A’ be two non-simple blocks of symmetric groups
over Fp. Then, DY(A) ~ D*(B) if and only if A and B have same number of
simple modules.

Similar results hold for (cyclotomic) Hecke algebras, g-Schur algebras and group
algebras of GL,(Fy). The methods apply also to category O for gl,(C) and to
rational representations of GL,(F,).

The main idea is the following: we construct sly-categorifications on the rele-
vant categories. The adjoint action of the Weyl group of sl; will give the derived
equivalences.

An sly-categorification on an abelian category consists of the data of endo-
functors E, F' and natural transformations of functors X, T satisfying certain as-
sumptions. In the examples of sl;-categorifications described, X takes different
incarnations (Jucys-Murphy elements for Hecke algebras, Casimir for gl(V'), new
for GL,(Fy)).

We expect a generalization of the theory to general Kac-Moody algebras. In
that setting, one should obtain an action of the corresponding braid group. Note
that this type of braid group action seems more general than the one considered in
Part 2 of this paper. These categorifications should give an interpretation of the
canonical bases and we also hope that vertex operators can be categorified.

1.3. Actions of braid groups on triangulated categories are quite widespread.
They arise for instance in representation theory, for constructible sheaves on flag
varieties and for coherent sheaves on Calabi-Yau varieties (cf [RouZi] and [SeiTho]
for early occurrences). In Part 2, we suggest that not only the self-equivalences
are important, but that the morphisms between them possess some interesting
structure.

Let W be a Coxeter group and C a triangulated category. We consider gradually
stronger actions of W or its braid group Bw :

(i) W acting on K;,(C)
(ii) a morphism from Bw to the group of isomorphism classes of invertible
functors of C

(iii) an action of By on C.

We construct a strict monoidal category By, categorifying (conjecturally) Bw
and we propose an even stronger form of action :

(iv) a morphism of monoidal categories By — Hom(C,C)
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Section §8 is devoted to a construction of a self-equivalence of a triangulated
category, generalizing various constructions in. representation theory and algebraic
geometry. This should be viewed as a categorification of an action of Z/2.

In section §9, we construct a monoidal category categorifying (a quotient of)
the braid group. It is a full subcategory of a homotopy category of complexes of
bimodules over a polynomial algebra. The setting here is that of Soergel’s bimod-
ules.

Section §10 is devoted to the category O of a semi-simple complex Lie algebra.
There are classical functors that induce an action of type (i). We show how to use
the constructions of §9, via results of Soergel, to get a genuine action of the braid
group and even the stronger type (iv).

The case of flag varieties is considered in §11. There again, there is a classical
action up to isomorphism of the braid group on the derived category of constructible
sheaves (type (ii)). Using a result of Deligne and checking some compatibilities for
general kernel transforms (Appendix in §12), one gets a genuine action of the braid
group (type (iii)). Now, using the link with modules over the cohomology ring, we
get another proof of this and even the stronger (iv).

In a work in preparation we study homological vanishings and relation with the
cohomology of Deligne-Lusztig varieties. We also expect that finding presentations
by generators and relations will lead to a new proof of Beilinson-Bernstein’s equiv-
alence between category O and perverse sheaves on the flag variety (or rather of
Soergel’s version of the equivalence) and a new proof of Andersen-Jantzen-Soergel’s
proof of Lusztig’s conjecture comparing representations in the quantum case and
in characteristic p.

1.4. Part 1 is based on a series of lectures given at the Workshop ICRA XI,
Queretaro, in August 2004. A few talks have been given in 1998-2000 on the main
results of Part 2 (Freiburg, Paris, Yale, Luminy) and I apologize for the delay in
putting them on paper.

I would like to thank 1. Frenkel, M. Kashiwara, M. Khovanov, and W. Soergel
for useful discussions, and the referee for pointing out a mistake in §8.1.1.

Part 1. sl;-categorifications

This chapter surveys the main constructions and results of [ChRou).

2. sly-categorifications

2.1. We put

(s Q) w3 )

so that sl;(C) = Ce® Cf & Ch.

Fix k an algebraically closed field. Let .4 be a k-linear abelian category such
that all objects have finite composition series (the theory has a counterpart for
triangulated categories).

DEFINITION 2.1. A weak sly-categorification on A is the data of (E,F) an
adjoint pair of exact functors A — A such that
o the actions of [E] and [F] on V = C ® Ky(A) give a locally finite repre-
sentation of sl
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o given S € A simple, then [S] is a weight vector
o the functor F is isomorphic to a left adjoint of E.

The weight space decomposition V = @,z VA (where V) = ker(h — X)) gives
a decomposition A = @, Ax where Ay = {M € A | [M] € V)}.

EXAMPLE 2.2. The 3-dimensional irreducible representation

k-mod C
o)
E1|F k[d]/d*-mod C et lf
IndNRes 2( )1
k-mod C
EXAMPLE 2.3. Same representation

k[d]/d?-mod C

Idnk ( )
ETLF k-mod C et lf

)

k[d]/d*-mod C

The first example will lead to a genuine categorification, while the second one
won’t.

2.2,

DEFINITION 2.4. An sly-categorification on A is a weak categorification together
with the data of X € End(E), T € End(E?), g € k* anda € k (witha #0 ifqg #1)
such that

U] EEE
ERN

FFEFE FFEFE 18 commutative

re| |or

EEFE EEE

EEFE
e T+1)(T—-q) =0
oXE) ifq#1
XE-T ifq=1
o X — a is locally nilpotent.

e To(EX)oT =

REMARK 2.5. Assoon as V contains a copy of a simple sl;-module of dimension
3 or more, then a and q are determined by X and T.
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Let us now state our two main Theorems.
THEOREM 2.6. There is an equivalence © : D*(A) 5 Db(A) with [0] = s =

(_01 (1)> It restricts to equivalences D*(Ay) = DP(A_3).

They come from equivalences K°(A) = K®(A), restricting to K®(Ay) = Kb(A_,).
Here, K%(A) denotes the homotopy category of bounded complexes of objects
of A.

THEOREM 2.7. Let A > 0. We have isomorphisms
A—1
o+ (FX/)on : EF., old$ S FE,
=0

A-1
o+ €0 (XIF) 1 EFa, 5 FE,, 01d9
§=0
where o is the composition

EF 225, prEpr £TE, pEEF £E FE.

EXAMPLE 2.8. We consider the case of Example 2.2. Put ¢ =1 and a = 0.
Let X be the multiplication by d on Res : Ay — A and multiplication by —d on
Ind : A_y; — Ag. Let T € Endg(k[d]/d?) be the automorphism swapping 1 and d.
This is an sly-categorification.

3. Affine Hecke algebras

3.1. For q # 1, let H,(q) be the affine Hecke algebra of type An_y.
with generators T, ..., Tn_1, X%, ..., XZ! and relations
(Ti —g) (T +1) =0
T,T; = TyT, if |i — j| > 1
TTinT =T TiTi
XiX]' = X]‘Xi
X.T; =T;X; if i — j #0,1
TXT; = qXiq1.
Note that Hf = k(T1,...,T,-1) is the Hecke algebra of &, and that H, =
E[XEL . XE o H.
For ¢ = 1, define H,, (1) as the degenerate affine Hecke algebra of type A, _1,
with generators Ty,...,Tn_1,X1,...,X,. The relations are the same as above,

except the last relation which is replaced by X; .1\ T; = T3 X; + 1.
We have H,(1) = k[X1,..., X,] ® k6,,.

3.2. An important feature is that the (degenerate) affine Hecke algebras arise
naturally from an sly-categorification:

PROPOSITION 3.1. The correspondence
n s En—i—lTEi—l, )(2 s En—iXEi—l
defines a morphism of algebras H, — End(E™).
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This will eventually enable us to control sly-categorifications. All H,,-modules
considered will be locally nilpotent for (X; — a),..., (X, —a). As a consequence,
their restriction to HJ will be free (this would fail for the affine Hecke algebra at

=1).
! V\)/e define two one-dimensional representations of HJ:
e 1 is given by T; — ¢
e sgn is given by T; — —1.

