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We describe some basic properties of the derived category of coherent sheaves

on a variety (bounded derived category or perfect complexes).

The first chapter considers the problem of extending vector bundles from an
open subset. Thomason and Trobaugh provided an answer to this problem by

351
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considering extensions for perfect complexes. This has applications to higher
K-theory.

In the second chapter, we explain how to characterize subcategories cor-
responding to objects supported by a given closed subvariety. This permits
a reconstruction of the variety (viewed as a ringed space) from a categori-
cal structure. In the case of derived categories, this requires also the tensor
structure.

We start with the classical case of the category of coherent sheaves (after
Gabriel). We present afterwards a similar approach in the triangulated case,
where serious difficulties arise.

Finally, we explain how to deduce that a smooth projective variety with
ample or anti-ample canonical bundle is determined by its derived category.

We haven’t included proofs of the results on general properties of abelian or
triangulated categories (cf [KaScha, Nee3] for proofs). The only difficult part
is Lemma 3.9 on compact objects.

This text is based on lectures at the conference Géométrie algébrique com-
plexe, CIRM, Luminy in December 2003. I thank Paul Balmer for useful
comments.

2. Notations

We fix a field k and we call variety a separated scheme of finite type over k.
Given a variety X, we denote by X-coh (resp. X-qcoh) the category of coherent
(resp. quasi-coherent) sheaves on X.

All functors between triangulated categories are assumed to be triangulated.

We denote by Z(C) the centre of a category C (=endomorphisms of the
identity functor).

Given a ring R, we denote by R-mod the category of finitely generated
R-modules.

3. Localisation

3.1. Abelian case

Let us recall some basic properties of categories of coherent sheaves.

Let X be a variety. Given Z closed in X, we denote by X-cohz the full
subcategory of X -coh of coherent sheaves with support contained in Z. This is
a Serre subcategory of X-coh.
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Let us recall that a full subcategory 7 of an abelian category A is a Serre
subcategory if it is stable under taking subobjects, quotients and extensions.
Given such a subcategory, there is a quotient abelian category .4/7 and a
functor A - A/7 with kernel . It is the solution of the universal problem of
taking quotients (for abelian categories). We say that there is an exact sequence
of abelian categories 0 > 7 - A — A/Z — 0.

Let j : U = X — Z — X be the open embedding.

Proposition 3.1. The functor j* : X-coh — U-coh induces an equivalence
X-coh /X-cohz — U-coh, i.e., there is an exact sequence of abelian categories

0 - X-cohz - X-coh —» U-coh — 0.

Proof. In the case of quasi-coherent sheaves, we have a functor j, right adjoint
to j*. The canonical map j* j, > 1y .qeoh is an isomorphism and the kernel of
J* is X-gcoh;. It follows from Lemma 3.2 below that there is an exact sequence

0 — X-qcoh; - X-qcoh — U-qcoh — 0.

Let us now deduce the proposition from the characterisation of coherent
sheaves as the finitely presented objects in the category of quasi-coherent
sheaves. Lemma 3.3 below shows that the canonical functor X -coh / X-cohz —
U-coh is fully faithful. We are left with proving that the functor j* : X-coh —
U-coh is essentially surjective. Let G be a coherent sheaf on U and let F =
J«G. We have j*F ~ G. The quasi-coherent sheaf F is an increasing union
(filtered colimit) of its coherent subsheaves, F = | g copeent ¢ 7 E- It follows
that j*F = (g j*E. Since j*F is coherent and it is an increasing union of a
family of subsheaves, one of the members of the family j*E is equal to j*F
(the filtered colimit stabilizes after finitely many terms). So, j*F = j*E ~ G
for a coherent subsheaf E of F. O

Lemma 3.2. Let F : A — B be an exact functor between abelian categories.
Assume F has a right adjoint G and G is fully faithful (i.e., FG S 1gisan
isomorphism).

Then ker F is a Serre subcategory of A and there is an exact sequence

0> kerF> A—-> B-0.

Lemma 3.3. Let A be an abelian category, A’ a full abelian subcategory of
A and T a Serre subcategory of A. Assume that for any M € A’ and for any
N € T a subobject or a quotient of M, then N € A'.

Then the canonical functor A' /(T N A") = A/T is fully faithful.
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3.2. Triangulated case

3.2.1. Derived functors
We start by recalling some properties of derived categories of sheaves and we
explain how to construct right derived functors.

Recall that the canonical functor D(X-coh) — D(X-qcoh) is fully faithful,
i.e., D(X-coh) is equivalent to the full subcategory of D(X-qcoh) of complexes
whose cohomology sheaves are coherent. We will identify those two categories.

Let X-inj be the category of quasi-coherent injective sheaves and Ho( X -inj)
the homotopy category of complexes of objects of X-inj. Consider the canonical
functor Ho(X -qcoh) — D(X-qcoh). It has a right adjoint p (“homotopically
injective resolution”). Let Ho(X-gcoh)* be its essential image (homotopically
injective complexes). The functor p is fully faithful, the canonical functor
Ho(X-qcoh)* S DX -qcoh) is an equivalence with inverse p. The intersec-
tion of Ho(X-qcoh)* with D*(X-qcoh) is Hot (X-inj), i.e., p restricts to an
equivalence D*(X-qcoh) — Ho*(X-inj) : we recover the classical injective
resolutions.

