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1. Introduction

This paper discusses derived equivalences, their construction and their use, for finite
dimensional algebras, with a special focus on finite group algebras.

In a first part, we discuss Broué’s abelian defect group conjecture and its ramifica-
tions. This is one of the deepest problem in the representation theory of finite groups.
It is part of local representation theory, which aims to relate characteristic p repre-
sentations of a finite group with representations of local subgroups (normalizers of
non-trivial p-subgroups). We have taken a more functorial viewpoint in the definition
of classical concepts (defect groups, subpairs,...).

In § 2.1.4, we presentAlperin’s conjecture, which gives a prediction for the number
of simple representations, and Broué’s conjecture, which is a much more precise
prediction for the derived category, but does apply only to certain blocks (those with
abelian defect groups).

We discuss in § 2.2 various types of equivalences that arise and present the crucial
problem of lifting stable equivalences to derived equivalences.

In § 2.3, we present some local methods. We give a stronger version of the abelian
defect group conjecture that can be approached inductively and reduced to the prob-
lem explained above of lifting stable equivalences to derived equivalences. Roughly
speaking, in a minimal counterexample to that refinement of the abelian defect con-
jecture, there is a stable equivalence. Work of Rickard suggested to impose conditions
on the terms of the complexes: they should be direct summands of permutation mod-
ules. We explain that one needs also to put conditions on the maps, that make the
complexes look like complexes of chains of simplicial complexes.

There is no understanding on how to construct candidates complexes who would
provide the derived equivalences expected by the abelian defect group conjecture in
general. For finite groups of Lie type (in non-describing characteristic), we explain
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(§ 2.4) Broué’s idea that such complexes should arise as complexes of cohomology of
Deligne–Lusztig varieties. We describe (§ 2.4.2) the Jordan decomposition of blocks
(joint work with Bonnafé), as conjectured by Broué: Morita equivalences between
blocks are constructed from the cohomology of Deligne–Lusztig varieties. For GLn,
every block is shown to be Morita equivalent to a unipotent block. This provides some
counterpart to the Jordan decomposition of characters (Lusztig). In § 2.4.3 and 2.4.4,
we explain the construction of complexes in the setting of the abelian defect conjecture.
There are some delicate issues related to the choice of the Deligne–Lusztig variety and
the extension of the action of the centralizer of a defect group to that of the normalizer.
This brings braid groups and Hecke algebras of complex reflection groups.

In § 2.5, we explain how to view the problem of lifting stable equivalences to
derived equivalences as a non-commutative version of the birational invariance of
derived categories of Calabi–Yau varieties.

In § 2.6, we describe a class of derived equivalences which are filtered shifted
Morita equivalences (joint work with Chuang). We believe these are the building
bricks for most equivalences and the associated combinatorics should be interesting.

Part § 3 is devoted to some invariants of derived equivalences. In § 3.1, we explain
a functorial approach to outer automorphism groups of finite dimensional algebras
and deduce that their identity component is preserved under various equivalences.
This functorial approach is similar to that of the Picard group of smooth projective
schemes and we obtain also an invariance of the identity component of the product of
the Picard group by the automorphism group, under derived equivalence.

In § 3.2, we explain how to transfer gradings through derived or stable equiva-
lences. As a consequence, there should be very interesting gradings on blocks with
abelian defect. This applies as well to Hecke algebras of type A in characteristic 0,
where we obtain gradings which should be related to geometrical gradings.

Finally, in § 3.3, we explain the notion of dimension for triangulated categories,
in particular for derived categories of algebras and schemes. This applies to answer a
question of Auslander on the representation dimension and a question of Benson on
Loewy length of group algebras.

Part § 4 is devoted to “categorifications”. Such ideas have been advocated by
I. Frenkel and have already shown their relevance in the work of Khovanov [57] on
knot invariants. Our idea is that “classical” structures have natural higher counterparts.
These act as symmetries of categories of representations or of sheaves.

In § 4.1, we explain the construction with Chuang of a categorification of sl2 and
we develop the associated “2-representation theory”. There is an action on the sum
of module categories of symmetric groups, and we deduce the existence of derived
equivalences between blocks with isomorphic defect groups, using the general theory
that provides a categorification of the adjoint action of the Weyl group. This applies
as well to general linear groups, and gives a solution to the abelian defect group
conjecture for symmetric and general linear groups.

In § 4.2, we define categorifications of braid groups. This is based on Soergel’s
bimodules.
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I thank Cédric Bonnafé, Joe Chuang and Hyohe Miyachi for useful comments on
a preliminary version of this paper.

2. Broué’s abelian defect group conjecture

2.1. Introduction

2.1.1. Blocks. Let � be a prime number. Let O be the ring of integers of a finite
extension K of the field Q� of �-adic numbers and k its residue field.

Let G be a finite group. Modular representation theory is the study of the
categories OG-mod and kG-mod (finitely generated modules). The decomposi-
tion of Spec Z(OG) into connected components corresponds to the decomposition
Z(OG) = ∏

b Z(OG)b, where b runs over the set of primitive idempotents of
Z(OG) (the block idempotents). We have corresponding decompositions in blocks
OG = ∏

b OGb and OG-mod = ⊕
b OGb-mod.

Remark 2.1. One assumes usually that K is big enough so that KG is a product of
matrix algebras over K (this will be the case if K contains the e-th roots of unity,
where e is the exponent of G). Descent methods often allow a reduction to that case.

2.1.2. Defect groups. A defect group of a block OGb is a minimal subgroup D of
G such that ResG

D = OGb⊗OGb −: Db(OGb) → Db(OD) is faithful (i.e., injective
on Hom’s). Such a subgroup is an �-subgroup and it is unique up to G-conjugacy.

The principal block OGb0 is the one through which the trivial representation
factors. Its defect groups are the Sylow �-subgroups of G.

Defect groups measure the representation type of the block:

• kGb is simple if and only if D = 1.

• kGb-mod has finitely many indecomposable objects (up to isomorphism) if
and only if the defect groups are cyclic.

• kGb is tame (i.e., indecomposable modules are classifiable in a reasonable
sense) if and only if the defect groups are cyclic or � = 2 and defect groups
are dihedral, semi-dihedral or generalized quaternion groups.

2.1.3. Brauer correspondence. Let OGb be a block and D a defect group. There
is a unique block idempotent c of ONG(D) such that the restriction functor ResG

D =
cOGb ⊗OGb −: Db(OGb) → Db(ONG(D)c) is faithful.

This correspondence provides a bijection between blocks of OG with defect
group D and blocks of ONG(D) with defect group D.



194 Raphaël Rouquier

2.1.4. Conjectures. We have seen in § 2.1.3 thatDb(OG) embeds inDb(ONG(D)c).
The abelian defect conjecture asserts that, when D is abelian, the categories are ac-
tually equivalent (via a different functor):

Conjecture 2.2 (Broué). If D is abelian, there is an equivalence Db(OGb)
∼−−→

Db(ONG(D)c).

A consequence of the conjecture is an isometry K0(KGb)
∼−−→ K0(KNG(D)c)

with good arithmetical properties (a perfect isometry). Note that the conjecture also
carries homological information: if OGb is the principal block and the equivalence
sends the trivial module to the trivial module, we deduce that the cohomology rings
of G and NG(D) are isomorphic, a classical and easy fact. It is unclear whether there
should be some canonical equivalence in Conjecture 2.2.

Local representation theory is the study of the relation between modular repre-
sentations and local structure of G. Alperin’s conjecture asserts that the number of
simple modules in a block can be computed in terms of local structure.

Conjecture 2.3 (Alperin). Assume D �= 1. Then,

rank K0(kGb) =
∑
S

(−1)l(S)+1 rank K0(kNG(S)cS)

where S runs over the conjugacy classes of chains of subgroups 1 < Q1 < Q2 <

· · · < Qn ≤G D, l(S) = n ≥ 1 and cS is the sum of the block idempotents of NG(S)

corresponding to b.