Given 7 € {1,sgn}, put ¢ = 3 s, ¢ 7(Tw)Tw € Z(H]) and E™7) =

E™.-cl.

PROPOSITION 3.2. We have E™ ~ n! - E(m7)

We have obtained two different (though isomorphic) categorifications of the
divided powers.

4. Categorifications on blocks of &,

4.1. Assume p = char(k) > 0. We view k&,, as a quotient of H,(1) via the
morphism of algebras given by T; — (3,7 + 1), X; — 0.
Let a € F,. Given M a kG,-module, we denote by F, ,,(M) the generalized a-

eigenspace of X,. This is a £&,,_;-module. We have a decomposition Res’;g:_l

Dack Fan. There is a corresponding decomposition IndﬁS:i1 = @D, cx Ean, where

E, n is left and right adjoint to Fy, ,. Weput E, = ,5, Eanand Fo =@, 5, Fan-
Given a € F,, the functors E, and F, give a weak sly-categorification on

A=@,,kSn-mod.

We denote by X the endomorphism of E, given on E,, by right multiplication

by X,. We denote by T the endomorphism of EZ given on E, ,E, 1 by right

multiplication by (n — 1,n). This gives an sly-categorification on A (here, ¢ = 1).

4.2, Let us recall the action of the affine Lie algebra ;[p and some of its
properties [LLT.

THEOREM 4.1 (Lascoux-Leclerc-Thibon). -The functors E, and F, fora € F,
give rise to an action of s, on @, 5, Ko(k&,-mod).
-The decomposition of Ko(kG,-mod) in blocks coincides with its decomposition in
weight spaces.
-Two blocks of symmetric groups have the same p-weight if and only if they are in
the same orbit under the adjoint action of the affine Weyl group.

THEOREM 4.2. Let A and B be two blocks of symmetric groups over k. The
following are equivalent:
(1) A and B have the same p-weights
(2) A and B have isomorphic defect groups
(3) Db(A) ~ Db(B).
If we exclude the case where p = 2 and A or B is a matriz algebra, we get an
equivalence with

(4) A and B have the same number of simple modules.
HINTS OF PROOF. Theorem 4.1 reduces the proof to the case of an elementary

reflection s,. Now, we have an sly-categorification and we get a derived equivalence
by Theorem 2.6. O
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We can now deduce that Broué’s abelian defect conjecture [Br| holds for sym-
metric groups.

CoROLLARY 4.3 (Broué’s conjecture). Let A be a block of a symmetric group
over k. Assume the defect groups of A are abelian, i.e., the p-weight w is < p.
Then, A is derived equivalent to k[(Z/p X Z/{(p — 1)) % G-

HINTS oF PROOF. We know [ChKe| that given w, there is a block B of a
symmetric group with p-weight w that is Morita equivalent to the principal block
C of k[(6,)” n &,]. Since the principal block of k(G| is derived equivalent to
k[Z/pxZ/(p—1)] [Ril], we deduce [Mar]| that C is derived equivalent to k[(Z/p x
Z/(p—1)" xS,]. Now, A is derived equivalent to B by Theorem 4.2. O

5. Minimal categorifications

5.1. Let m, be the ideal of polynomials generated by X, —a,..., X,, —a and
let H, = H,/((m,)®"). Given 0 <i < n, let H; , be the image of H; in H,,.
The algebra H; ,, is isomorphic to a matrix algebra over H*(Gr(4,n), k), where
Gr(i,n) is the Grassmannian variety of i-dimensional subspaces of C™.
The algebra H; ,, is symmetric and we have left and right adjoint functors
_ Ind

Hi,n-mod > I-_Ii+1‘n—mod
Res

We get as in the symmetric group case an sl;-categorification on A(n) =
6}095" H; ,-mod. We obtain the irreducible representation of dimension n + 1
of sl; on Ky(A(n)). We will see below that .4(n) gives a “minimal” categorification

of that representation.

5.2. Let U be a simple object of A4 with FU = 0. Take n maximal such that
E™(U) # 0 (and put h(U) = n). Let B; = H; ,. The morphism H; — End(E‘U)
induces an isomorphism B; = End(EU).

There are commutative diagrams of functors

E1+1U®Bz+1 -
B;,1-mod A (easy)
B‘H—l@Bi_T E
B;-mod A
E1U®Bi -
Ei+1U®Bz+1 -
B;y1-mod A (key)
Bi+1®Bl+l—l F
B;-mod . A
E1U®Bi -

THEOREM 5.1. The diagrams above give rise to a canonical morphism of sly-
categorifications Ry : A(n) — A.

Let I, be the set of isomorphism classes of simple objects U of A such that
FU =0 and A(U) = n (“lowest weight simples”).
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COROLLARY 5.2. We have a canonical morphism of sly-categorifications
Z Ry : @ Aln) - A
n,Uel, nUel,

It induces an isomorphism

B, ver, A® Ko(A(n)-proj) —> Q ® Ko(A)

@n,Ue]n Q ® KO(A(n))

HINTS OF PROOF OF THEOREM 2.7. To test isomorphism, it is enough to eval-
uate at E*U for all U simple with FU = 0. By Theorem 5.1, we deduce it is enough
to consider the case .A(n), where we do explicit calculations. O

6. Homotopy and derived equivalences

6.1. We have
0 1
s= (& o) = em=nesse expl-1).
Let v € V_). Then, s(v) =3, r,((/\ir)r),e’\”f’(v).
There is no exact functor A — A giving rise to the action of s on Ky(A) :

we need to use complexes. We define ©) a complex of exact functors A_y — Aj,
following Rickard [Ri2].

(©1)" = (E(sg;n,,\Jrr)F(l,r))lA_A fr,A+r>0
A 0 otherwise

The differential is defined by the commutative diagram:

EGe 24 pANC——— pAtrpr — prr-lpRET-l
d-T E/\+r—16Fr~1

Y
E(sgn,,\+r—l)F(1,r—l)L—> EAr-lpr-1

5 Cz

Note that d'~"d~" = 0. Indeed, c}¥"c} = 0, hence E2F? 22, E2F? 22, 1d

vanishes.

THEOREM 6.1. The functor Oy induces equivalences K®(A_y) 5 K°®(A)) and
DP(A_)) & D®(A,). The functor © = @, O, gives equivalences K*(A) = Kb(A)
and D*(A) 5 D®(A). We have [0] = s.

HINTS OF PROOF. Consider a left adjoint ©Y. To show that p : ©Y0, — Id
is an isomorphism in the derived category, it is enough to do so after evaluation
at E*U for U simple with FU = 0. We reduce the problem to the case .A(n) by
Theorem 5.1, and this case is handled by Lemma 6.2 below.

To get the homotopy equivalence, note that given M € A_,, there is N € A
containing M as a direct summand, there is an sl;-categorification on End(N)-mod
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and a morphism of sly-categorifications End(/N)-mod — A. The derived equivalence
for End 4(M)-mod gives a homotopy isomorphism p(M). O

LEMMA 6.2. Let n > 0 and A = A(n) be the minimal categorification. Fiz

A>0andlet! = "T_’\ The homology of the complex of functors ©) is concentrated
in degree —1 and H'Oy : A_y = Ay is an equivalence.

6.2. There is a filtration of V, 0 = V{-1} € V{0} C --- where V{i} is the
sum of simple submodules of dimension < i+1 (recall that V is locally finite for sl5,
hence V' = ;5 V{i}). Correspondingly, A{i} = {M € A | [M] € V{i}}. These
are sub-sl,-categorifications.

Thus, © restricts to D?(A{i}) = D’(A{i}). Passing to quotients, we get a
commutative diagram

A{i}_a/A{i = 1} 3 D*(A{i}-2)/ D1y (Ali}-n)
~ ~|©al=2)/2]

A{i} s/ Ali — 1}xc——> DY(A{i}2)/Dlys_py (Afi}a)
O, is a “perverse Morita equivalence”.

7. Representations of gl (C)

Let V = C™ and g = gl(V). Let M be a g-module : we have an action map
g® M — M giving by adjunction a map X : VM — V @ M. This gives
an endomorphism X of the functor V ® —. Denote by T the endomorphism of
V ®V ® — coming from the swap automorphism of V @ V.