Let us now discuss the derivation of a left exact functor F : X-qcoh —
A, where A is an abelian category. We extend F to a functor Ho(F):
Ho(X-qcoh) — Ho(.A). We restrict this functor to Ho(X-qcoh)*. We obtain
the right derived functor

RF : D(X-geoh) 5 Ho(X-gcoh)* =253 Ho(A) <5 D(A).

The functor RF is triangulated. In particular, the image of a distinguished
triangle is a distinguished triangle, while F needs not send an exact sequence
to an exact sequence. The left exactness of F shows that HO(RF(M)) S F (M)
for M € X-qcoh.

3.2.2. Open subvarieties and quotients

The functor j, derives into a functor Rj, : D(U-qcoh) - D(X-qcoh). This is
right adjoint to the functor j* : D(X-qcoh) — D(U-qcoh). The kernel of the
functor j* is Dz(X-qcoh), the full subcategory of D(X-qcoh) of complexes
whose cohomology sheaves have their support contained in Z. This is a thick
subcategory.

Let us recall that a non-empty full subcategory 7 of a triangulated category
T is thick if the following two conditions hold

¢ Given F -> G — H ~- adistinguished triangle in 7, if two objects amongst
F, G and H are in Z, then the third one is in 7 as well.
e GivenF,GeT,f F®GeI,thenF, Gel.
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There is a quotient triangulated category 7 /Z and a functor 7 — 7 /Z with
kernel Z, solution of the universal quotient problem (amongst triangulated
categories). We say that there is an exact sequence of triangulated categories
0-IT->T->T/IT->0.

Lemma 3.4 gives an exact sequence of triangulated categories

0 - Dz(X-qcoh) - D(X-qcoh) - D(U-qcoh) — 0

Lemma 3.4. Let F : T — T’ be a functor between triangulated categories.
Assume F has a right adjoint G and G is fully faithful.
Then ker F is a thick subcategory of T and there is an exact sequence

0> kerF>T->T —>0.

3.2.3. Perfect complexes
We come now to the core of our study. We recall the notion of perfect objects
and their basic properties.

An object of D(X-qcoh) is perfect if it is locally (quasi)-isomorphic to a
bounded complex of free sheaves of finite rank. We denote by X-perf the full
subcagegory of D(X-qcoh) of perfect complexes. This is a thick subcategory
of D?(X-coh). If X is quasi-projective, then a complex is perfect if and only if
it is quasi-isomorphic to a bounded complex of vector bundles. The variety X
is regular if and only if D?(X-coh) = X -perf.

Let 7 be a triangulated category with infinite direct sums. An object
C € T is compact if given any family £ of objects of 7, the canonical map
@D Hom(C, E) > Hom(C, @, E) is an isomorphism. We denote by 7°
the full subcategory of 7 of compact objects. This is a thick subcategory.

A key idea in Thomason’s approach is the characterisation of perfect com-
plexes as the compact objects of D(X-qcoh) (cf [Rou2] for a study of compact-
ness as a local property for general triangulated categories).

Lemma 3.5. Let C € D(X-qcoh). Then C is perfect if and only if it is compact.

Proof. Let us assume first X is affine, X = Spec R. Since R is compact, we
deduce that every perfect object is compact. Let C be a complex of R-modules
and let i € Z such that H'C # 0. Then Hom(R, C[i]) # 0. It follows from
Lemma 3.9 that the perfect complexes are the same as the compact objects.
We consider now an arbitrary variety X. Let X = U; U U, with U; an
affine open subvariety and U, open. We assume that the minimal number of
open affine subvarieties in a covering of U, is strictly less that the number
for X. By induction, we can assume the lemma holds for U, and for U|; =
UyNU,. Let j, : U, — X and ji; : Ujp — X be the open immersions. Given
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D € D(X-qcoh), there is a Mayer-Vietoris distinguished triangle:
D — Rj1sji D ® Rj2jy D = Rjinjiy D ~

Let C € D(X-qcoh). The triangle above shows that C is compact if j'C, j;C
and j},C are compact. The converse is clear. On the other hand, C is perfect if
andonly if j}C, j; C and j},C are perfect. The lemma follows by induction. [J

An important aspect of the category X-perf is that it provides the “right”
K-theory groups, for a variety without enough ample vector bundles. We put
Ko(X) = Ko(X -perf).

Recall that given a triangulated category 7, we define Ko(7') as the quotient
of the free abelian group with basis the isomorphism classes of objects of 7
by the relation [M] = [L] + [N] whenever there is a distinguished triangle
L>M-—> N~

This definition of Ko(X) coincides with the classical one (Grothendieck
group of the exact category of vector bundles) when X has an ample family of
line bundles (this is the case for a quasi-projective variety).

3.2.4. Extensions of perfect complexes
We put X-perf, = X-perf NDz(X-qcoh).

Theorem 3.6 (Thomason-Trobaugh). The functor j* induces a fully faithful
Junctor

X-perf / X-perf;, — U-perf.

An object of U-perf is the restriction of an object of X-perf if and only if its
class in Ko(U) is the restriction of an element of Ko(X).

The occurrence of K in Theorem 3.6 comes from the following lemma of
Thomason [Th2, Theorem 2.1] (the proof is tricky).

Lemma 3.7. Let T be a triangulated category. There is a bijection from the set
of full triangulated subcategories T of T that generate T as a thick subcategory
to the set of subgroups of Ko(T) given by sending T to the image of Ko(I) in
Ko(T).