Remark 2.4. We have stated here Knörr–Robinson’s reformulation of the conjecture
[58]. Note that the conjecture is expected to be compatible with �-local properties
of character degrees, equivariance, rationality (Dade, Robinson, Isaacs, Navarro).
When D is abelian, Alperin’s conjecture (and its refinements) follows immediately
from Broué’s conjecture. It would be extremely interesting to find a common refine-
ment of Alperin and Broué’s conjectures. For principal blocks, it should contain the
description of the cohomology ring as stable elements in the cohomology ring of a
Sylow subgroup.

2.2. Various equivalences. Let A and B be two symmetric algebras over a noethe-
rian commutative ring O.

2.2.1. Definitions. Let M be a bounded complex of finitely generated (A, B)-
bimodules which are projective as A-modules and as right B-modules. Assume there
is an (A, A)-bimodule R and a (B, B)-bimodule S with

M ⊗B M∗ 	 A ⊕ R as complexes of (A, A)-bimodules,

M∗ ⊗A M 	 B ⊕ S as complexes of (B, B)-bimodules.

We say that M induces a
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• Morita equivalence if M is concentrated in degree 0 and R = S = 0;

• Rickard equivalence if R and S are homotopy equivalent to 0 as complexes of
bimodules;

• derived equivalence if R and S are acyclic;

• stable equivalence (of Morita type) if R and S are homotopy equivalent to
bounded complexes of projective bimodules.

Note that Morita ⇒ Rickard ⇒ stable and Rickard ⇒ derived. Note also that if
there is a complex inducing a stable equivalence, then there is a bimodule inducing a
stable equivalence. Finally, Rickard’s theory says that if there is a complex inducing
a derived equivalence, then there is a complex inducing a Rickard equivalence.

The definitions amount to requiring that M ⊗B − induces an equivalence

• (Morita) B-mod
∼−−→ A-mod,

• (Rickard) Kb(B-mod)
∼−−→ Kb(A-mod),

• (derived) Db(B)
∼−−→ Db(A),

• (stable) B-mod
∼−−→ A-mod (assuming O regular)

where Kb(A-mod) is the homotopy category of bounded complexes of objects of
A-mod and A-mod is the stable category, additive quotient of A-mod by modules of
the form A ⊗O V with V ∈ O-mod (it is equivalent to Db(A)/A-perf when O is
regular).

2.2.2. Stable equivalences. Stable equivalences arise fairly often in modular rep-
resentation theory. For example, assume the Sylow �-subgroups of G are TI, i.e.,
given P a Sylow �-subgroup, then P ∩ gPg−1 = 1 for all g ∈ G − NG(P ). Then,
M = OG induces a stable equivalence between OG and ONG(P ), the corresponding
functor is restriction (this is an immediate application of Mackey’s formula). This
restricts to a stable equivalence between principal blocks. Unfortunately, we do not
know how to derive much numerical information from a stable equivalence.

A classical outstanding conjecture in representation theory of finite dimensional
algebras is

Conjecture 2.5 (Alperin–Auslander). Assume O is an algebraically closed field. If A

and B are stably equivalent, then they have the same number of isomorphism classes
of simple non-projective modules.

A very strong generalization of Conjecture 2.5 is

Question 2.6. Let A and B be blocks with abelian defect groups and M a complex
of (A, B)-bimodules inducing a stable equivalence. Assume K is big enough. Does
there exist M̃ a complex of (A, B)-bimodules inducing a Rickard equivalence and
such that M and M̃ are isomorphic in (A ⊗ Bopp)-mod?
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As will be explained in § 2.3.3, this is the key step for an inductive approach to
Broué’s conjecture.

Remark 2.7. There are examples of blocks with non abelian defect for which Ques-
tion 2.6 has a negative answer, for example A the principal block of Suz(8), � = 2,
and B the principal block of the normalizer of a Sylow 2-subgroup (TI case), cf. [17,
§6]. A major problem with Question 2.6 and with Conjecture 2.2 is to understand
the relevance of the assumption that the defect groups are abelian. Cf. § 3.2.2 for a
possible idea.

2.3. Local theory. In an ideal situation, equivalences would arise from permutation
modules or more generally, from chain complexes of simplicial complexes X acted on
by the groups under consideration. Then, taking fixed points on X by an �-subgroup Q

would give rise to equivalences between blocks of the centralizers of Q. We would
then have a compatible system of equivalences, corresponding to subgroups of the
defect group. At the level of characters, Broué defined a corresponding notion of
“isotypie” [17]: values of characters at �-singular elements are related.

2.3.1. Subpairs. We explain here some classical facts.
A kG-module of the form k� where � is a G-set is a permutation module. An

�-permutation module is a direct summand of a permutation module and we denote
by kG-lperm the corresponding full subcategory of kG-mod.

Suppose that Q is an �-subgroup of G. We define the functor BrQ : kG-lperm →
k(NG(Q)/Q)-lperm: BrQ(M) is the image of MQ in MQ = M/

∑
x∈Q(x −1)M . If

M = k�, then k(�Q)
∼−−→ BrQ(M): the Brauer construction extends the fixed point

construction on sets to �-permutation modules. Note that this works only because Q

is an �-group and k has characteristic �.
To deal with non principal blocks, we need to use Alperin–Broué’s subpairs. A

subpair of G is a pair (Q, e), where Q is an �-subgroup of G and e a block idempotent
of kCG(Q). If we restrict to the case where e is a principal block, we recover theory
of �-subgroups of G.

A maximal subpair is of the form (D, bD), whereD is a defect group of a block kGb

and bD is a block idempotent of kCG(D) such that bDc �= 0 (we say that (D, bD) is a b-
subpair). Fix such a maximal subpair. The (kG, kNG(D, bD))-bimodule bkGbD has,
up to isomorphism, a unique indecomposable direct summand X with Br�D(X) �= 0.
Here, we put �D = {(x, x−1)}x∈D ≤ D × Dopp. More generally, given φ : Q → R,
we put �φ(Q) = {(x, φ(x)−1)}x∈Q ≤ Q × Ropp.

We define the Brauer category Br(D, bD): its objects are subpairs (Q, bQ)

with Q ≤ D and bQ Br�Q(X) �= 0, and Hom((Q, bQ), (R, bR)) is the set of
f ∈ Hom(Q, R) such that there is g ∈ G with (Qg, b

g
Q) ∈ Br(D, bD) and

f (x) = g−1xg for all x ∈ Q.
Let M ∈ kG-lperm indecomposable. A vertex-subpair of M is a subpair (Q, bQ)

maximal such that bQ BrQ(M) �= 0 (such a subpair is unique up to conjugacy).
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2.3.2. Splendid equivalences. Let G and H be two finite groups and b and b′ two
block idempotents of kG and kH .

The following Theorem [86], [92] shows that a stable equivalence corresponds to
“local” Rickard equivalences, for complexes of �-permutation modules.

Theorem 2.8. Let M be an indecomposable complex of �-permutation (kGb, kHb′)-
bimodules. Then M induces a stable equivalence between kGb and kHb′ if and only
if given (D, bD) a maximal b-subpair, there is a maximal b′-subpair (D′, b′

D′), an

isomorphism φ : D
∼−−→ D′ inducing an isomorphism Br(D, bD)

∼−−→ Br(D′, b′
D′)

such that

• The indecomposable modules occurring in M have vertex-subpairs of the form
(�φ(Q), bQ ⊗ b′

φ(Q)) for some (Q, bQ) ∈ Br(D, bD), with (φ(Q), b′
φ(Q)) =

φ(Q, bQ).

• For 1 �= Q ≤ D, then bQ · Br�φQ M · b′
φ(Q) induces a Rickard equivalence

between kCG(Q)bQ and kCH (Q)b′
φ(Q), where (Q, bQ) ∈ Br(D, bD) and

(φ(Q), b′
φ(Q)) = φ(Q, bQ).

Remark 2.9. In [83], Rickard introduced a notion of splendid equivalences for princi-
pal blocks (complexes of �-permutation modules with diagonal vertices), later gener-
alized by Harris [46] and Linckelmann [65]. Such equivalences were shown to induce
equivalences for blocks of centralizers. In these approaches, an isomorphism between
the defect groups of the two blocks involved was fixed a priori and vertex-subpairs
were assumed to be “diagonal” with respect to the isomorphism. Theorem 2.8 shows
it is actually easier and more natural to work with no a priori identification, and the
property on vertex-subpairs is actually automatically satisfied.