Consider now the functor V® — : O — O, where O is the BGG category of g-
modules that are diagonalizable for the action of the diagonal matrices and locally
finite for the action of the upper triangular matrices.

Fix a € C and let E be the generalized a-eigenspace of X on V ® —. Similarly,
considering V* ® —, we get a functor F' left and right adjoint to F. Together with
the actions of X and T, this gives an sly-categorification on O.

There is a similar construction for finite dimensional representations of GL,,(F).
We deduce that blocks with the same A,,_, stabilizer are derived equivalent (a con-
jecture of Rickard).

Part 2. Categorification of braid groups

8. Self-equivalences

We describe a categorification of the notion of reflection with respect to a
subspace. The ambient space is Ky of a triangulated category, the subspace is
another triangulated category and the embeddings and projections are given by
functors. We actually allow an automorphism of the “subspace” category, which
allows to categorify the g-analog of a reflection.

We present here how a functor from a given triangulated category gives rise
to a self-equivalence of that category, when the functor satisfies some conditions.
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Then, we give three special “classical” cases. The first one concerns constructible
sheaves on a P!-fibration (it occurs typically with flag varieties, cf §11). The second
one deals with the case where the target category is the derived category of vector
spaces, where we recover the theory of spherical objects and twist functors (it
arises as counterparts of Dehn twists via mirror symmetry). The last application
essentially concerns derived categories of finite dimensional algebras (it occurs in
particular within rational representation theory, cf §10).

All functors between additive (resp. triangulated) categories are assumed to
be additive (resp. triangulated).

Given an additive category C, we denote by K(C) the homotopy category of
complexes of objects of C.

Given an algebra A over a field k, we denote by A-mod the category of finitely
generated left A-modules. We put A°" = A ®; A°PP, where A°PP is the opposite
algebra.

Given a graded algebra A, we denote by A-modgr the category of finitely gen-
erated graded A-modules.

8.1. A general construction.

8.1.1. This section can probably be skipped in a first reading.

We will be working here with algebraic triangulated categories (following Keller),
a simple setting that provides functorial cones.

Let £ be a Frobenius category (an exact category with enough projective
and injective objects and where injective and projective objects coincide). Let
Comp,,.,.(€-proj) be the category of acyclic complexes of projective objects of £.
Let Frob be the 2-category of Frobenius categories, with 1-arrows the exact func-
tors that send projectives to projectives and 2-arrows the natural transformations
of functors.

The construction & — Comp,.,.(£-proj) is an endo-2-functor of Frob. The
2-functor from & to the 2-category of triangulated categories that sends &£ to its
stable category &£ factors through the previous functor.

The important point is that the category Comp,_.(€-proj) has functorial cones.
Given F, G : Comp,,.(&-proj) — Comp,,.(£'-proj) and ¢ : ' — G, then we have
a well defined cone C(¢) of ¢ and we have morphisms G — C(¢) and C(¢) — F([1]
such that F — G — C(¢) — F[1] gives a distinguished triangle of functors from &
to £'.

Note that if ¢g : Fy — Gy is a morphism of functors (exact, preserving pro-
jectives) between £ and &', then we get via Comp,,.(—) a morphism of functors
¢ : F — G, with F,G : Comp,(£-proj) — Comp,,.(£’-proj) the functors in-
duced by Fo, Go.

The category of functors (exact, preserving projectives) Compacyc(f—proj) —
Comp,,.(£’-proj) is a Frobenius category. Let C be its stable category. We define
the category AlgTr(&, &) to be the localization of C with respect to the morphisms
¢ such that ¢(X) is an isomorphism for all X in £, where ¢ is the induced morphism
at the level of stable categories. So, the objects of AlgTr(€, £’) are the exact functors
Comp,yc(€-proj) — Comp, . (£'-proj) and Homagr(e ey (F, G) is the image of
Hom(F,G) in Hompun(g,g,)(ﬁ’, G).
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This defines the 2-category of algebraic triangulated categories AlgTr, with
objects the Frobenius categories £. We have a 2-functor from AlgTr to the 2-
category of triangulated categories obtained by sending £ to £.

8.1.2. Let C and D be two algebraic triangulated categories, F : C — D,
G : D — C be two functors and ® be a self-equivalence of C. Let there be given also
two adjoint pairs (F,G) and (G, F®). We have four morphisms (units and counits
of the adjunctions)

n:1lp - FO®G, ¢:GF® — ¢
7l = GF, €¢:FG— lp.
Let T be the cocone of ' and T’ be the cone of 1 : there are distinguished triangles
of functors T — FG = 1p ~ and 1p — F®G — T/ ~.
Assume

0

el
2 Lels

(1) lc - GF
’ -1
is a distinguished triangle (i.e., there is an exact sequence 0 — 1o °» GF LN
®~! — 0 in the additive category of functors).
PROPOSITION 8.1. The functors T and YT’ are inverse self-equivalences of D.

PRrROOF. Let 7y be the map F®G — Y’ in the triangle above, i.e., we have the
distinguished triangle 1p 2, F®G 5 Y’ ~. We have a commutative diagram
with horizontal and vertical distinguished triangles

?

FG
id T
FeG
FGn FGy
FG——— FGFG ——— FGY' ~>
Fn"bGT
FoG

The octahedral axiom shows that (FG7v) o (Fy/®G) : F®G = FGY' is an isomor-
phism.
We have a commutative diagram

Fr'®G FGr
FOG ———— FGF®G ———— FGY’

\ le’Fbe le’r'
id

FOG —————> 71’
The distinguished triangle TT' — FGT' LIS gives a distinguished triangle
TY — F®G 5 T/ ~», hence TY' ~ 1p.
The case of T'T is similar — note that the triangle (1) shows that GF ~
idp ®®~!, hence ® commutes with GF. O
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REMARK 8.2. One sees easily that nF + F®n’ : F ®& F®& = F®GF and
Gn +n'®G : G ® ®G = GF®G are isomorphisms. One can show that the re-
quirement that nFG + F®n'G : FG & F®G — F®GFG and FGn + Fn'®G :
FG® F®G — FGF®(G are isomorphisms, instead of the stronger requirement that
(1) is a distinguished triangle, is enough to get Proposition 8.1.

8.1.3. Let us recall a version of Barr-Beck’s Theorem ([Mac, §V1.7, exercice
7], [De2, §4.1]).

Let C be a category. A comonad is the data of a functor H : C — C, of
c:H — H? and ¢ : H — id such that (cH) oc = (Hc)oc and (¢H)oc = (He)oc.
Note that ¢ is determined by c.

A coaction of (H,c¢,¢) on an object M of C is the data of p : M — H(M) such
that e(M) o p =idp and cop = F(p)op. The category (H, ¢, ¢)-comod has objects
the pairs (M, p) and a morphism (M, p) — (M’,p’) is a morphism f : M — M’
such that o'f = H(f)p.

Let A and B be two abelian (resp. algebraic triangulated categories), T : A — B
an exact functor (resp. a triangulated functor). Assume T has a right adjoint U.
Put H = TU, denote by ¢ : H — idg and 75 : id4 — UT the counit and unit of
adjunctions and let ¢ = TnU : H — H2.

We have a functor T : A — (H, ¢, &)-comod given by M w— (TM, Tn(M)).

The following Theorem is an easy application of Barr-Beck’s general result to
abelian and triangulated categories.

THEOREM 8.3. If T is faithful, then T : A= (H,c,e)-comod is an equivalence.

We deduce from this Theorem that the category C, together with the functors
F, G and the adjunctions, is determined by D, © = FG and ¢ = Fr/G : © — 62
We view this as a categorical version of the “fixed points” construction.

REMARK 8.4. Let V = Ko(D),U = Ko(C), f = [F]: U - Vandg=[G]: V —
U. Assume [®] = idy. Then, gf = 2idy and ¢ = —[T]:z— z— fg(z): V - V
is an involution. One recovers U (up to unique isomorphism) from % acting on V
as V¥,

8.2. Applications.

8.2.1. We consider schemes of finite type type over an algebraic closure of a
finite field F, (the case of complex algebraic varieties is similar). Let 7 : X —» Y
be a smooth projective morphism already defined over F,. Assume the geometric
fibers are projective lines.