The calculus of fractions gives a simple criterion for fully faithfulness:

Lemma 3.8. Let T be a triangulated category, T a thick subcategory of T and
T’ a full triangulated subcategory of T.

Assume every morphism C — D with C € T' and D € T factors through
an object of T N'T'. Then the canonical functor T'[(ZNT"Y - T /T is fully
Saithful.
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Given T a full subcategory of a triangulated category 7, we denote by Z the
smallest thick subcategory of 7 closed under taking infinite direct sums and
containing 7.

Let 7 be a thick subcategory of a triangulated category 7 . The right orthogo-
nal 7+ to Z in 7 is the full subcategory of T of objects D with Hom(C, D) = 0
for all C € Z. This is a thick subcategory.

The following lemma is related to Brown-Neeman'’s representability Theo-
rem and its proof requires some work [Nee2].

Lemma 3.9. Let T be a triangulated category with arbitrary direct sums.
Let T be a thick subcategory of T¢. Then every map from an object of T¢
to an object of I factors through an object of I. In particular, we have
T*NnI=1.

We have I = T if and only if the right orthogonal I+ of T in T vanishes.

Lemma 3.10. Let Y be a closed subvariety of X. We have Dy(X-qcoh) =
X-perfy.

Given Z’ closed in X, we put Ko(X on Z') = Ko(X-perf;.). We will show
a version “with supports” of Theorem 3.6:

Theorem 3.11. Let Z' be a closed subvariety of X. The functor j* induces
a fully faithful functor X-perf, /X-perf,~, — U-perf,n,. An object of
U-perf ;. is the image of an object of X-perf, if and only if its class in
Ko(U on U N Z') is the image of an element of Ko(X on Z').

Proof of Theorem 3.11 and Lemma 3.10. Let us show first that the lemma for X
implies the theorem for X. The combination of Lemmas 3.8, 3.9 and 3.10 shows
that j* induces a fully faithful functor X-perf,, /X-perf,., — U-perfy 2.
Let T be the image of that functor: this is a full triangulated subcategory.
Since X-perf, = Dz(X-qcoh) (lemma 3.10), we have I = Dynz(U-qcoh).
It follows from Lemma 3.9 that U -perf ;.,, is the thick subcategory generated
by Z. The theorem follows now from Lemma 3.7.

Lemma 3.9 shows that Lemma 3.10 will follow from the fact that
(X-perf, )t = 0.

Let us assume first that X is affine. Let {yy, ..., y,} be a family of generators
of the defining ideal of Y and let

G, = @O0~ Ox > Ox = 0)

i=1
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be the associated Koszul complex (the non-zero terms are in degrees —r, . . ., 0).
We will show by induction on 7 that an object C € Dy(X-qcoh) vanishes if
G, ® C = 0. The lemma will follow, since Hom(GY, C[i]) ~ H(G, ® C),
where GY = RHom(G,, Oy) is the dual of G,. The case r = 0 is clear.

Considerr > 0 and C € Dy(X-qcoh) a non-zero object. By induction, there
exists i such that H(G,_; ® C) # 0. The distinguished triangle

G1®C5G1®C—> G, ®C ~

gives an exact sequence H'~1(G, ® C) > H'(G,_; ® C) 5> H!(G,_, ® C).
Since H'(G,-; ® C) is supported by the closed subvariety (y, = 0), we deduce
that multiplication by y, has a non-zero kernel, hence H~!(G, ® C) # 0. This
completes the proof of Lemma 3.10 in the affine case.

We will now prove the lemma by induction on the minimal number of open
affine subsets in a covering of X.

Let X = U; U U, with U, open affine and U, open for which the lemma
holds. We put Z; = X — U;. Let C € Dy(X-qcoh) with Hom(D, C) = 0 for
all D € X-perf,.

Let D € U-perfynz,. The functor Rji. : D(U1-qcoh) — D(X-gcoh)
restricts to  equivalences  Dyngz,(U;-qcoh) > Dynz,(X-qcoh)  and
Uy-perfynz, —> X-perfynz.. It follows that Hom(Rj1.D,C)=0. Let C’
be the cocone of the adjunction morphism C =R j2xj3 C. We have

Hom(Rj1.D, Rja. j; Cln]) = Hom(j; Rj1. D, j;Cln]) =0

for all n, hence Hom(Rj. D, C’) ~ Hom(R. D, C) = 0. Since C’ is supported
by Y N Z;, there exists C” € Dynz,(U;-qcoh) such that C' = Rj;,C”. We have
Hom(D, C”) ~ Hom(Rj, D, C’) = 0. The affine case of the lemma shows that
C" = 0, hence C =~ Rjy, j;C.

Let E' € Uy-perfy(y,, E = E'® E'[1] and G = E|y,ny,- The affine case
of the theorem shows that there exists F € U,-perf YOu, and an isomorphism
Fu,no, > G. Let now D be the cocone of the morphism sum of the adjunc-
tion morphisms Rj:.E @ Rji«F — Rji2.G. Then jifD >~ F and j;D ~ E,
hence D € X-perfy. We have Hom(E, j;C) ~ Hom(D, Rj,, j;C) = 0. By
induction, we deduce that j3C = 0, hence C = 0. This proves Lemma 3.10
for X. O

Exercice 3.1. Let C € X-qcoh such that for any set / of objects of X-qcoh, the
canonical map &,,.; Hom(C, D) — Hom(C, @, D) is an isomorphism.
Show that C is coherent.
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A striking special case of Theorem 3.6 is given by the following corollary.