The second part of the theorem (local Rickard equivalences ⇒ stable equiva-
lence) generalizes results of Alperin and Broué and is related to work of Bouc and
Linckelmann.

Finally, a more general theory (terms need not be �-permutation modules) has
been constructed by Puig (“basic equivalences”) [78].

Rickard proposed the following strengthening of Conjecture 2.2:

Conjecture 2.10. If D is abelian, there is a complex of �-permutation modules in-
ducing a Rickard equivalence between OGb and ONG(D)c.

To the best of my knowledge, in all cases where Conjecture 2.2 is known to hold,
then, Conjecture 2.10 is also known to hold.

Conjecture 2.10 is known to hold when D is cyclic [79], [62], [85]. In that case, one
can construct a complex with length 2, but the longer complex originally constructed
by Rickard might be more natural. The conjecture holds also when D 	 (Z/2)2 [82],
[63], [85]. In both cases, the representation type is tame. Note that there is no other
�-group P for which Conjecture 2.10 is known to hold for all D 	 P .
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Conjecture 2.10 holds when G is �-solvable [35], [75], [47], when G is a symmetric
group or a general linear group (cf. § 4.1; the describing characteristic case G =
SL2(�

n) is solved in [70]) and when G is a finite group of Lie type and � || (q − 1)

(cf. § 2.4.3). There are many additional special groups for which the conjecture is
known to hold (work of Gollan, Hida, Holloway, Koshitani, Kunugi, Linckelmann,
Marcus, Miyachi, Okuyama, Rickard, Turner, Waki), cf. http://www.maths.bris.ac.uk/
~majcr/adgc/adgc.html.

2.3.3. Gluing. Theorem 2.8 suggests an inductive approach to Conjecture 2.10: one
should solve the conjecture for local subgroups (say, CG(Q), 1 �= Q ≤ D) and glue
the corresponding Rickard complexes. This would give rise to a complex inducing a
stable equivalence, leaving us with the core problem of lifting a stable equivalence to a
Rickard equivalence. Unfortunately, complexes are not rigid enough to allow gluing.
This problem can be solved by using complexes endowed with some extra structure
[86], [92]. The idea is to use complexes that have the properties of chain complexes
of simplicial complexes: the key point is the existence of compatible splittings of
the Brauer maps MQ → M(Q). One can build an exact category of �-permutation
modules with compatible splittings of the Brauer maps. The subcategory of projective
objects turns out to have a very simple description in terms of sets, and we use only
this category. For simplicity, we restrict here to the case of principal blocks.

Let G be a finite group, � a prime number, k an algebraically closed field of
characteristic �, b the principal block idempotent of kG, D a Sylow �-subgroup of G

and c the principal block idempotent of H = NG(D). We assume D is abelian. We
denote by Z�(G) the Sylow �-subgroup of Z(G) and put Z = �Z�(G).

Let G′ be a finite group containing G as a normal subgroup, let H ′ = NG′(D)

and F = G′/G
∼−−→ H ′/H . We assume F is an �′-group, we put N = {(g, h) ∈

G′ × H ′opp | (gG, hH opp) ∈ �F } and N = N/Z.
Let E be the category of N-sets whose point stabilizers are contained in �D/Z.

Let Ẽ be the Karoubian envelop of the linearization of E (objects are pairs (�, e)

where � is a N-set and e an idempotent of the monoid algebra of End
N

(�)). We

have a faithful functor Ẽ → kN-lperm, (�, e) �→ k(�, e) := k�e.
We are now ready to state a further strengthening of Conjecture 2.2. For the

inductive approach, it is important to take into account central �-subgroups and �′-
automorphism groups.

Conjecture 2.11. There is a complex C of objects of Ẽ such that ResN
G×H opp k(C)

induces a Rickard equivalence between kGb and kHc.

We can also state a version of Question 2.6, for the pair (G′, G):

Question 2.12. Let C be a complex of objects of Ẽ such that ResN
G×H opp k(C)

induces a stable equivalence between kGb and kHc. Is there a bounded complex
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R of finitely generated projective N-modules and a morphism f : R → k(C) such

that ResN
G×H opp cone(f ) induces a Rickard equivalence between kGb and kHc?

The following theorem reduces (a suitable version of) the abelian defect conjec-
ture to (a suitable version of) the problem of lifting stable equivalences to Rickard
equivalences.

Theorem 2.13. Assume Question 2.12 has a positive answer for (NG′(Q), CG(Q))

for all non trivial subgroups Q of D. Then Conjecture 2.11 holds.

The proof goes by building inductively (on the index of Q in D) a system of
complexes for NG′(Q) and gluing them together. The key point is that, given a finite
group �, the category of �-sets whose point stabilizers are non-trivial p-subgroups
is locally determined. This allows us to manipulate objects of Ẽ as “sheaves”.

2.4. Chevalley groups. We explain Broué’s idea that complexes of cohomology of
certain varieties should give rise to derived equivalences, for finite groups of Lie type.

2.4.1. Deligne–Lusztig varieties. Let G be a connected reductive algebraic group
defined over a finite field and let F be an endomorphism of G, a power Fd of which
is a Frobenius endomorphism defining a structure over a finite field Fqd for some

q ∈ R>0. Let G = GF be the associated finite group.
Let � be a prime number with � � q, K a finite extension of Ql , and O its ring of

integers. We assume K is big enough.
Let L be an F -stable Levi subgroup of G, P be a parabolic subgroup with Levi

complement L, and let U be the unipotent radical of P . We define the Deligne–Lusztig
variety

YU = {gU ∈ G/U | g−1F(g) ∈ U · F(U)},
a smooth affine variety with a left action of GF and a right action of LF by mul-
tiplication. The corresponding complex of cohomology R�c(YU , O) induces the
Deligne–Lusztig induction functor RG

L⊂P : Db(OLF ) → Db(OGF ).
The effect of these functors on characters (i.e., K0’s after extension to K) is a

central tool for Deligne–Lusztig and Lusztig’s construction of irreducible characters
of G. It is important to also consider the finer invariant R̃�c(YU , O), an object of
Kb(O(GF × (LF )opp)-lperm) which is quasi-isomorphic to R�c(YU , O) [81], [87].

We put XU = YU/LF and denote by π : YU → XU the quotient map.

Remark 2.14. One could use ordinary cohomology instead of the compact support
version. One can conjecture that the two versions are interchanged by Alvis–Curtis
duality: (R�c(YU , O)⊗L

OLF −) �DL and DG � (R�(YU , O))⊗L
OLF −) should differ

by a shift. This is known in the Harish-Chandra case, i.e., when P is F -stable [24].

Let T 0 ⊂ B0 be a pair consisting of an F -stable maximal torus and an F -stable
Borel subgroup of G. Let U0 be the unipotent radical of B0 and let W = NG(T 0)/T 0.
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Let B+ (resp. B) be the braid monoid (resp. group) of W . The canonical map
B+ → W has a unique section w �→ w that preserves lengths (it is not a group
morphism!). We fix an F -equivariant morphism τ : B → NG(T 0) that lifts the
canonical map NG(T 0) → W [99]. Given w ∈ W , we put ẇ = τ(w). Let w0 be the
longest element of W and let π = w2

0, a central element of B.
Assume L above is a torus. We give a different model for YU . Let w ∈ W and

h ∈ G such that h−1F(h) = ẇ and U = hU0h
−1. Let

Y (w) = {gU0 ∈ G/U0 | g−1F(g) ∈ U0ẇU0},
a variety with a left action of G and a right action of T wF

0 by multiplication. We

have L = hT 0h
−1 and conjugation by h induces an isomorphism LF ∼−−→ T wF

0 .

Right multiplication by h induces an isomorphism YU
∼−−→ Y (w) compatible with

the actions of G and LF . We have dim Y (w) = l(w). We write YF (w) when the
choice of F is important.