Let A be a field of coefficients (=an extension of Q, for £ } ¢ a prime number).
Put C = D*(Y) and D = D*(X) (bounded derived categories of constructible
sheaves of A-vector spaces). Take F' = n*, G = Rm. and ® =7(1)[2]. We have
a canonical isomorphism (projection formula) ? ® Rm,Ax — Rm,m*. Via this
isomorphism, 7’ becomes id ®7'(Ay) and ¢ becomes id ®t, where t : Rr,Ax —
Ay (—1)[-2) is the trace map (an isomorphism on H?2).

So, the triangle (1) is obtained from the triangle

Ay T Re Ay b Ay(=1)[=2] ~

by applying 7®. This is indeed a distinguished triangle, for it is so at geometric
fibers.
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Let £ be a relative ample sheaf for 7 and ¢ € H?(X, A(1)) be its first Chern
class. The hard Lefschetz Theorem states that the composition

Ay T2 prAx S RmAx(D[2) 22 Ay

is an isomorphism. It follows that the connecting map in the triangle above is zero.

Thus, we are in the setting of §8.1.2 and we get a self-equivalence of D?(X).

This can be also constructed as a kernel transform. Let a,F: X xy X — X be
the first and second projections. Let i : AX — X xy X be the closed immersion
of the diagonal and j : Z — X Xy X be the open immersion of the complement of
AX. Denote by € : 1ps(xxyx) — 0" and 77: Rjij* = 1ps(xx, x) the adjunction
morphisms. One checks easily that there is a commutative diagram where the rows
are distinguished triangles

’
T——>7F*R7r*;>1'p e

RB.Rj1j* mRﬁ*a }mRﬁ*z*z a* ~~s
where the middle vertical map is the base change isomorphism.
Denote by p,q : Z — X the first and second projections. Then, T ~ Rpig* and
T' ~ Rp.q'.
8.2.2. Assume we are in the setting of §8.1.2 with C = D®(k-mod) where k is
a field and the categories and functors involved are k-linear. There is an integer n
such that ® =?[n|. Let E = F(k). Then, F ~ E®;? and G ~ RHom(E,?). The
morphism ¢ comes from ¢ : Hom(E, E[n]) — k.
The morphism ¢ is the counit of an adjoint pair (G, F®) if and only if we have
dim; @, Hom(E, M[i]) < oo for all M € D and
Hom(E, M) x Hom(M, E[n]) — k, (f,9) — t(gf)
is a perfect pairing for all M € D.
The triangle (1) is distinguished if and only if 0 — k-id — €D, Hom(E, E[]) 5
k — 0 is an exact sequence.
In other words, F is an n-spherical object and T, YT’ are the corresponding twist

functors of Seidel and Thomas [SeiTho, §2b]. So, the framework above corresponds
exactly to the twist functor theory when C ~ D®(k-mod).

REMARK 8.5. The case C = D®(k%-mod) also leads to interesting examples.

REMARK 8.6. It would be interesting to see if the construction of §8.1.2 can
be used to construct automorphisms of derived categories of Calabi-Yau varieties
corresponding, via Kontsevich’s homological mirror symmetry conjecture, to graded
symplectic automorphisms on the mirror associated to Lagrangian submanifolds
more complicated than spheres.

8.2.3. Let us consider here two abelian categories A and B and F : A — B,
G : B — A and 9 a self-equivalence of .A. We assume we have two adjoint pairs
(F,@) and (G, F®). So, we have four morphisms (units and counits of the two
adjunctions)
f:lg— FOG, £:GF® — 14
7 :14 — GF, g FG — 1g.
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Let T be the complex 0 — F'G £, 1g — 0 and T’ the complex 0 — 1 ——
F®G — 0 (with FG and F®G in degree 0). We put C = K (A) and D = K (B) and
we denote by F, G, etc... the extensions of F, G, etc... to C and D.

Assume B is artinian and noetherian (every object is a finite extension of simple
objects). If we have the equality [GF] = [id] + [®~] as endomorphisms of Ky(.A)
then, the conclusion of Proposition 8.1 remains valid.

Let us justify this, following ideas of Rickard [Ri3, §3]. There is an adjoint pair
(Y’, ), hence there is a map u : id — TY’ that doesn’t vanish on a non-zero object
of B. One shows that YY’ is homotopy equivalent to a complex of functors with
only one non-zero term, R, in degree 0 and R is an exact functor. The assumption
on classes shows that [R] = [id]. So, R sends a simple object to itself, for a simple
object is characterized amongst objects of B by its class in Ko(B). In particular,
u : id — R is an isomorphism on simple objects. So, u is an isomorphism.

9. The 2-braid group

9.1. Coxeter group action.

9.1.1. Let (W, S) be a Coxeter system (with S finite) and V = @, 4 kes be
the reflection representation of W over a field k. We assume the representation is
faithful (this is always the case if the characteristic is 0). Given s,t € S, we denote
by ms; the order of st. We assume that 2m,, is invertible in k, for all s,t € S
such that mg is finite. We denote by {as}ses the dual basis of {es}ses (so that
ker(s —id) = ker o for s € S). Let By be the braid group of W. This is the group
generated by S = {s}scs with relations

sts--: ~ tst--.
SN—— N———"

mg¢ terms mg¢ terms

for any s,t € S such that mg < 0o

Let A = k[V] be the algebra of polynomial functions on V. All A-modules
considered in this section are graded.

We will sometimes identify an object M of K®(A°™-modgr) with the corre-
sponding endofunctor M ® 4 — of K®(A-modgr). In particular, we will sometimes
omit the symbols ® 4 when taking tensor products of bimodules for the sake of
clarity.

9.1.2. The action of W on V induces an action on A, hence on A-modgr
and on D®(A-modgr) : the element w € W acts by A, ®4 — where A, is the
(A, A)-bimodule equal to A as a left A-module, with right action of a € A given
by right multiplication by w(a). We have an isomorphism of (A, A)-bimodules,
id®1: Ay, = k[Ay], where Ay, = {(w(v),v)}vev CV X V.

We have a canonical isomorphism A, ® 4 Aw — Ay given by multiplication.
Let z = (z1,...,2,) and y = (y1,...,yn) be sequences of elements of S such
that €, Zm = Y1 Yo = w. We denote by ¢z 4 : Az, -+ Ag,, = Ay Ay,
the isomorphism obtained by composing the multiplication map Az, - -+ Az, — Ay
with the inverse of the multiplication map A, - -+ 4y, — Ay.

9.2. Braid group action. Let us now construct a non-obvious lift of the
action of W on DP(A-modgr) to an action of By on K°(A-modgr).
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9.2.1. For s € S, we define the complex of (A, A)-bimodules

F,=F,=0 5 A®4s A5 A0

where A is in degree 1 and ¢/ is the multiplication.
Since A = A° @ A%y, the morphism of A°"-modules

As > A®4s A(l), a— a®a; —aa;®1
induces an isomorphism
fs: Ay = Fy(1) in Db(A® -modgr).

9.22. Forw € W, let A<y, = U< Dw and Dy, = k[A<y,]. Note that
D, =A®4s Afor scS. B

Given w' < w, we have a canonical quotient map D,, — D, given by restriction
of functions. We have

k- if w <
Hom(Du, Du) can ifw __.w
0 otherwise
9.2.3. In the next lemma, 0 - L — M — 0 denotes a complex with L in
degree 0.

LEMMA 9.1. Assume W is a finite dihedral group, i.e., dimV =2, S = {s,t}
and mg < 0o. Let x € W such that tz > z. Then,

(i) Ds(0 — Diz =% Dy — 0) ~ (0 = Dy(—1) “S Dy(—1) — 0) @ (0 —

Dstz ma— DI - 0)
(if) FysDy ~ (0 — Dy % D, — 0)@ (0 — Dy(=1) — 0 — 0).

PROOF. Let us recall some constructions and results of Soergel [Soe4, Lemma
4.5, Proposition 4.6 and their proofs]. Since 2mg; is invertible, then given u, u’ two
distinct reflections of W, we have ker(u + id) # ker(w’ + id).