Corollary 3.12. Let L be a vector bundle on U. Then there exists a perfect
complex on X whose restriction to U is quasi-isomorphic to £ & L[1].

Remark 3.13. Let us show, following Serre [Se, 5.a, p.371], that Theorem 3.6
doesn’t hold for vector bundles.

Let X = A’ and U = X — {0}. Let F be the vector bundle on U which is
the pullback of the tangent bundle on PZ. The restriction map Ko(X) - Ko(U)
is an isomorphism. Since F is not the direct sum of two line bundles, it is not
the restriction of a vector bundle on X.

Let G be a coherent sheaf on X extending F. The second syzygy QG of G
is locally free (hence free) and this provides a perfect complex extending JF :
there is a complex of free sheaves

006G >P 'S5 P 50
with homology concentrated in degree 0 and isomorphic to G.

Remark 3.14. A proof similar to that of Proposition 3.1 shows that there is
an exactsequence 0 — D%(X-coh) - D®(X-coh) — DP(U-coh) — 0. When
X is smooth, then X-perf = D?(X-coh), hence Theorem 3.6 is a consequence
of that exact sequence. In this case, the canonical map Ko(X) = Ko(U) is
surjective.

3.2.5. Applications to K-theory
From Theorem 3.6, Thomason deduces a long exact sequence for higher K-
theory, via Waldhausen’s theory [Th1]:

Theorem 3.15. There is a long exact sequence
e > Ki(X on Z) d K,(X) d K,(U) b K,'_l(X on Z) A
Thomason deduces also an excision result.

Theorem 3.16. If X = U UV with V open and Z C V, then there are iso-
morphisms K;(X on Z) > K;(V on Z).

Finally, he obtains a Mayer-Vietoris Theorem.

Theorem 3.17. Let U and V be open subsets of X. Then there is a long exact
sequence

> KiUUV) > K(U)SKi(V) > Ki(UNV) > K, ((UUV)— -+
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These sequences can be extended to negative i, via a version of Bass’
fundamental Theorem:

Theorem 3.18. There is an exact sequence
0 > Ki(X) > K{(X[T) & K(XIT™'D) - K«(XIT, T™') > Ki_y(X) > 0

Classical methods based on exact categories had led to similar results under
restrictive assumptions. Thomason obtains also a local-global principle for
K i ’s.

4. Reconstruction

4.1. Abelian case

We will start with the classical case of coherent sheaves, following Gabriel
[Ga].

4.1.1. Classification of Serre subcategories
We say that a Serre subcategory Z of an abelian category A is of finite type if it
is generated by an object (i.e., the smallest Serre subcategory of A containing
the object is 7). We say that a Serre subcategory 7 is irreducible if it is not
equal to 0 and if it is not generated by two proper Serre subcategories of 7.

Theorem 4.1 (Gabriel). The map Z — X-cohz from the set of closed subsets
of X to the set of Serre subcategories of finite type of X-coh is a bijection.

The closed irreducible subsets correspond to the irreducible Serre subcate-
gories.

This follows immediately from the next lemma:

Lemma 4.2. A coherent sheaf with support Z generates X-cohz as a Serre
subcategory.

Proof. Let F be a coherent sheaf with support Z and let 7 be the Serre subcat-
egory of X-coh generated by F.Leti : Y — X be the closed embedding of a
subvariety. Every coherent sheaf on X supported by Y is an extension of sheaves
of the form i,G. Let J be the Serre subcategory of Y-coh generated by i* F.
Since i, i*F € I, we have i,(J) C Z.If J = Y-cohynz, then X-cohynz C Z.
If in addition Z C Y, then Z = X-cohz.

It follows that it is enough to prove the lemma for X reduced and Z = X.
We proceed by induction on the dimension n of X, then on the number of
irreducible components of dimension n of X, then on the number of irreducible
components of dimension n — 1 of X, etc.
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Let Y be a proper closed subset of X. The discussion above shows that by
induction we can assume X-cohy C Z.

Let M be a coherent sheaf on X . Let U be an irreducible open affine subset of
X and j : U — X the open immersion. Shrinking U if necessary, the sheaves
J*M and j*F are free, of respective ranks r and s > 0. Let f : j*F”" S M
be an isomorphism. By Proposition 3.1, there is a coherent sheaf M’ on X, there
are ¢ : F" > M’ and ¢ : M* — M’ such that j*(¥) = j*(¢)f and j*(¢) is
an isomorphism. The kernels and cokernels of ¢ and ¥ have their supports
contained in X — U, hence they are in 7. It follows that M € T. O

4.1.2. Centres
Lemma 4.3. Let R be a ring. The canonical map Z(R) — Z(R-mod) is an
isomorphism.

Proof. Evaluation at R gives a left inverse. Let @ € Z(R-mod) with a(R) = 0.
Since any R-module is a quotient of a free R-module, it follows thate = 0. [

Corollary 4.4 (Gabriel). The abelian category X-coh determines the variety
X.