Given w1, . . . , wr ∈ W , we put

Y (w1, . . . , wr) = {(g1U0, . . . , grU0) ∈ (G/U0)
r |

g−1
1 g2 ∈ U0ẇ1U0, . . . , g

−1
r−1gr ∈ U0ẇr−1U0 and g−1

r F (g1) ∈ U0ẇrU0}.
Up to a transitive system of canonical isomorphisms, Y (w1, . . . , wr) depends only

on the product b = w1 · · · wr ∈ B+ and we denote that variety by Y (b) [36], [22].

2.4.2. Jordan decomposition. As a first step in his classification of (complex) irre-
ducible characters of finite groups of Lie type, Lusztig established a Jordan decom-
position of characters.

Let (G∗, F ∗) be Langlands dual to (G, F ). Then Lusztig defined a partition of
the set Irr(G) of irreducible characters of G:

Irr(G) =
∐
(s)

Irr(G, (s))

where (s) runs over conjugacy classes of semi-simple elements of (G∗)F ∗
. The

elements in Irr(G, 1) are the unipotent characters.
Furthermore, Lusztig constructed a bijection

Irr(G, (s))
∼−−→ Irr((CG∗(s)∗)F , 1) (1)

(assuming CG∗(s) is connected). So, an irreducible character corresponds to a pair
consisting of a semi-simple element in the dual and a unipotent character of the dual
of the centralizer of that semi-simple element.

Broué and Michel [21] showed that the union of series corresponding to classes
with a fixed �′-part is a union of blocks: let t be a �′-element of (G∗)F ∗

and let

Irr(G, (t))� =
∐
(s)

Irr(G, (s))
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where (s) runs over conjugacy classes of semi-simple elements of (G∗)F ∗
whose

�′-part is conjugate to t . Then Irr(G, (t))� is a union of �-blocks, and we denote by
B(GF , (t)) the corresponding factor of OGF .

Broué [18] conjectured that the decomposition (1) arises from a Morita equivalence
(cf. also [48]). More, precisely, we have the following theorem [11, Theorem B’]
obtained in joint work with C. Bonnafé (cf. also [23] for a detailed exposition). This
was conjectured by Broué who gave a proof when t is regular [18].

Theorem 2.15 (Jordan decomposition of blocks). Assume CG∗(t) is contained in an
F ∗-stable Levi subgroup L∗ of G∗ with dual L ≤ G. Let P be a parabolic subgroup
of G with Levi complement L and unipotent radical U . Let d = dim XU and let
Ft = π∗O ⊗OLF B(LF , (t)).

Then Hi
c (XU , Ft ) = 0 for i �= d and Hd

c (XU , Ft ) induces a Morita equivalence
between B(G, (t)) and B(LF , (t)).

The theorem reduces the study of blocks of finite groups of Lie type to the case of
those associated to a quasi-isolated element t . When L∗ = CG∗(t) is a Levi subgroup
of G∗, then B(LF , (t)) is isomorphic to B(LF , 1).

As shown by Broué, the key point is the statement about the vanishing of cohomol-
ogy. When L is a torus, this is [37, Theorem 9.8]. For the general case, two difficulties
arise: there are no known good smooth compactifications of the varieties XU and the
locally constant sheaf Ft has wild ramification. We solve these issues as follows. Let
X be the closure of XU in G/P . We construct new varieties of Deligne–Lusztig type
and commutative diagrams

Xi
� � ji ��

f ′
i

��

Yi

fi

��
XU

� �

j
�� X

where Yi is smooth, Yi − Xi is a divisor with normal crossings, and fi is proper. We
also construct tamely ramified sheaves Fi on Xi with the following properties:

• Ft is in the thick subcategory of the derived category of constructible sheaves
on XU generated by the Rf ′

i∗Fi

• (Rji∗Fi )|f −1
i (X−XU )

= 0.

The first property follows from the following generation result of the derived
category of a finite group of Lie type [11, Theorem A]:

Theorem 2.16. The category of perfect complexes for B(G, (t)) is generated, as a
thick subcategory, by the RG

T ⊂BB(T F , (t)), where T runs over the F -stable maximal
tori of G such that t ∈ T ∗ and B runs over the Borel subgroups of G containing T .

Remark 2.17. Note that the corresponding result for derived categories is true, under
additional assumptions on G [13]: this is related to Quillen’s Theorem, we need every
elementary abelian �-subgroup of G to be contained in an F -stable torus of G.
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Remark 2.18. Note that the Morita equivalence of Theorem 2.15 is not splendid in
general. This issue is analyzed in [13].

Example 2.19. Let G = GLn(Fq) and F : (xij )1≤i,j≤n �→ (x
q
ij )i,j . We have G =

GLn(Fq), G = G∗ and F ∗ = F . Centralizers of semi-simple elements are Levi
subgroups, so Theorem 2.15 gives a Morita equivalence between any block of a
general linear group over O and a unipotent block.

2.4.3. Abelian defect conjecture. Let b be a block idempotent of OG. Let (D, bD)

be a maximal b-subpair, let H = NG(D, bD) and let L = CG(D). We assume D is
abelian and L is a Levi subgroup of G (these are satisfied if � � |W |).

Broué conjectured that the sought-for complex in Conjecture 2.10 should arise
from Deligne–Lusztig varieties ([17, p. 81], [20, §1], [19, §VI]):

Conjecture 2.20 (Broué). There is a parabolic subgroup P of G with Levi comple-
ment L and unipotent radical U , and a complex C inducing a Rickard equivalence
between OGb and OHbD such that ResG×(LF )opp C is isomorphic to R̃�c(YU , O)bD .

This conjecture 2.20 is known to hold [76] when there is a choice of an F -stable
parabolic subgroup P (case � || (q − 1)). Then YU is 0-dimensional and the Deligne–
Lusztig induction is the Harish-Chandra induction. The key steps in the proof are:

• Produce an action of the reflection group H/LF from a natural action of the
associated Hecke algebra. One needs to show that certain obstructions vanish.

• Identify a 2-cocycle of H/LF with values in O×.

• Compute the dimension of the KG-endomorphism ring.

2.4.4. Regular elements. As a first step, one should make Conjecture 2.20 more
precise by specifying P and by defining the extension of the action of CG(D) to an
action of H on R̃�c(YU , O)bD . These issues are partly solved and I will explain the
best understood case where L = T is a torus and OGb is the principal block (cf. [22]).
Assume as well � � (q − 1). To simplify, assume further that F acts trivially on W

(“split” case).
Note that T defines a conjugacy class C of W and the choice of P amounts to the

choice of w ∈ C (defined from P as in § 2.4.1). Since T = CG(D), it follows that
elements in C are Springer-regular. There is wd ∈ C such that (wd)d = π , where
d > 1 is the order of wd (a “good” regular element).

Given w ∈ W , we have a purely inseparable morphism

Y (w, w−1w0, w0ww0, w0w
−1) → Y (w−1w0, w0ww0, w0w

−1, w)

(x1, x2, x3, x4) �→ (x2, x3, x4, F (x1)).

Via the canonical isomorphisms, this induces an endomorphism of Y (π). This extends
to an action of B+ on Y (π).
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There is an embedding of YF (wd) as a closed subvariety of YFd (wd, . . . , wd) (d
terms) given by

x �→ (x, F (x), . . . , F d−1(x)).

The action of CB+(wd) on YFd (π) restricts to an action on YF (wd). It induces an
action of CB(wd) on R̃�c(Y (wd), O).

The group H/CG(D) 	 CW(wd) is a complex reflection group and we denote
by Bd its braid group. There is a morphism Bd → CB(wd), uniquely defined up to
conjugation by an element of the pure braid group of CW(wd) (it is expected to be an
isomorphism, and known to be such in a number of cases [8]).

Now, the conjecture is that, up to homotopy, the action of O(T
wdF
0 � Bd) on

R̃�c(Y (wd), O)bD induces an action of the quotient algebra OHc and the resulting
object is a splendid Rickard complex:

Conjecture 2.21. There is a complex C ∈ Kb((OGb)⊗ (OHbD)opp-lperm), unique
up to isomorphism, with the following properties:

• There is a surjective morphism f : OT
wdF
0 � Bd → OHbD extending the

inclusion T
wdF
0 ⊂ H such that

– f ∗C and R̃�c(Y (wd), O)bD are isomorphic in Db((OT
wdF
0 � Bd) ⊗

(OH)opp),

– the map kBd → kCW(wd) deduced from f by applying k ⊗
OT

wdF

0
− is

the canonical map.