Let r be the reflection of W such that ro <  and rz ¢ tz. Then, A, + Ay
is a hyperplane of V x V and let 3 € V* x V* be a linear form with kernel this
hyperplane. Let M (resp. N) be the (4° ® A)-submodule of D,, generated by the
image of the elements 3 (resp 1) of A® A. Then, Dy = M & N, M ~ Da(vs’l)(—-l)
and N ~ D'V as (4° ® A)-modules.

Let M’ (resp. N') be the (A° ® A)-submodule of D, generated by a; ® 1 (resp.
1). Then, D, = M’ & N', M’ ~ D"V (=1) and N’ = D{"" as (A® @ A)-modules.
Denote by p: D, — M’ the projection.

Let us show now that 8 ¢ (V*)* x V*. Equivalently, we need to show that
(Az + Arz) N (kos x 0) = 0. This amounts to proving that im(id —7) # ka,. But
this holds, since r # s.

Let us now come to our problem. Since 8 & (V*)° x V*, it follows that the
image of fin (A® A)/(A° ® A) is a generator as (A° ® A)-module. Consequently,
the restriction of pf : D;; — M’ to M is surjective, hence it is an isomorphism (we
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denote by f : Dy, — D, the canonical map).

Finally, the multiplication map A ® 4+ D,(,S’l) 5 D, is an isomorphism for any
y € W with sy < y. We have shown that the complex A® 4s (0 — Dy, = D, — 0)
is isomorphic to the direct sum of the complex 0 — D, (—1) d, D,(—1) — 0 and

a complex D =0 — Dy, LN D, — 0. Note that ¢ = r - can for some r € k and we
can

need to prove that r # 0. The complex 0 — D,, — D, — 0 has zero homology
in degree 1, hence the same is true for D. It follows that r # 0.

Let us now prove the second assertion. The multiplication map A® 4+ D;s’l) —
D, is an isomorphism. Since D, = D&Y @ M’ and M ~ D;s‘l)(—l), we obtain
the second part of the Lemma. g

ProOPOSITION 9.2. Take s #t € § with mgy < 00. We have braid relations

F,FoFy-:~ FF,F,

mge terms Mgy terms

in K(A® A).

PROOF. We have a decomposition V = V] & V, under the action of (s, t), with
Vi = V{1 For the (4, A)-bimodules involved in the Proposition, the right and left
actions of k[V]] are identical. So, we get the Proposition for V from the Proposition
for V, by applying the functor k[V}*] ® —. It follows we can assume dimV = 2.
So, we assume W is finite dihedral with S = {s,t}. We put sy =s and s_ =1t.

Let m = mg and consider 1 < m and € € {+,—}. Let 0f = scs_cs:--- (i
terms) and D§ = D,s. We put D° = D,,. Consider the simplicial scheme over
VxV:

A=A, [TA 28, [TAc s 2 380 [T = A

where the maps are the inclusions.
We now define Ff as the complex of (A, A)-bimodules coming from the struc-
tural complex of sheaves of this simplicial scheme :

(x) 9,

0— Df —> D;_&D; 5
where the sign denotes the multiple of the canonical map considered (we put Df in
degree 0). We have H"(Fy) =0forr >0,since A_ + NA - =A_,+ UA_ -

D: ,@D%, — - — D*eD- L p ¢

1
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and we have an exact sequence

)

0 kA  UA_, ] ~L kA ]ekA,,| T

k[ASOi HASU:] — 0.

The complex FT is isomorphic to F;,. We will now show by induction on 7 that
F,_ F[° is homotopy equivalent to Iy, ; for ¢ = £. This will prove the Proposition,
since F,} ~ F.

Let us consider the complex C = F,_F;°. This is the total complex of the
double complex

D*D;¢* ——= D*D;_,® DD, — D*D;_,® D*D; %), — --- —— DD,

| | !

D;*——>Di D ——>D: , 6D - D

By Lemma 9.1, the complex 0 — DD-¢ “®% DDt — 0 is isomorphic to the

direct sum of 0 — Df_;(—1) ‘% De_ (=1) - 0 and of 0 — D=, , =% DE_, — 0.
Also, the complex 0 — D°D: = D: — 0 is isomorphic to the direct sum of

0— Dg , Dt — 0 and of 0 — D%(—1) — 0 — 0. It follows that C is homotopy
equivalent to a complex

C'=0-Df,, — D@D —-.-— Dy =0,

where the maps remain to be determined. Since F;_ has non zero homology only in
degree 0 and that homology is free as a right A-module, it follows that the homology
of C' vanishes in degrees > 0.

To conclude, we have to show that a complex X with the same terms as Ff
and with zero homology in degrees > 0 is actually isomorphic to F. We have

5) gy 0 2.52)
X=0-Dt 2, pe gps 2t MY e apoe ..
- [ 1—1 1—1 1—2 1—2
o DteD- . p o

where the coefficients are in k and the maps are corresponding multiples of the

canonical maps.

Take r < i minimal such that there is an entry of (‘c’: 3: that vanishes.

Assume for example ¢, = 0. Then, a,_ja, = 0, hence a, = 0. We have b,c,y; =
drcry1 = bpdry1 = drdpryy = 0. If b, = d = 0, then X is the sum of the
subcomplex with zero terms in degrees < ¢ — r and the subcomplex with zero
terms in degrees > ¢ — r. Otherwise, ¢,41 = dr41 = 0, hence X splits as the
direct sum of the subcomplex --- — D2, @ D7, — DZ — 0 and the subcomplex
0—D*—>Di_®D 5 — ---. Now, a morphism D¢ — D;_, & D, *, is never
injective, for the support of the left term is strictly larger than the support of the
right term. Consequently, the complex X has non-zero homology in degree ¢ — r,
which is a contradiction. We have proven that none of the coefficients a, b., c,., d,
can be zero.

Let Z be the closed subvariety of the affine space of coefficients a, b, ¢, d,- that
define a complex (i.e., (‘;: Z:) (“**1 "*+1> = 0) and let Z° be its open subset

Cr41 dri1
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corresponding to non-zero coefficients. We have an isomorphism Z° 5 (G,,)%!,
h: (ar,br,crydr)r — (@r, ¢ )r. The action of (G,,)%* on the terms of the complex
induce an action on Z. The corresponding action on Z° ~ (G,,)%! has a unique
orbit. It follows that X is isomorphic to Fy. O

9.2.4. Let us define the complex of A°®-modules
Fooi=0—- A5 A®a A(1) >0
where A is in degree —1 and 7,(a) = a0, @ 1+ a ® .

LEMMA 9.3. The complexes Fy and Fy—1 are inverse to each other in the
monoidal category K°(A®-modgr).

PROOF. Let C = K®(A%-modgr) and D = K®(A-modgr). Let F = A® 4.7,
G = A®4? and ® =?(1). The morphisms of (4%, A*)-bimodules
st A(1)> A°1—0anda;— 1 and 7,:A4° > A 1—1
together with n, and &, previously defined give rise to adjoint pairs (F,G) and
(G, F®).

We have a split exact sequence of (A°, A*)-bimodules
0 A° ™ A5 4% 0,
hence we deduce the Lemma from Proposition 8.1. O

By Proposition 9.2 and Lemma 9.3, we have already obtained an action “up to
isomorphism” of By on K?(A) :

PROPOSITION 9.4. The map s — Fs extends to a morphism from By to the
group of isomorphism classes of invertible objects of K°(A®™-modgr).

9.3. Rigidification. The key point here is that the rigidification of the braid
relations at the homotopy category level is equivalent to the one at the derived
category level, where the problem is trivial, since we have a genuine action of W.

9.3.1. Consider the morphism of A*®-modules A® 45 A — A, that sends 1®1
to 1. It induces a quasi-isomorphism Fj-1(—1) = A;. We denote its inverse (a
morphism in D°(A®"-modgr)) by fs-1.