Proof. We define a ringed space £. Its points are the irreducible Serre sub-
categories of finite type of X-coh. The open subsets are the D(Z), defined
as the set of those subcategories J that are not contained in a given Serre
subcategory 7.

Theorem 4.1 shows that the map sending a point x € X to X-cohg;y defines
a homeomorphism X — £.

Consider the presheaf of rings on £ given by O (D(Z)) = Z(X-coh /T).
If D(T') ¢ D(Z), then the quotient functor X-coh /Z — X-coh /7’ induces a
map Z(X-coh /T) - Z(X-coh /I’). We denote by O; the associated sheaf.
The canonical map I'(U) — Z{(U-coh) induces a morphism of ringed spaces
X — &. To check that this is an isomorphism, it is enough to consider its
restriction to an open affine subset: Lemma 4.3 provides the conclusion in the
affine case. O

Remark 4.5. Actually, Lemma 4.3 holds for non-affine varieties: the canonical
map ['(Ox) — Z(X-coh) is an isomorphism of rings. That follows from the
construction of the category X-coh by gluing the abelian categories U;-coh
along the quotient categories (U; N U;)-coh, given a finite open covering of X
by open affine subsets U;.

As a consequence, the presheaf in the proof of Corollary 4.4 is a sheaf.
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4.2. Triangulated case

4.2.1. Classification of thick subcategories
Inspired by work on the stable homotopy category (description of the chromatic
tower), Hopkins and Neeman [Ho, Neel] have given a classification of thick
subcategories of the category of perfect complexes over an affine variety. This
result was generalised later by Thomason [Th2].

Let Z be a thick subcategory of X-perf. We say that 7 is of finite type if it
is generated by an object (i.e., if 7 is the smallest thick subcategory of X-perf
containing the object). We say that 7 is an ideal if it is thick and if given any
C € Tand D € X-perf then C @ D € T. We say that an ideal T is irreducible
if it is non-zero and it is not generated by two proper ideals.

Theorem 4.6 (Hopkins, Neeman, Thomason). The map Z — X-perf; from
the set of closed subsets of X to the set of ideals of finite type of X-petf is a
bijection.

Irreducible closed subsets correspond to irreducible subcategories.

The starting point is the following Lemma.

Lemma 4.7. Let Z be a closed subset of X. Then there exists a perfect complex
on X with support Z.

Proof. Assume first Z is irreducible and X = Spec R is affine. Consider equa-

tions f; =0,..., f, = 0 defining Z. The support of &),(0 - R I R—>0)
is Z: this solves the lemma in that case.

We assume now that Z is irreducible but X is not necessarily affine. Let U
be an open affine subset of X containing the generic point of Z. Then there
exists C € U-perf with support U N Z. The version “with supports” of the
localisation theorem (Theorem 3.11) shows that there exists D € X-perf ; such
that D\y >~ C & C[1]. We have Supp(D) U = Z N U, hence Supp(D) = Z.

We consider finally the general case. Let Z = Z; U - - - U Z, be the decom-
position in irreducible components and consider C; € X -perf with support Z;.
Then the support of P C; is Z. a

Theorem 4.6 follows now from the next lemma.

Lemma 4.8. A perfect complex on X with support Z generates X -perf ; as an
ideal.

Proof. Let C € X-perf with support Z and let Z be the ideal of X -perf generated
by C.Lemmas 3.9 and 3.10 show that Z = X-perf; if and only if D’}(X—coh) C
I :
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Given a closed immersion i : ¥ — X, we have i, Li*C ~C QV Oy €
T since Oy € D(X-qcoh) = X-perf (lemma 3.9). In addition, Li*C €
Y -perfy 7. Every object of DY, ,(X-coh) is a finite extension (=iterated cone)
of objects i,G with G € D% ,(Y-coh). Let J be the ideal of Y-perf,, gen-
erated by Li*C. Since i, (Li*C @ M) ~ C ®" i, M for all M € D(Y-qcoh),
we have i,(J) C I.If J = Dynz(Y-qcoh), then D%, (X-coh) C i,(J). If in
addition Z C Y, then T = X-perf .

It follows that it is enough to prove the lemma for X reduced and Z = X.
We proceed by induction on the dimension n of X, then on the number of
irreducible components of dimension n of X, then on the number of irreducible
components of dimensionn — 1 of X, etc.

Let Y be a proper closed subset of X. The discussion above shows that
X-perf, C T.

Let M € X-perf. There is a non-empty open affine subset j: U — X
such that j*M and j*C are finite sums of complexes Oy(r]. So, there are
finite-dimensional graded vector spaces (viewed as complexes with vanishing
differential) V # 0 and W and there is an isomorphism f : j*(C ®; W) —>
J*(M ®i V). Theorem 3.6 shows that there is an object M’ € X -perf, maps
Y:CR%W—> M and ¢ : M ®, V —» M’ such that j*(yv) = j*(¢)f and
J*(¢) is an isomorphism. The cones of ¢ and ¥ have a support contained in
the closed subset X — U of X, so they are in 7 by induction. It follows that
Mel O

Remark 4.9. The classical proof of Theorem 4.6 uses the following result
(“tensor nilpotence Theorem”).

Let C € X-perf, let D € D(X-qcoh) and let f : C — D. We assume that
for every point x of X, we have f ® k(x) = 0 in D(k(x)-Mod).

Then there is an integer n such that ®" f : ®"C — ®"D vanishes in
D(X-qcoh).