• C is isomorphic to R̃�c(Y (wd), O)bD in Kb((OG) ⊗ (OCG(D))opp-lperm).

Furthermore, such a complex C induces a Rickard equivalence between OGb and
OHbD .

The most crucial and difficult part in that conjecture is to show that we have no
non-zero shifted endomorphisms of the complex (“disjunction property”), either for
the action of G or for that H .

Conjecture 2.21 is known to hold when l(wd) = 1 [87] and for GLn andd = n [12].
In the first case, we use good properties of cohomology of curves and prove disjunction
for the action of G. In the second case, we study the variety D(U0)

F \Y (wd) and
prove disjunction for the action of H . This works only for GLn, for we rely on the
fact that induced Gelfand–Graev representations generate the category of projective
modules.

Remark 2.22. When � || (q − 1) (case d = 1), one can formulate a version of
Conjecture 2.21 using the variety Y (π) [22, Conjectures 2.15].

Remark 2.23. The version “over K” of Conjecture 2.21 is open, even after restricting
to unipotent representations (= applying the functor K ⊗KT wdF −). The action of
KBd on H ∗

c (Y (wd), K) should factor through an action of the Hecke algebra of
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CW(wd), for certain parameters. This is known in some cases: for d = 1 [22], [39],
when d = 2 (work of Lusztig [67] and joint work with Digne and Michel [39]) and in
some other cases [38]. The disjunction property is known for wd a Coxeter element
[66], for GLn and d = n − 1 [38] and in most rank 2 groups [39].

2.5. Local representation theory as non-commutative birational geometry. It
is expected that birational Calabi–Yau varieties should have equivalent derived cat-
egories (cf. [15]). We view Question 2.6 as a non-commutative version: one can
expect that “sufficiently nice” Calabi–Yau triangulated categories are determined by
(not too small) quotients. We explain here how this analogy can be made precise, in
the setting of McKay’s correspondence, via Koszul duality.

2.5.1. 2-elementary abelian defect groups. Let P be an elementary abelian 2-
group. Let k be a field of characteristic 2 and V = P ⊗F2 k. Let E be a group of odd
order of automorphisms of P . The algebras kP � E and 	(V ) � E are isomorphic.

Koszul duality (cf. eg [53]) gives an equivalence

Db((	(V ) � E)-modgr)
∼−−→ Db

E×Gm
(V ).

2.5.2. McKay’s correspondence. Let V be a finite-dimensional vector space over
k and E a finite subgroup of GL(V ) of order invertible in k. Recall the following
conjecture (independence of the crepant resolution):

Conjecture 2.24 (McKay’s correspondence). If X → V/E is a crepant resolution,
then Db(X) 	 Db

E(V ).

The conjecture is known to hold when dim V = 3 [16], [14] (in dimension 3, the
Hilbert scheme of E-clusters on V is a crepant resolution). It is also known when V

is a symplectic vector space and E respects the symplectic structure [9]. See [15,
§2.2] for more details.

Examples in dimension > 3 where E − Hilb V is smooth are rare. An infinite
family of examples is provided by the following theorem of Sebestean [95]:

Theorem 2.25. Let n ≥ 2, let k be a field containing a primitive (2n − 1)-th root of
unity ζ and let E be the subgroup of SLn(k) generated by the diagonal matrix with
entries (ζ, ζ 2, . . . , ζ 2n−1

). Assume 2n − 1 is invertible in k.
Then E − Hilb(An

k) is a smooth crepant resolution of An
k/E and there is an

equivalence Db
E(An

k)
∼−−→ Db(E − Hilb(An

k)).

The diagonal action of Gm on An
k induces an action on E −Hilb(An

k) and the
equivalence is equivariant for these actions.

Let G = SL2(2n), let P be the subgroup of strict upper triangular matrices (a
Sylow 2-subgroup), and let E be the subgroup of diagonal matrices. The action of E

on P ⊗F2 F2 coincides with the one in Theorem 2.25. Combining the solution of
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Conjecture 2.2 for G (Okuyama, [70]) and § 3.2.2, the Koszul duality equivalence,
and Theorem 2.25, we deduce a geometric realization of modular representations of
SL2(2n) in natural characteristic:

Corollary 2.26. There is a grading on the principal 2-block A of F2G and an equiv-
alence Db(A-modgr)

∼−−→ Db
Gm

(E − Hilb An
k).

Remark 2.27. It should be interesting to study homotopy categories of sheaves on
singular varieties and their relation to derived categories of crepant resolutions.

2.6. Perverse Morita equivalences. In this part, we shall describe joint work with
J. Chuang [30].

2.6.1. Definitions. Let A, A′ be two abelian categories. We assume every object
has a finite composition series. Let S (resp. S′) be the set of isomorphism classes of
simple objects of A (resp. A′).

Definition 2.28. An equivalence F : Db(A)
∼−−→ Db(A′) is perverse if there is

• a filtration ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sr = S,

• a filtration ∅ = S′
0 ⊂ S′

1 ⊂ · · · ⊂ S′
r = S′,

• and a function p : {1, . . . , r} → Z,

such that

• F restricts to equivalences Db
Ai

(A)
∼−−→ Db

A′
i

(A′),

• F [−p(i)] induces equivalences Ai/Ai−1
∼−−→ A′

i/A
′
i−1.

where Ai (resp. A′
i ) is the Serre subcategory of A (resp. A′) generated by Si (resp. S′

i ).

An important point is that A′ is determined, up to equivalence, by A, S• and p.

2.6.2. Symmetric algebras. Let A be a symmetric finite dimensional algebra and
A = A-mod.

We explain how to construct a perverse equivalence, given any S• and p (this
cannot be done in general for a nonsymmetric algebra A).

Let I be a subset of S. Given V ∈ S, let PV be a projective cover of V , let
VI be the largest quotient of PV all of which composition factors are in I and let
QV → ker(PV → VI ) be a projective cover. We put TA,V (I ) = PV if V ∈ S − I ,
TA,V (I ) = 0 → QV → PV → 0 if V ∈ I (where QV is in degree 0) and TA(I) =⊕

V TA,V (I ), a tilting complex.
Let T be the set of isomorphism classes of families (TV )V ∈S , where TV is an

indecomposable bounded complex of finitely generated projective A-modules and⊕
V ∈S TV is a tilting complex.
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We denote by P (S) the set of subsets of S. We define an action of Free(P (S)) �
S(S) on T . The symmetric group acts by permutation of indices and I ⊂ S sends
(TV )V to (T ′

V )V given by T ′
V = F−1(TB,V (I )), where B = EndDb(A)(

⊕
V TV ) and

F = R Hom•
A(

⊕
V TV , −) : Db(A)

∼−−→ Db(B).
Fix now S• a filtration of S and p : S → Z. We put

(TV )V = S
p(r)
r S

p(r−1)−p(r)
r−1 . . . S

p(1)−p(2)
1 ((PV )V ),

T = ⊕
V TV , A′ = EndDb(A)(T ) and F = R Hom•

A(T , −). Then, F is perverse with
respect to S• and p.

Remark 2.29. One might ask whether all derived equivalences between finite dimen-
sional symmetric algebras are compositions of perverse equivalences, or at least, if
two derived equivalent symmetric algebras can be related by a sequence of perverse
equivalences. Many of the derived equivalences in block theory are known to be
compositions of perverse equivalences and it would be interesting to see if this is also
the case for those of [70].

Remark 2.30. One can expect the equivalences predicted in Conjecture 2.20 will be
perverse. The filtration should be provided by Lusztig’s a-function.

We expect the action of Free(P (S)) � S(S) on T relates to Bridgeland’s space
of stability conditions [15, §4].

Remark 2.31. The considerations above are interesting for Calabi–Yau algebras of
positive dimension. Given I a subset of S, one obtains a torsion theory that needs not
always come from a tilting complex. When r = 2 and |S2 − S1| = 1, tilting has been
known in string theory as Seiberg duality.