Now, let v € By and v = t1 -t,, = uy---u, be two decompositions in
elements of S U S~!. By Proposition 9.4, the invertible objects Fi, --- F;,_ and
F,, -+ F,, of K’(A®-modgr) are isomorphic, hence

Homp(F;, -+ By, , Fy, -+ Fy,) =~ Endg(A) =k,

where (0 € {K®(A®"-modgr), D*(A°"-modgr)}. It follows that the canonical mor-
phism

Home(Aen_modgr) (Ftl e th,Ful T Fun) —
- Home(Ae"-modgr)(Ftl ter th y Fu1 T Fun)

is an isomorphism.
So, we have a unique isomorphism

Yiu € Home(Aen_modgr)(Fil s th s Ful s Fun)
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such that the induced element in Hom pe(gen_modgr)(Ft1 =« * Ftons Fuy = Fu,,) corTE-
sponds to
C(tl,...,tm),(ul ..... Up) ¢ At1 © 'Atm - A'u.1 e Aun

ooand fu, o fun

We now define G, as the limit of the functors Fy, - -- Fy, ., where t = (t1,...,tm)
runs over the decompositions of v in SUS™!, with the transitive system of isomor-
phisms ¥ .

via the quasi-isomorphisms f;, --- f;

There are unique isomorphisms my, .+ @ GGy 2 Gy for v,v' € By and
my: Gy > Ain K? (A®"-modgr) that are compatible with the isomorphisms ¢,
in D®(A®"-modgr). So, we get the following result :

THEOREM 9.5. The family (G,,my ., m1) defines an action of Bw on the
triangulated category K°(A-modegr).

This means we have a monoidal functor from

e the strict monoidal category with set of objects By, with only arrows the
identity maps and with tensor product given by multiplication
e to the strict monoidal category of endofunctors of K®(A-modgr).

REMARK 9.6. Using tensor products on the right, one obtains a right action of
Bw on K®(A-modgr). This action commutes trivially with the left action of By,
so, we have an action of By x Biy® on K®(A-modgr).

9.3.2. We denote by By the full subcategory of K°(A®"-modgr) with objects
the G, for v € By . The product G, K G, = G, provides By with the structure
of a strict monoidal category. Define G as G,-1.

We have obtained our “categorification” of the braid group :

THEOREM 9.7. The category Bw is a strict rigid monoidal category. Its “de-
categorification” is a quotient of By .

CONJECTURE 9.8. The decategorification of Bw is equal to By .

REMARK 9.9. One can show that the conjecture is true in type A,, as a con-
sequence of [KhovSei, Corollary 1.2].

9.3.3. Let C' = A/(A-AY) be the coinvariant algebra. Then, we get by restric-
tion of functors an action of By on K®(C-modgr) and on K°®(C-mod). We get as
well monoidal functors from By, to the category of self-equivalences of K®(C-modgr)
or K?(C-mod). Note that we get also right actions, and this gives a monoidal

functor from Bw x ByE¥ to the category of self-equivalences of K®(C-modgr) or
K%(C-mod).

REMARK 9.10. Let C be the smallest full subcategory of (A® A)-modgr contain-
ing the objects A ® 4s A and closed under finite direct sums, direct summands and
tensor products. This is a monoidal subcategory of (4 ® A)-modgr which is a cat-
egorification of the Hecke algebra of W, according to Soergel [Soe2]. The quotient
C of C by the smallest additive tensor ideal subcategory containing the A ® 4.0y 4,
where s,t € S and mg; # 2, 00, is a categorification of the Temperley-Lieb quotient
of the Hecke algebra.

When W has type A,, an action of C on an algebraic triangulated category is
the same as the datum of an A, -configuration of spherical objects [SeiTho, §2.c].
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10. Principal block of a semi-simple complex Lie algebra

10.1. Review of category O.

10.1.1. Let g = LieG, h € b a Cartan and a Borel subalgebra. Let O be
the Bernstein-Gelfand-Gelfand category of finitely generated g-modules which are
diagonalizable for b and locally finite for b. Denote by Z the center of the enveloping
algebra U of g. Let P C h* be the weight lattice, @ C h* be the root lattice, R
(resp. R™) be the set of roots (resp. positive roots) and II the set of simple roots.

10.1.2. We have a decomposition O = @, Oy, where Oy is the subcategory
of modules with central character 8. Let D be a duality on O that fixes simple
modules (up to isomorphism).

Let A(x) = U ®u(s) Cx be the Verma module associated to x € h*. It has a
unique simple quotient L(x). We denote a projective cover of L(x) by P(x). We
put V(x) = DA(x). _

Consider the dot action of W on h*, w- A = w(A + p) — p (we denote by W the
group W acting via the dot action on h*), where p is the half-sum of the positive
roots.

Given A € b*, let £(A\) be the character by which Z acts on L(\) and m) be
its kernel, an element of Specm Z, the maximal spectrum of Z. The morphism
h* — SpecmZ, A — my induces an isomorphism h*/W 5 Specm Z, i.e., an
isomorphism of algebras h : Z = AW where A = C[h*]. The simple objects in Oy
are those L(A} with £(A\) = 4.

10.1.3. Consider B the set of intersections of orbits of W and of Q on §*.
For d € B, we denote by O4 (or by O, for a p € d) the thick subcategory of O
generated by the L()A) for X € d. Then, O = @, 5 Oq is the decomposition of O
into blocks.

Let A € h*/P and A € A. We have a root system Ry = {a € R|()\, aV) € Z}
with set of simple roots IIy C R, Weyl group Wi = {w € W|w()\) — A € Q} and
set of simple reflections Sx (they depend only on A). Note that Ry = R if and only
if A= P. We define

At ={AeAl(A+p,a’) >0 forall a € Iy}

ATt ={x e A[(A +p, V) >0 for all a € I}

Then, A" is a fundamental domain for the action of Wx on A. The module L())
is finite dimensional if and only if A € P*+.

10.1.4. We define a translation functor between @4 and Oy when d,d’ € B
are in the same P-orbit. Take A € §*/P and A, u € AT. Let v be the only element
in W(u — A) N ATt Then, we define T} : Oy — O,, M — pr (M ® L(v)) where
pr, : O — O, is the projection functor. Since —wor € ATt and L(v)* ~ L(—wov),
it follows that the functors T}’ and T:‘ are left and right adjoint to each other.

Let d € B containing 0. The corresponding block Oy = Q4 is the principal
block of O. Note that d = W - 0 is a regular W-orbit and we put L{w) = L(w - 0),
etc...

For s € S, we fix u € P+ with stabilizer {1,s} in W. We put T° = T§* and
T_.3 = TIS-J and @3 = T_.371‘s . 00 - 00.

10.1.5. Let F; = F, be the complex of functors on Oy given by 0 — 6; S
id — 0 where ¢/, is the counit of adjunction (id is in degree 1).
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Let Fy-1 = 0 — id 2, 9, — 0, where ns is the unit of the other adjunc-
tion. Then, Rickard [Ri3, Proposition 2.2) proved that Fy and F;-: are inverse
self-equivalences of K®(() (this follows from §8.2.3 by the classical character cal-
culation [T°T] = 2[id]).

It is easy and classical that the F; induce an action of W on K(Og) (the
reflection s € S acts as [Fs]). This realizes the regular representation of W. A
permutation basis for this action is provided by {[A(w)]}wew .

It seems difficult to check directly that the F satisfy the braid relations. Using

the equivalence between Oy and perverse sheaves on the flag variety, this can be
deduced from §11.

10.2. Link with bimodules.

10.2.1. We start by recalling results of Soergel [Soel, Soe2, Soe3] relating
the category O to modules over the coinvariant algebra.

Let A € h*/P. We denote by Cp = A/(A- A:’LV") the coinvariant algebra of
(Wa, Sa) and pa : A — Ca the canonical surjection. Let A € AT. We denote by
tn : A — A the translation by A, given by f — (z — f(z + 1)) We have Soergel’s
Endomorphismensatz [Soel, Endomorphismensatz 7] :

THEOREM 10.1. The image of the composite morphism Z LAV o4y
A P2, Cp is CY* and the canonical morphism Z — End(P(wg- \)) factors through
this morphism Z — CY*. The induced morphism oy : C'* 5 End(P(wp - \)) is
an isomorphism.

Let us now recall Soergel’s Struktursatz [Soel, Struktursatz 9] :

THEOREM 10.2. The functor Hom(P(wg-A), —) : Ox-proj — C’XV*—mod is fully
faithful.