4.2.2. Centres
We proceed as in §4.1.2 to obtain a reconstruction Theorem [Bal, Roul].
Let X be a variety. We define Z(X-perf),; as the subring of Z(X-perf)
given by elements « such that a(C) is nilpotent for all C € X-perf. We put
Z(X-perflieq = Z(X-perf)/ Z(X-perDnir.

Lemma 4.10. The canonical morphism I'(Ox) — Z(X-perf) induces an iso-
morphism I'(Ox)eq = Z(X-perf)ipeq.

Proof. Evaluation at Ox gives a left inverse to the canonical map I'(Ox) —
Z(X -perf).
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Assume first X = Spec R is affine. Let @ € Z(R-perf) such that «(R) = 0.
A perfect complex is quasi-isomorphic to a bounded complex C of finitely
generated projective R-modules. Let n = max{i|C’ # 0} — min{i|C’ # 0}. By
induction on n, one sees that «(C)**! = 0 and the lemma follows in the affine
case.

Consider now an arbitrary variety X and @ € Z(X-perf) such that a(Ox) =
0. Let U be an open affine subset of X and let ey € Z(U -perf) be the element
induced by a. We have ay(Oyp) = 0, hence for any C € U -perf, the endomor-
phism ay (C) is nilpotent. Let X = U, U - - - U U, be a covering by open affine
subsetsand let V = U, U - - - U U,. We prove the lemma by induction on r. Let
C € X-perf and n > 0 such that ay,(C)y, )" = 0. Then a(C)" factors through
an object C’ € X-perf,, where Z = X — U, and a(C)“@*1" factors through
a(C")* foralld > 0.Since Z C V,therestriction functor X -perf; — V-perf,
is fully faithful. By induction, ay(C}y) is nilpotent, hence a(C’) is nilpotent
and a(C) is nilpotent as well. O

Theorem 4.11 (Balmer, R.). If X is a reduced variety, then the category X -perf,
viewed as a tensor triangulated category, determines X.

It would be more satisfactory not to use the tensor structure. Unfortunately,
there are too many thick subcategories in general. Balmer has developed a
general approach to the study of the geometry of tensor triangulated categories
[Ba2, BaFl].

Example 4.12. Let X = P'. Then the thick subcategory of X-perf generated
by O is equivalent to D?(k-mod). It is not of the form X-perf ;.

4.2.3. Remarks on centres
Let us discuss in more details centres of categories of perfect complexes. Note
that the difficulties are due to the weakness of the axioms of triangulated cat-
egories and can be solved using dg-categories [To]. The next two Propositions
show that the centre of the category of perfect complexes has no non-zero
nilpotent elements in some cases.

Proposition 4.13. Let R be a ring without zero divisors. Then the canonical
map Z(R) — Z(R-perf) is an isomorphism.

Proof. Evaluation at R defines amorphisma : Z(R-perf) - Z(R). The canon-
ical map Z(R) — Z(R-perf) is a right inverse. We will show that « is injective.

Let z € Z(R-perf) with z(R) = 0. Let C be a non-zero bounded complex of
finitely generated projective R-modules. Consider r minimal such that C" # 0
and s maximal such that C* # 0. We will show by induction on s — r that
z(C) = 0. This is clear when s = r. Assume s > r.
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Since C’ is a finitely generated projective module, there is a finitely gen-
erated projective module P such that C” @ P is a free module of finite rank.

Let D = C dO—> P —> P — 0), where the non-zero terms of the complex

0> PSS P>oarein degrees r and r 4+ 1. Then D" is free of finite rank
and C is homotopy equivalent to D. So, it is enough to prove that z(C) =
when C’ is free.

We proceed now by induction on the rank of C". LetC" =L, & --- @ L,
be a decomposition into free modules of rank 1. Consider an integer i with
1 <i<n.Let D bethe subcomplex of C given by D' = C' pour I # r and

D=L®- - ®L_1®L;y D 69 L,.Byinduction, we have z(D) = 0.1t

follows that the composition f : D5 cC “, C is homotopic to 0. Consider

{h': D' > C'-'}; with f =dch + hdp. The morphism h extends uniquely
into a graded endomorphism k of degree —1 of C that vanishes on L;. Let
¥ = z(C) — (dck + kdc), a map homotopic to z(C). The composition D =
C ¥ C vanishes, hence ' = 0for! # r and D" C ker ¥". Note thatimy" C
kerdg. If ¥" # O then kerd[ # 0. Since C"/D" = L; is free of rank 1 and
since C” is free, if Y is non-zero, then its restriction to L; is injective (recall
that R has no zero-divisor) and kery" = D’.

The composition C AA csS C’[—r] is homotopic to O since z(C"[—r]) =
0. So, there is g : C"*' — C” such that y" = gdZ., hence kerd}. C kery’.
Assume z(C) # 0. Then kerd{. CL1®---®Li-1 ® Liy1 ®--- @ L,. This
holds for all i, hence kerdg = 0. It follows that ¢" = 0, hence ¥ = 0 and
finally z(C) = 0. O

Proposition 4.14. Let X be an irreducible reduced quasi-projective variety.
Then, the canonical morphism I'(X, Ox) — Z(X-perf) is an isomorphism.