3. Invariants

Invariants of triangulated categories and dg-categories are discussed in [55, §6]. We
discuss here some more elementary invariants, used to study finite dimensional alge-
bras.

3.1. Automorphisms of triangulated categories

3.1.1. Rings. Let k be a commutative ring and A be a k-algebra. We denote by Pic(A)

the group of isomorphism classes of invertible (A, A)-bimodules and by DPic(A) the
group of isomorphism classes of invertible objects of the derived category of (A, A)-
bimodules: this is the part of the automorphism group of D(A-Mod) that comes from
standard equivalences. By Rickard’s Theorem, DPic(A) is invariant under derived
equivalences.

The following Proposition has been observed by many people (Rickard, Roggen-
kamp–Zimmermann, [93, Proposition 3.3], [103, Proposition 3.4],…).



Derived equivalences and finite dimensional algebras 207

Proposition 3.1. If A is local, then DPic(A) = Pic(A) × 〈A[1]〉.
Given R a flat commutative Z-algebra, there is a canonical morphism DPic(A) →

DPic(A ⊗Z R) (joint work with A. Zimmermann [93, §2.4]). If R is faithfully flat
over Z, the kernel of that map is contained in Pic(A). This is the key point for the
following (cf. [103, Proposition 3.5] and [93, Proposition 3.3]):

Theorem 3.2. Assume A is commutative and indecomposable. Then DPic(A) =
Pic(A) × 〈A[1]〉.
3.1.2. Invariance of automorphisms. Let A be a finite dimensional algebra over
an algebraically closed field k. We denote by Aut(A) the group of automorphisms
of A. This is an algebraic group and we denote by Inn(A) its closed subgroup of
inner automorphisms. We put Out(A) = Aut(A)/ Inn(A). We have a morphism of
groups Aut(A) → Pic(A), α �→ [Aα], where Aα = A as a left A-module and the
right action of a ∈ A is given by right multiplication by α(a). It induces an injective
morphism Out(A) → Pic(A).

The following result [91] gives a functorial interpretation of Out, to be compared
with the functorial interpretation of Pic(X) for a smooth projective variety X.

Theorem 3.3. The functor from the category of affine varieties over k to groups that
sends X to the set of isomorphism classes of (A ⊗ Aopp ⊗ OX)-modules that are
locally free of rank 1 as (A ⊗ OX) and as (Aopp ⊗ OX)-modules is represented by
Out(A).

The following theorem [91] shows the invariance of Out0, the identity component
of Out, under certain equivalences. In the case of Morita equivalences, it goes back to
Brauer, and for derived equivalences, it has been obtained independently by Huisgen-
Zimmermann and Saorín [49]. In these cases, it follows easily from Theorem 3.3
while, for stable equivalences, some work is needed to get rid globally of projective
direct summands.

Theorem 3.4. Let B be a finite dimensional k-algebra and let C be a bounded complex
of finitely generated (A, B)-bimodules inducing a derived equivalence or a stable
equivalence (in which case we assume A and B are self-injective). Then there is a
unique isomorphism of algebraic groups σ : Out0(A)

∼−−→ Out0(B) such that Aα ⊗A

C 	 C ⊗B Bσ(α) for all α ∈ Out0(A).

Yekutieli [104] deduces that DPic(A) has a structure of a locally algebraic group,
with connected component Out0(A).

3.1.3. Coherent sheaves. The following result [91] is a variant of Theorem 3.4.

Theorem 3.5. Let X and Y be two smooth projective schemes over an algebraically
closed field k. An equivalence Db(X)

∼−−→ Db(Y ) induces an isomorphism Pic0(X)�

Aut0(X)
∼−−→ Pic0(Y ) � Aut0(Y ).
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This implies in particular that if A and B are derived equivalent abelian varieties,
then there is a symplectic isomorphism Â × A

∼−−→ B̂ × B (and the converse holds
as well [71], [74]).

3.1.4. Automorphisms of stable categories and endo-trivial modules. Let A be a
finite dimensional self-injective algebra over an algebraically closed field k.
We denote by StPic(A) the group of isomorphism classes of invertible objects of
(A ⊗ Aopp)-mod.

Let P be an �-group and k a field of characteristic �. A finitely generated kP -
module L is an endo-trivial module if L ⊗k L∗ 	 k in kP -mod or equivalently, if
EndkP -mod(L) = k [25]. Note that the classification of endo-trivial modules has been
recently completed [27] (the case where P is abelian goes back to [34]).

Let T (kP ) be the group of isomorphism classes of indecomposable endo-trivial
modules. We have an injective morphism of groups

T (kP ) → StPic(kP ), [L] �→ [IndP×P opp

�P L].

This extends to an isomorphism T (kP ) × Out(kP )
∼−−→ StPic(kP ) ([64, §3] and

[26, §2]).
Let Q be an �-group. A stable equivalence of Morita type kP -mod

∼−−→ kQ-mod
induces an isomorphism T (kP )

∼−−→ T (kQ). It actually forces the algebras kP and
kQ to be isomorphic ([64, §3], [26, Corollary 2.4]). It is an open question whether
this implies that P and Q are isomorphic.

Theorem 3.6 ([26, Theorem 3.2]). Let P be an abelian �-group and E a cyclic
�′-group acting freely on P . We put G = P � E. Then StPic(kG) = Pic(kG) · 〈�〉.
In particular, the canonical morphism TrPic(kG) → StPic(kG) is surjective.

Remark 3.7. Let A be a block over k of a finite group, with defect group isomor-
phic to P and NG(P )/P acting as E on P . From Theorem 3.6, one deduces [26,
Corollary 4.4] via a construction of Puig [77], that a stable equivalence of Morita
type between A and kG lifts to a Rickard equivalence if and only if A and kG are
Rickard equivalent if and only if they are splendidly Rickard equivalent. In particular,
for blocks with abelian defect group D such that NG(D, bD)/CG(D) is cyclic, then
Conjecture 2.2 implies Conjecture 2.10.

3.2. Gradings. In this section, we describe results of [91].

3.2.1. Transfer of gradings. We assume we are in the situation of Theorem 3.4.
Assume A is graded, i.e., there is a morphism Gm → Aut(A). The induced morphism
Gm → Out0(A) induces a morphism Gm → Out0(B). There exists a lift to a
morphism Gm → Aut0(B), and this corresponds to a grading on B. There is a
grading on (an object isomorphic to) C that makes it into a complex of graded (A, B)-
bimodules and it induces an equivalence between the appropriate graded categories.
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Let A be a self-injective indecomposable graded algebra, let n be the largest integer
such that An �= 0, and let C ∈ Z[q, q−1] be the graded Cartan matrix of A.

If A is non-negatively graded and the Cartan matrix of A0 has non-zero deter-
minant, then deg det(C) = nr , where r is the number of simple A-modules. As a
consequence, one gets a positive solution of a “non-negatively graded” version of
Conjecture 2.5:

Proposition 3.8. Let A and B be two indecomposable self-injective non-negatively
graded algebras. Assume A0 has finite global dimension and there is a graded stable
equivalence of Morita type between A and B. Then A and B have the same number
of simple modules.

Remark 3.9. Let A be a non-negatively graded indecomposable self-injective algebra
with A0 of finite global dimension. Let B be a stably equivalent self-injective algebra.
One could hope that there is a compatible grading on B that is non-negative, but this
is not possible in general. It would be still be very interesting to see if this can be
achieved if the grading on A is “tight” in the sense of Cline–Parshall–Scott, i.e., if⊕

j≤i Aj = (JA)i (cf. the gradings in § 3.2.2).

3.2.2. Blocks with abelian defect. Let P be an abelian �-group and k an alge-
braically closed field of characteristic �. The algebra kP is (non-canonically) isomor-
phic to the graded algebra associated to the radical filtration of kP . Fixing such an
isomorphism provides a grading on kP . Let E be an �′-group of automorphisms of P .
Then the isomorphism above can be made E-equivariant and we obtain a structure
of graded algebra on kP � E extending the grading on kP and with kE in degree 0.
Given a central extension of E by k×, this construction applies as well to the twisted
group algebra k∗P � E.