Let p € A be regular (i.e., with trivial stabilizer in Wy).
There is an isomorphism ¢ : T{' P(wo - ) = P(wo - #). Any such isomorphism
¢ induces a commutative diagram [Soel, Bemerkung p.431]

inclusion
o Ca

a)‘l lau
é. Ty

End(P(wo - \)) =25 End(P(wo - )

This gives us an isomorphism, via the adjunction (7%, Tlf‘) :

Resgih Hom(P(wy - ), ?) = Hom(T{ P(wo - A),?) = Hom(P(wq - A), T2 (7))
between functors O, — C’XV* -mod. So, we have a commutative diagram, with fully
faithful horizontal functors

. H P p),?
Ou-pI‘OJ om(P(wo-p),?) CA-mod

T;\ l lRes

Hom(P(wo-A),?
Ox-proj om(P o A0 C¥*-mod
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10.2.2. From the last commutative diagram, we deduce

ProrosiTION 10.3. There is o commutative diagram with fully faithful hori-

zontal arrows
Hom(P(wo),—)

K*%(Op-proj) K%(C-mod)

Fsl lps

H P(wg),—
K%(Oq-proj) om(P(wo). ) K*%(C-mod)

So, we deduce from Theorem 9.5 the following : given v € By and v =
t; -ty = uy -+ - U, two decompositions in elements of S US™!, there is an isomor-
phism Fy, --- F,,, = F,, --- F,, between functors on D%(Op) coming by restriction
from the isomorphism between functors on K®(A-modgr). These form a transitive
system of isomorphisms, i.e.

THEOREM 10.4. The functors F induce an action of By on D®(Oy).
More precisely,

THEOREM 10.5. There is a monoidal functor from By to the category of self-
equivalences of D®(0Qq) sending G, to Fy.

REMARK 10.6. One has a similar statement for the deformed category O.

Note that we deduce from §9.3.3 that there is also a right action of By on
D?(0Qy). We leave it to the reader to check that this corresponds to the actions using
Zuckerman functors [MazStr], or equivalently, Arkhipov functors [KhomMaz].

In the graded setting (mixed perverse sheaves for example), note that the left
and right actions of By, should be swapped by the self-Koszul duality equivalence,
cf [BerFreKhov| (and [BeiGi, Conjecture 5.18] for an analog in the equivariant
case).

Various constructions have been given of weak actions of braid groups on
D%(Oy), cf [AnStr, Ar, KhomMaz, MazStr, Str|.

11. Flag varieties

11.1. Classical results. Let G be a semi-simple complex algebraic group
with Weyl group W.

Let W = {w},ew. The braid group By of W is isomorphic to the group
with set of generators W and relations ww’ = w” when ww' = w” and l{w") =
H(w) + l{w').

Let B be the flag variety of G. We decompose

BxB= ] ow)
weW
into orbits for the diagonal G-action. Consider the first and second projections

O(w)
N
B B
Then, we have a functor

Fy = R(pw)!(qw)* : Db(B) - Db(B)
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where D®(B) is the derived category of bounded complexes of constructible sheaves
of C-vector spaces over B.
First and last projections induce an isomorphism

O(w) xg O(w') S O(ww') when l{(ww') = [(w) + [(w').
This induces an isomorphism (cf §12.2)
Yww : FwFar = Faw when [(ww') = [(w) + [(w').

For s € S, then F; is obtained as in §8.2.1 for the canonical morphism 7« : B —
P, where P, is the variety of parabolic subgroups of type s. So, Fs is invertible,
with inverse F,-1 = R(p,)«(gs)'. It follows that F, is invertible for w € W, with
inverse F,,—1 = R(pyw)+(qw)', hence we get a morphism from By to the group of
isomorphism classes of invertible functors on D®(B).

11.2. Genuine braid group action. We have a commutative diagram

F,F,F, =5 F, F,

Fx')’y,zl l'y:l:y,z

F,F,, —— F,
aliyz — Yz

for z,y,2 € W such that I(z) + I(y) + I(z) = l{zyz), by Theorem 12.2.

Let b€ By and b = ¢, -ty = uy---u, with u; € WU W~ Applying
braid relations and the corresponding isomorphisms 7, we get various isomorphisms
F, ---F,, = F,, ---F,,. By Deligne [De3], they are all equal. Let us denote by
Vt. . their common value.

We now define

F,= lim F,.---F
(tl,"
where (1, - - ,t,) runs over the set of sequences of elements of W UW ™! such that
b=t ---t, and where we are using the transitive system of isomorphisms ; 5 .
We have now the following result

n
itn

THEOREM 11.1. The assignment b — Fy, defines an action of By on D*(B).

REMARK 11.2. Deligne [De3] defines a variety O, with two morphisms py, g :
Oy — B for any b € By;. Then, the action of b on D°(B) is given by puq;.

11.3. Link with bimodules. The results in this section are based on [Soel,
BeiGiSoe].

11.3.1. Fix a Borel subgroup B of G. We consider the setting of §9 with k = C
and V* the complexified character group of B. In this section, we will consider the
algebra A with double grading, i.e., V* is in degree 2.

Let C 5 H*(B,C) be the Borel isomorphism (send a character of B to the
Chern class of the corresponding line bundle) and denote by 3 its inverse.

Let I be a subset of S, W; the subgroup of W generated by I, W' be the set
of minimal right coset representatives of W/W; and P; the parabolic subgroup of
G of type I containing B. Put P; = G/P;. Denote by 71 : B — P; the canonical
morphism. The map 77 : @, Hom(Cp,,Cp,[i]) —» @, Hom(Cpg, Cpli]) induces,
via 3, an isomorphism §; : @, Hom(Cp,, Cp,[i]) = CW".
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11.3.2. Consider the full subcategory D2(P;) of Db(P;) of complexes whose
cohomology sheaves are smooth along B-orbits. Given w € W/, let £, be the per-
verse sheaf corresponding to the intersection cohomology complex of BwP;/P;. Let
L1 =@, cwr Lw- Thedg-algebra REnd(L;) is formal and let R; = @, Hom(Ly, £;[i]).
We have an equivalence £;®7 from the category Rj-dgperf of perfect differential
graded R;-modules to D% (Py).

The functor @, Hom(Cp,,?[i]) : D%(P;) — C%i-modgr restricts to a fully
faithful functor on the full subcategory containing the £;[i]. So, we get a fully
faithful functor R;-dgperf — K (C%7-dgmod), hence a fully faithful functor Hj :
D%(P;) — K(CYi-dgmod), where we denote by K(C"/-dgmod) the homotopy
category of differential graded C"¥7-modules.

As in §10.2, we get a commutative diagram

DY (B) ——> K(C-dgmod)

Rﬂ'z.i lRes

D} (Pr) > K(CWi-dgmod)

and we deduce

PROPOSITION 11.3. Let s € §. There is a commutative diagram with fully
faithful horizontal arrows

Db (B) —2> K(C-dgmod)

| ips

D%(B) i K(C-dgmod)
In particular, we get a monoidal functor from By to the category of self-
equivalences of D (B).

REMARK 11.4. We believe the monoidal functor above is the restriction of a
functor with values in D%(B).

12. Appendix : associativity of kernel transforms

12.1. Classical isomorphisms.
12.1.1. We consider here

e schemes of finite type over a field of characteristic p > 0 and the derived
category of constructible sheaves of A-modules, where A is a torsion ring
with torsion prime to p or A is a Qy-algebra, for [ prime to p

or

e locally compact topological spaces of finite soft c-dimension and the de-

rived category of constructible sheaves of C-vector spaces.

We will quote results pertaining to either of the two settings above, depending
on the convenience of references. The maps involved will be concatenations of
canonical isomorphisms.

We denote a derived functor with the same notation as the original functor :
we write ® for @¥, fi for Rfy, etc...
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12.1.2. Let f:Y — X and g: Z — Y be two morphisms. There are canonical
isomorphisms [KaScha, 2.6.6 and 2.3.9]

(fgh = figr and (fg)* = g*f*.