Proof. Every object of X-perf is isomorphic to a bounded complex C whose
terms are direct sums of line bundles. The proof is then the same as that of
Proposition 4.13 with free modules of rank 1 replaced by line bundles. |

Remark 4.15. Let k be a field and let C be a k-linear category with finite
dimensional Hom-spaces. Let P be an indecomposable object of C and let
¢ € Z(End(P)) with the following properties:

[ ¢2 =0
¢ given x € End(P) such that ¢x # 0 or x¢ # 0, then x is invertible.

Given @ an indecomposable object of C not isomorphic to P, then

Hom(P, Q)¢ Hom(Q, P) =
for f € Hom(P, @) non zero, then, ¢ € Hom(Q, P)f and for g €
Hom(Q, P) non zero, then, ¢ € g Hom(P, Q).
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LetC=0—~ P 4 P — 0), a complex with non-zero terms in degrees 0
and 1. Define an endomorphism ¢ of C as ¢ in degree 1 and 0 elsewhere.

Then, one shows there is a unique element of the centre of the homotopy
category 7 of complexes (all, bounded, bounded above or bounded below, . . . )
of objects of C with the following properties:

¢ itis 0 on indecomposable objects of T which are not isomorphic to C[i] for
some i.
® jtis ¢[i] on C[i].

This applies to C the category of finitely generated projective A-modules
when A = k[x]/(x?) (or A = Z/4Z by slightly modifying the setting above):-
the centre of A-perf is larger that A.

Remark 4.16. Proposition 4.14 does not extend to Hochschild cohomology
[Cal. Let X be an elliptic curve. Then, HH*(X) = Extixx((’)Ax, Oax) #
0. On the other hand, X-coh is a hereditary category. In particular,
Hom(Id, Id[2]) = 0, where Id is the identity functor of D?(X-coh).

4.2.4. Affine varieties
Let £ be an ample line bundle on X. Then X-perf is generated by the powers
£® 7 fori > 0, as a thick subcategory (cf Lemma 3.9). It follows that a thick
subcategory 7 is an ideal if forany C € Z, we have C® L~} € 7.
We deduce that if X is affine, then every thick subcategory of X-perf is an
ideal. We obtain a corollary to Theorem 4.11 (actually, Lemma 4.10 gives a
direct proof in that case).

Corollary 4.17. If X is affine and reduced, then the triangulated category
X-perf determines X.

4.2.5. (Anti-)ample canonical bundles
To study more interesting situations, let us introduce Serre functors, following
Bondal and Kapranov.
Let C be a k-linear category. A Serre functor for C is an equivalence of
categories S : C ey together with the data, for every X, ¥ € C, of bifunctorial
isomorphisms

Hom(X, Y)* > Hom(Y, S(X)).
A Serre functor is unique up to unique isomorphism, when it exists.

Lemma 4.18. Let X be a smooth projective variety of pure dimension n. Then
S = wx[n] ® — is a Serre functor for D?(X-coh).
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Proof. We can assume that X is irreducible. Given C € D?(X-coh), consider
the Hom-pairing Hom(O, C) x Hom(C, wx[n]) - H"(X, wx) ~ k. When the
homology sheaves of C are concentrated in one degree, Serre’s duality Theorem
shows that this pairing is perfect. Since the thick subcategory of C’s for which
the pairing is perfect is thick, we deduce that the pairing is perfect for all C.
Via the canonical isomorphisms Hom(C, D) 5 Hom(®, RHom(C, D))
and Hom(D, C @ wx[n]) S Hom(RHom(C, D), wy[n]), we obtain a perfect
pairing
Hom(C, D) x Hom(D, C ® wx[n]) — k.
O

Theorem 4.19 (Bondal-Orlov). Let X be a smooth projective variety such that

wyx or w}l is ample. Then the triangulated category D?(X-coh) determines X.
If Y is a smooth projective variety, then an equivalence of triangulated

categories D?(X-coh) S Db (Y -coh) gives rise to an isomorphism X 3.

Proof. The crucial point is the fact that the Serre functor is intrinsic to the
category D?(X-coh). Since the thick subcategories invariant by the Serre func-
tor and its inverse are ideals (cf §4.2.4 and Lemma 4.18), we recover X from
D?(X-coh).

Consider now F : D?(X-coh) S D?(Y -coh). Note that F commutes with
the Serre functors : FSy >~ Sy F.

Let Z be aclosed subset of Y. Since F "I(DQ(Y-coh)) is a thick subcategory
of Db(X -coh) stable under S for all i, it is of the form Df},( 2)(X-coh) and this
provides an injection ® from closed subsets of Y to closed subsets of X.

Assume Z is irreducible. Let V be an open affine subset of Y. Then
F~! induces an equivalence D?(V-coh) > D?((X — &(Y — V))-coh) that
restricts to an equivalence D’}(V-coh) 5 DZ,( 2)(X — @Y — V))-coh). Since
D‘Z’(V-coh) is an irreducible thick subcategory (§4.2.4 and Theorem 4.6), we
deduce that DZ,(Z)((X — ®(Y — V))-coh) is an irreducible thick subcategory
of DP((X — ®(Y — V))-coh), hence ®(Z)N (X — ®(Y — V) is irreducible.
If Y=V,U.--UYV, is a covering by open affine subsets, then the subsets
X — ®(Y — V;) give an open affine covering of X, and it follows that ®(Z) is
irreducible.