Let A be a block of a finite group over k with defect group D. Then there is E and
a central extension as above such that the corresponding block of NG(D) is Morita
equivalent to k∗D �E [60]. So, Conjecture 2.2 predicts there are interesting gradings
on A. In the inductive approach to Conjecture 2.11, there is a stable equivalence of
Morita type between A and k∗D�E, and we can provide A with a grading compatible
with the equivalence (but we do not know if the grading can be chosen to be non-
negative).

Remark 3.10. The gradings on blocks with abelian defect should satisfy some
Koszulity properties (cf. [73], as well as work of Chuang). Turner [101] expects
that gradings will even exist for blocks of symmetric groups with non abelian defect.

Remark 3.11. Using the equivalences in § 4.1, we obtain gradings on blocks of
abelian defect of symmetric groups and on blocks of Hecke algebras over C. One can
expect the corresponding graded Cartan matrices to be given in terms of Kazhdan–
Lusztig polynomials. So, the equivalences carry some “geometric meaning”.
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3.3. Dimensions

3.3.1. Definition and bounds. Let us explain how to associate a dimension to a
triangulated category T (cf. [88]). For the derived category of a finite dimensional
algebra, this is related to the Loewy length and to the global dimension, none of which
are invariant under derived equivalences.

Given I1 and I2 two subcategories of T , we denote by I1 ∗ I2 the smallest full
subcategory of T closed under direct summands and containing the objects M such
that there is a distinguished triangle

M1 → M → M2 �

with Mi ∈ Ii . Given M ∈ T , we denote by 〈M〉 the smallest full subcategory of T
containing M and closed under direct summands, direct sums, and shifts. Finally, we
put 〈M〉0 = 0 and define inductively 〈M〉i = 〈M〉i−1 ∗ 〈M〉.

The dimension of T is defined to be the smallest integer d ≥ 0 such that there is
M ∈ T with T = 〈M〉d+1 (we set dim T = ∞ if there is no such d). The notion
of finite-dimensionality corresponds to Bondal–Van den Bergh’s property of being
strongly finitely generated [10].

Given a right coherent ring A, then dim Db(A) ≤ gldim A (cf. [59, Proposi-
tion 2.6] and [88, Propositions 7.4 and 7.24]).

Let A be a finite dimensional algebra over a field k. Denote by J (A) the Jacobson
radical of A. The Loewy length of A is the smallest integer d ≥ 1 such that J (A)d = 0.
We have dim Db(A) < Loewy length(A).

Let X be a separated scheme of finite type over a perfect field k.

Theorem 3.12. We have dim Db(X) < ∞.

• If X is reduced, then dim Db(X) ≥ dim X.

• If X is smooth and quasi-projective, then dim Db(X) ≤ 2 dim X.

• If X is smooth and affine, then dim Db(X) = dim X.

There does not seem to be any known example of a smooth projective variety X

with dim Db(X) > dim X, although this is expected to happen, for example when X

is an elliptic curve (note nevertheless that dim Db(P n) = n).
Note that a triangulated category with finitely many indecomposable objects up

to isomorphism has dimension 0. This applies to Db(kQ), where Q is a quiver of
type ADE. This applies also to the orbit categories constructed by Keller (cf. [55,
§4.9], [54, §8.4]). They depend on a positive integer d, and they are Calabi–Yau of
dimension d.

When T is compactly generated, the property for T c to be finite-dimensional can
be viewed as a counterpart of having “finite global dimension”.
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3.3.2. Representation dimension. Auslander [5] introduced a measure for how far
an algebra is from being representation finite. The example of exterior algebras
below shows that this notion is pertinent. Let A be a finite dimensional algebra. The
representation dimension of A is inf{gldim(A ⊕ A∗ ⊕ M)}M∈A-mod. This is known
to be finite [50].

In [89], we show that this notion is related to the notion of dimension for associated
triangulated categories. For example, dim Db(A) ≤ repdim A.

Let A be a non semi-simple self-injective k-algebra. We have

2 + dim A-mod ≤ repdim A ≤ Loewy length(A)

(the second inequality comes from [5, §III.5, Proposition]).
The following theorem is obtained by computing dim 	(kn)-mod via Koszul du-

ality. It gives the first examples of algebras with representation dimension > 3.

Theorem 3.13. Let n be a positive integer. We have repdim 	(kn) = n + 1.

Remark 3.14. One can actually show more quickly [59] that the algebra with quiver

0

xn+1

��

x1

��... 1 · · · n − 1

xn+1

��

x1

��...
n

and relations xixj = xjxi has representation dimension ≥ n, using that its derived
category is equivalent to Db(P n) [6].

Using the inequality above, one obtains the following theorem, which solves the
prime 2 case of a conjecture of Benson.

Theorem 3.15. Let G be a finite group and k a field of characteristic 2. If G has a
subgroup isomorphic to (Z/2)n, then n < Loewy length(kG).

4. Categorifications

This chapter discusses the categorifications of two structures, which are related to
derived equivalences. We hope these categorifications will eventually lead to the
construction of four-dimensional quantum field theories (as advocated in [33]), via
the construction of appropriate tensor structures.

4.1. sl2

4.1.1. Abelian defect conjecture for symmetric and general linear groups. Let G
be a symmetric group and B an �-block of kG with defect group D. Assume D is
abelian and let w = log� |D|. In 1992, a three steps strategy was proposed for
Conjecture 2.10 (inspired by the simpler character-theoretic part [84]):
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• Rickard equivalence between k(Z/� � Z/(�− 1)) �Sw and the principal block
of kS� � Sw;

• Morita equivalence between the principal block of kS� � Sw and Bw;

• Rickard equivalence between Bw and B.

Here, Bw is a certain �-block of symmetric groups (a “good block”). Scopes [94] has
constructed a number of Morita equivalences between blocks of symmetric groups.
For fixed w, there are only finitely many classes of blocks of symmetric groups up
to Scopes equivalence, and Bw is defined to be the largest block that is not Scopes
equivalent to a smaller block.

The first equivalence is deduced from an equivalence between the principal blocks
of S� and Z/� � Z/(� − 1) via Clifford theory [68].

The second equivalence was established by Chuang and Kessar [28], the functor
used is a direct summand of the induction functor.

The third equivalence is part of the general problem, raised by Broué, of construct-
ing Rickard equivalences between two blocks of symmetric groups with isomorphic
defect groups (equivalently, with same local structure). Rickard [80] constructed
complexes of bimodules that he conjectured would solve that problem, generalizing
Scopes construction (case where the complex has only one non-zero term). Rickard
proved the invertibility of his complexes when they have two non-zero terms. The
general case has proven difficult to handle directly.

Remark 4.1. The same strategy applies for general linear groups (in non-describing
characteristic). Theorem 2.15 reduces the study to unipotent blocks. Step 2 above
was handled in [69], [100]. As pointed out by H. Miyachi, this generalizes Puig’s
result [76] (GLn(q), � || (q − 1)).

Remark 4.2. “Good” blocks of symmetric groups have “good” properties. After the
Morita equivalence theorem of [28], their properties were first analyzed by Miyachi
[69], in the more complicated case of general linear groups: decomposition matrices
and radical series of Specht modules were determined in the abelian defect case, by a
direct analysis of the wreath product. As a consequence, decomposition matrices were
known for good blocks of Hecke algebras in characteristic zero. For good blocks of
symmetric groups with abelian defect, as well as for Hecke algebras in characteristic
zero, a direct computation of the decomposition numbers is given in [52] (cf. also
[51] for earlier results in that direction) and another approach is the determination of
the relevant part of the canonical/global crystal basis [31], [32], [61].