These isomorphisms satisfy a cocycle property (cf [Del, Théoreme 5.1.8] for
the case (—)1) :

LEMMA 12.1. Consider X3 — X — X1 — Xg. Then, the following
diagrams are commutative

wrvru* —— w* (uv)* Wy — (uv)w
L L
(vw)*u" —— (uow)* w(vw) — (wvw);

We will take the liberty to identify the functors v*u* and (uv)* through the
canonical isomorphism.

There are canonical isomorphisms [KaScha, 2.6.18]
f(=18=2) S (f*~1)®(f*~2) and (-1® —2)® —3 > —1®(-2® —3)

We identify the bifunctors f*(—; ® —2) and (f*—1) ® (f*—2) through the
canonical isomorphism. Given A; € D¥(X), i € {1,2,3}, we identify (A; ® A2)® A3
with A; ® (A2 ® A3) and we denote this object by A; ® A2 ® As.

Let

xL>x

q

S’—g>S

be a cartesian square. Then, there is the canonical base change isomorphism
[KaScha, 2.6.20] :

g h=flg”
We have a canonical isomorphism [KaScha, 2.6.19)

-1 ® (fi—2) S A(f* =1 ®—2).

12.2. Kernel transforms.
12.2.1. Let us define a 2-category K.

e The O-arrows are the varieties.

e l-arrows : Hom(X,Y) is the family of (K,U) where U is a variety over
Y x X and K € D%(U).

e 2-arrows : Hom((K,U), (K’,U")) is the set of (¢, f) where f: U S U’ is
an isomorphism of (Y x X)-varieties and ¢ : K = f*K’'.



162 RAPHAEL ROUQUIER

We define the composition of 1-arrows. Consider the following diagram where
the square is cartesian

(2) VXyU

/ \
|4 U
N TN
A Y X
Let K € D*(U) and L € D?(V). We put LXK K = 3*L ® o* K. The composition
(L, V)(K,U) is defined to be (LR K,V xy U).

Let us consider now the diagram with all squares cartesian

w Xz 14 Xy U
/ \
WxyV Vxy U
W \% U
T A Y
and take M € D*(W). We have
(MRL)RK = b* (5" M@~* L)@(aa)* K = (5b) M@a* (3" Loa* K) = MR(LRK).

X

This provides the associativity isomorphisms for K. With our conventions, we will
write M X LI K for the objects in the isomorphism above. It is straightforward
to check that K is indeed a 2-category.

12.2.2. We put ®x = 5P = py (K @ p}—) : DY(X) — DO(Y).

Let cr x : 1.9 = @k be defined as the composition

Pay(L ® p3p2y(K @ pi—)) — pay(L ® Bia™ (K ® pi—))
— puBi(B"L ® o™ (K @ pI—))
= (PaBN((B"L ® 0" K) @ a"p] —)
— (paB((B°L ® 0" K) @ (pr)™ ).
Let (¢, f) € Homg((K,U), (K’,U’)). We have a commutative diagram
U
d

P2 UI n
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and we define ®(¢, f) as the composition
p2(K ® pi—) 5 py A(f*K' @ f*pi"=) 5 py(K' @ p;" ).
THEOREM 12.2. ® is a 2-functor from K to the 2-category of triangulated cat-
egories.
We have cpmr,k © (cm, 1 ®x) = epimi o (Parcr k), i.e., the following diagram
commutes :
PyPLPx — PumL Pk

l l

Oy Prorw — PumIxK

12.2.3. The next two Lemmas deal with composition of base change isomor-
phisms.
For the first Lemma, see [Del, Lemme 5.2.5] :

LEMMA 12.3. Let

X, x, Lo x

[

S2 g2 Sl 9

be a diagram with all squares cartesian. Then, the following diagram commutes

(g192)" hay(f1f2)*

| |

g 91h —— gsh1 ff —— ha 3 f1

The second Lemma is [Del, Lemme 5.2.4] :
LEMMa 12.4. Let

92
X, —=> X,

i s

x5 x,
£ l lfl
S —58

be a diagram with all squares cartesian. Let A € D%(S'). Then, the following
diagram commutes

A® g (fifah— —— AR (fifohgs— —— (FLf(f1f)"A® g5 )

| T

A® g fufa— il (5 1P A® g5—)

l |

A® figifa— —— fL(fI"A® gl fa—) — fL(f{"A® f3,95-)
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LEMMA 12.5. Let f: Y — X and A,B € D% X) and C € D*(Y). Then, the
following diagram commutes

A®B® fiC H(f*(A®B)®C)

| i

AR f(f*BRC) — fi(f*A® [*B®C)

ProOF. The corresponding statement for f; replaced by f. is easy, the key

point is that the composition f* EALR f.r L2AR f* is the identity of f*, where n
and ¢ are the unit and counit of the adjoint pair (f*, f.). The Lemma follows easily
from this (in the algebraic case, we have only to check in addition the trivial case
where f is an open immersion thanks to the transitivity of Lemma 12.4, whereas
in the topological case we use the embedding fiC C f.C for C injective). O

LEMMA 12.6. Let

X'L’)X

q )

S'—g>S

be a cartesian square. Let A € D*(S) and B € D%(X). Then, the following diagram
commutes

ARG IB—=g*A® fl¢"B—> f{(f"g*A®¢"B) — f/(¢" f*A® ¢"B)

| l

9" (A® fiB) 9" fi(f*A® B) — fig" (f*A® B)

PROOF. As in the previous Lemma, one reduces to proving the analog of the
Lemma with 7, replaced by 7.. This follows then from the easily checked commu-
tativity of the two diagrams

g fe—f"flg" gl* — g‘fl*f‘
g frfh—4g" fif g ——flgd*f*

where we have used the units and counits of the adjoint pairs (f*, f.) and (f'*, f1).
O
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PROOF OF THE THEOREM. We will show the commutativity of the following
diagram

P6,P5 P45 P1ox

Qp PrwKk
O ®, P ped,y 5B pra _ C8% M, LROK )
MPLPK Oy Prrxg ——— > PMRLIRK

P64,037 FP2:P1
Qs Pk’

where ( is the composition

pei(M @ p5(PaB)(B* L ® a*K @ (ma)* ) —
— pe1 (M ® p5pa Bi(f* L ® oK ® (p1r)” —))
- pe (M @0y B(B"L®a*K ® (pra)*—))
— P01 ("M @Y*B(BL®a*K ® (ma)'—))
— (PO ("M @Y BB L ®a*K @ (p10)*—))

and ¢ the composition

(p60)1(6* M ®Y*L ® (p3y)*p2i(K ® pi-)) —
— (psd)1 ("M ® v*L ® v*pip2i(K @ p1-))
— (ped): ("M @ v*(L ® p3p21(K ® p1-)))
— (ped)1 ("M ® v*(L ® Bia*(K ® p1—)))
— (ped)r ("M @ v*(L ® fi(a"K ® a”pI—)))
— (ped): (0" M @ v*(L ® Bi(a*K @ (prax)*~)))
— (Ped ) ("M @Y B(B*L®a*K ® (p1)*~))
Let u and v be the compositions
u: pey(M ® pspay—) — per(M @ 617" —) — pe1i(6* M ® 7" =) — (ped)i(6* M ® v*—)
and
v: L@ pipa(K ®@pi—) = L@ B (K @pi—) - KB Lo (K ®pi-)) —
= BB L®a*K ® (ma) ).
Then, one has trivially

C(@umer,r) = u(L ® p3p2(K ®@pi—)) o per(M ® psparv) = &(crmr, L Pk )-

The equality carrrx = cs+a1,1mK¢ follows from Lemma 12.4 applied to g = ps,
G="92=a, f1=ps, f2=0, fl=9, fy =band A =M and from Lemma 12.1
applied to u = pg, v =6 and w = b.

The equality cpmr ik = Cs5- M, LK follows from Lemma 12.3 applied to f; = a,
fa=a,91 =ps, g2 =7, h =p3, hy = 3 and hy = b, from Lemma 12.5 applied to



166

RAPHAEL ROUQUIER

f=bA=6M,B=~*Land C = (aa)*(K ®p}-) and from Lemma 12.6 applied

tof=0,g=7f =b¢ =a, A=L and B =a*(K ®p;—). O
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