We define an injection ¢ : Y — X between points by ¢(y) = ®(¥). If y is
a closed point, then by Lemma 4.21 below the thick subcategory D[by](Y-coh)
of D’(Y-coh) is minimal as a non-zero thick subcategory. It follows that
F _I(Df’yl(Y-coh)) = DW(X -coh) is a minimal non-zero thick subcategory
of D?(X-coh) that is stable under § 5( for all i. We deduce that ¢(y) is a closed
point.
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Let x be a closed point of X that is not in the image of ¢. Then
Hom(Oy;), Cli])=0foralli € Zand all C € Dfd,(y))(X -coh). It follows that
Hom(F(Oyyy), Oyyli]) = 0forall closed points y of Y and alli € Z. We deduce
from Lemma 4.20 below that F(O|;)) = 0, a contradiction. So, ¢ is bijective.

Let Z be a closed subset of Y. A closed point y of Y is in Z if and only if
D, (Y-coh) C D%(Y-coh). We have x € ®(Z) if and only if D, (X-coh) C
DMZ)(X-coh), hence ¢(Z) = ®(Z) is closed in X. This shows that iy = ¢~! :
X — Y is continuous.

Let U =Y ~ Z. We have a sequence of canonical isomorphisms (cf
Lemma 4.10)

L) > Z(D*(U-co)ls —> Z(D*(@U)-coh)lea > LS.
This extends i : X — Y into an isomorphism of ringed spaces. O

Lemma 4.20, Let X be a variety and let C € D?(X-coh) such that
Hom(C, Oyy[i1) = O for all closed points x in X and for all i € Z. Then
C=0

Proof. Consider i maximal such that H'(C)# 0 and let x be a closed
point. The canonical map Hom(H'(C), Oyy)) & Hom(C, Oyy[—i]) is injec-
tive. Given x in the support of H'(C), we have Hom(H'(C), O\,;) # 0, hence
Hom(C, Ox[—i]) # 0. O

Lemma 4.21. Let X be an algebraic variety and let x be a closed point of X.
Then X-perf(,, is a minimal non-zero thick subcategory of X -perf.

Proof. Let U be an open affine subset of X containing x. The restriction
functor X-perf,, — U-perf,, is fully faithful. Theorem 4.6 and §4.2.4 show
that U-perf ,, is a minimal non-zero thick subcategory of U-perf. The lemma
follows. |

Remark 4.22, Bondal and Orlov [BoOr] show that the structure of graded
category of D?(X-coh) (we forget the distinguished triangles) is enough to
reconstruct X in Theorem 4.19.

Given o : X > Y an isomorphism of varieties, we have an equivalence
a, : D?(X-coh) > DP(Y-coh). Given £ a line bundle on X, we have a self-
equivalence £L®? : D?(X-coh) > D?(X-coh). Finally, given n € Z, we have
the self-equivalence [n].

This gives a injective morphism from Z x (Pic X % Aut(X)) to the group
Aut(D?(X-coh)) of isomorphism classes of self-equivalences of D®(X-coh).

We can now complete Theorem 4.19.
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Theorem 4.23 (Bondal-Orlov). Let X be a smooth connected projective variety
with wx or w;l ample. Then the canonical map Z x (Pic X x Aut(X)) S5
Aut(D?(X-coh)) is an isomorphism.

Proof. Let F be aself-equivalence of D?(X-coh). In the proof of Theorem 4.19,
we have constructed an automorphism v of X such that F(Dz(X-coh)) =
Dy zy(X-coh) for all closed subsets Z of X. Replacing F by Fy*, we can
assume that Dz(X-coh) is stable by F for all Z closed in X. Furthermore, F
restricts to a self-equivalence F; of D?(O,-mod) for all closed points x of X.

Let C = F(Oyx). Then Hom(C,, C,[i]) ~ Hom(O,, O,[i]) = 0 for i # 0.
Let D be a bounded complex of finitely generated projective O,-modules
that is quasi-isomorphic to C, and such that given i minimal (resp. maxi-
mal) with d, # 0, then di, is not a split injection (resp. a split surjection).
Let r and s be those minimal and maximal integers. The canonical map
Hom(D", D**') »> Hom(D, D[s — r]) is non-zero: this is impossible. It fol-
lows that H(C,) is concentrated in a single degree i = r, and H™=(C,) is free.
In addition, End(C,) ~ End(O,) = O, hence H™*(C,) is free of rank 1. The
set of closed points x with H(C,) # Oisclosedin X. Since X is connected, we
deduce that r, = r is constant. It follows that C >~ H"(C)[—r]and £ = H"(C)
is a line bundle on X. Replacing F by (L'[r] ® —) o F, we can assume that
F(Oyx) ~ Oy.

We want to prove now that F is isomorphic to the identity functor. By
Orlov’s representability Theorem [Or], there exists K € D?((X x X)-coh) such
that F >~ Rp,(K ®" g*(-)), where p, q are the first and second projections
X x X — X.Given x), x; closed points of X, we have Hom(K , Oy, x,n[i]) =
Hom(F (Ox,1), Oy li1) = 85, 1, 80,ik. It follows that K ~ i, M, where M is a
line bundle on X and i : X - X x X is the diagnal embedding. We deduce
that K ~i{,Ox and F >~ Id. O

Remark 4.24. A proof similar to the one of Theorem 4.23 shows that Pic(X) %
Aut(X) > Aut(X-coh) for any variety X.
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