For blocks of symmetric groups with non abelian defect, the decomposition ma-
trices can be described in terms of decomposition matrices of smaller symmetric
groups and remarkable structural properties are conjectured by Turner [101], [102],
[72]. Good blocks have also been used by Fayers for the classification of irreducible
Specht modules [40] and to show that blocks of weight 3 have decomposition num-
bers 0 or 1 (for � > 3) [41].
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4.1.2. Fock spaces. Let us recall the Lie algebra setting for symmetric group rep-
resentations (cf. e.g. [4]). Let M = ⊕

n≥0 Q ⊗Z K0(CSn-mod). The complex
irreducible representations of the symmetric group Sn are parametrized by partitions
of n and we obtain a basis of M parametrized by all partitions. We view M as a
Fock space, with an action of ŝl� and we recall a construction of this action, for the
generators ea and fa (where a ∈ F�).

We have a decomposition

ResF�Sn

F�Sn−1
=

⊕
a∈F�

Fa,

where Fa(M) is the generalized a-eigenspace of Xn = (1, n)+(2, n)+· · ·+(n−1, n).
Taking classes in K0 and summing over all n, we obtain endomorphisms fa of

V =
⊕
n≥0

Q ⊗Z K0(F�Sn-mod).

Using induction, we obtain similarly endomorphisms ea (adjoint to the fa). The
decomposition lifts to a decomposition of ResZ�Sn

Z�Sn−1
and we obtain endomorphisms

ea and fa of M . The decomposition map M → V and the Cartan map
⊕

n≥0 Q ⊗Z

K0(F�Sn-proj) → M are morphisms of ŝl�-modules. The image of the Cartan map
is the irreducible highest weight submodule L of M generated by [∅].

Let us note two important properties relating the module structure of V and the
modular representation theory of symmetric groups:

• The decomposition of V into weight spaces corresponds to the block decom-
position.

• Two blocks have isomorphic defect groups if and only if they are in the same
orbit under the adjoint action of the affine Weyl group Ã�−1.

In order to prove that two blocks of symmetric groups with isomorphic defect
groups are derived equivalent, it is enough to consider a block and its image by a
simple reflection sa of Ã�−1 (this involves only the sl2-subalgebra generated by ea

and fa). This is the situation in which Rickard constructed his complexes 
a .

Remark 4.3. These constructions extend to Hecke algebras of symmetric groups
over C, at an �-th root of unity (here, � ≥ 2 can be an arbitrary integer). In that situa-
tion, the classes of the indecomposable projective modules form the canonical/global
crystal basis of L (Lascoux–Leclerc–Thibon’s conjecture, proven by Ariki [3], cf.
also [43]).

4.1.3. sl2-categorifications. We describe here joint work with J. Chuang [29] (cf.
also [90] for a survey and [44], [45], [7], [42] for related work). This is the special
case of a more general theory under construction for Kac–Moody algebras.
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Let k be an algebraically closed field and A a k-linear abelian category all of
whose objects have finite composition series.

An sl2-categorification on A is the data of

• (E, F ) a pair of adjoint exact functors A → A,

• X ∈ End(E), T ∈ End(E2), q ∈ k×, and a ∈ k (with a �= 0 if q �= 1)

satisfying the following properties:

• [E] and [F ] give rise to a locally finite representation of sl2 on K0(A),

• for S a simple object of A, [S] is a weight vector,

• F is isomorphic to a left adjoint of E,

• (T 1E) � (1ET ) � (T 1E) = (1ET ) � (T 1E) � (1ET ),

• (T + 1E2) � (T − q1E2) = 0,

• T � (1EX) � T =
{

q(X1E) if q �= 1,

X1E − T if q = 1,

• X − a1E is locally nilpotent.

From that data, we define two truncated powers E(n,±) (non-canonically isomor-
phic), using an affine Hecke algebra action on En. Following Rickard, we construct
a complex 
 with terms E(i,−)F (j,+).

The following theorem is proved by reduction to the case of “minimal categorifi-
cations”, which are naturally associated to simple representations of sl2.

Theorem 4.4. 
 gives rise to self-equivalences of Kb(A) and Db(A). This cate-
gorifies the action of

(
0 1−1 0

)
on K0(A).

Remark 4.5. The self-equivalence 
 is perverse (cf. § 2.6), and this is a crucial point
in the proof.

The construction of § 4.1.2 provides a structure of sl2-categorification on A =⊕
n≥0 F�Sn-mod (for a given a ∈ F�). From the previous theorem, we deduce

Corollary 4.6. Two blocks of symmetric groups with isomorphic defect groups are
splendidly Rickard equivalent.

Conjecture 2.10 holds for blocks of symmetric groups.

This corollary has a counterpart for GLn(Fq) and � � q.

Remark 4.7. In general, there is a decomposition A = ⊕
λ Aλ coming from the

weight space decomposition of K0(A). There is a categorification of [e, f ] = h in

the form of isomorphisms EF|Aλ

∼−−→ FE|Aλ ⊕ Id
⊕

λ

Aλ
(for λ ≥ 0).

Remark 4.8. One can give a definition of sl2-categorifications for triangulated cate-
gories and the definition above becomes a theorem that says that there is an induced
categorification on Kb(A) (and on Db(A)).
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Remark 4.9. One can also construct sl2-categorifications on category O for gln(C)

and for rational representations of GLn(Fp). One deduces from Theorem 4.4 that
blocks with the same stabilizers under the affine Weyl groups are derived equivalent
(a conjecture of Rickard).

Remark 4.10. The endomorphism X has different incarnations: Jucys–Murphy ele-
ment, Casimir,….

Remark 4.11. It is expected that the functors 
a constructed for a ∈ F� provide an
action of the affine braid group B

Ã�−1
on

⊕
n Db(F�Sn).

4.2. Braid groups

4.2.1. Definition. We present here a categorification of braid groups associated to
Coxeter groups, following [90]. This should be useful for the study of categories
of representations of semi-simple Lie algebras, affine Lie algebras, simple algebraic
groups over an algebraically closed field,... On the other hand, work of Khovanov
[56] shows its relevance for invariants of links (type A), cf. also [98].

Let (W, S) be a Coxeter group, with S finite. Let V be its reflection representation
over C and let BW be the braid group of W . Let A = C[V ]. Given s ∈ S, let

Fs = 0 → A ⊗As A
mult−−−→ A → 0, where A is in degree 1. This is an invertible

object of Kb(A⊗A). Given two decompositions of an element of BW in a product of
the generators and their inverses, we construct a canonical isomorphism between the
corresponding products of Fs . The system of isomorphism coming from the various
decompositions of an element b ∈ BW is transitive and, taking its limit, we obtain an
element Fb ∈ Kb(A ⊗ A). The full subcategory of Kb(A ⊗ A) with objects the Fb’s
defines a strict monoidal category BW .

We expect that there is a simple presentation of BW by generator and relations (or
rather of a related 2-category involving subsets of S). This should be related to the
vanishing of certain Hom-spaces, for example HomKb(A⊗A)(Fb, F

−1
b′ [i]) should be

0 when b and b′ are the canonical lifts of distinct elements of W .

Remark 4.12. The bimodules obtained by tensoring the A ⊗As A are Soergel’s bi-
modules. Soergel showed they categorify the Hecke algebra of W . He also conjec-
tured that the indecomposable objects correspond to the Kazhdan–Lusztig basis of W

[96], [97].

Remark 4.13. When W is finite, one can expect that there is a construction of BW

that does not depend on the choice of S. Such a construction might then make sense
for complex reflection groups.

4.2.2. Representations and geometry. Let g be a complex semi-simple Lie algebra
with Weyl group W and let O0 be the principal block of its category O. It has been
widely noticed that there is a weak action of BW on Db(O), using wall-crossing
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functors. We show that there is a genuine action of BW on Db(O0) and there is a
much more precise statement: there is a monoidal functor from BW to the category
of self-equivalences of Db(O0). This has a counterpart for the derived category of
B-equivariant sheaves on the flag variety (in which case the genuine action of the braid
group goes back to [36]). These actions are compatible with Beilinson–Bernstein’s
equivalence. Conversely, a suitable presentation of BW by generators and relations
should provide a quick proof of that equivalence (and of affine counterparts), in
the spirit of Soergel’s construction. The representation-theoretic and the geometrical
categories should be viewed as two realizations of the same “2-representation” of BW .
Also, this approach should give a new proof of the results of [2] comparing quantum
groups at roots of unity and algebraic groups in characteristic p.
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