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This article discusses the modular representation theory of fi-
nite groups of Lie type from the viewpoint of Broué’s abelian 
defect group conjecture. We discuss both the defining charac-
teristic case, the inspiration for Alperin’s weight conjecture, 
and the non-defining case, the inspiration for Broué’s con-
jecture. The modular representation theory of general finite 
groups is conjectured to behave both like that of finite groups 
of Lie type in defining characteristic, and in non-defining char-
acteristic, to a large extent.
The expected behavior of modular representation theory of 
finite groups of Lie type in defining characteristic is particu-
larly difficult to grasp along the lines of Broué’s conjecture, 
and we raise a new question related to the change of central 
character.
We introduce a degeneration method in the modular repre-
sentation theory of finite groups of Lie type in non-defining 
characteristic. Combined with the rigidity property of per-
verse equivalences, this provides a setting for two-variable 
decomposition matrices, for large characteristic. This should 
help make progress towards finding decomposition matrices, 
an outstanding problem with few general results beyond the 
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case of general linear groups. This last part is based on joint 
work with David Craven and Olivier Dudas.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

Every finite simple group is a finite group of Lie type, an alternating group, a cyclic 
group of prime order, or one of the 26 sporadic groups. This provides a central role for 
finite groups of Lie type in finite group theory.

Conjectures of Alperin and Broué predict that the modular representation theory of 
general finite groups shares many features with that of finite groups of Lie type. Alperin’s 
prediction is inspired by finite groups of Lie type in defining characteristic. On the other 
hand, Broué predicts a behavior similar to that of finite groups of Lie type in non-defining 
characteristic.

For simple finite groups of Lie type in defining characteristic, the assumptions of 
Broué’s conjecture (abelian defect groups) are only satisfied for groups of type A1, like 
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PSL2(Fq), outside cases of simple blocks. Broué’s conjecture is known to hold in that 
case, but the combinatorics involved in the proof have so far not been understood within 
the usual Lie theoretic or geometric framework for SL2. An important problem is to 
find a proof of Broué’s conjecture for SL2(Fq) that relates to the geometry associated 
with the group. A major open problem is to find an extension of Broué’s conjecture that 
removes the assumption on Sylow subgroups, and understanding Broué’s conjecture for 
defining characteristic representations of SL2(Fq) could lead to understanding how the 
conjecture should extend to higher rank groups, and eventually to all finite groups. 
Broué’s conjecture is about the existence of certain equivalences of derived categories.

There are few known equivalences between blocks of finite groups of Lie type in defin-
ing characteristic. We could locate two: the derived equivalence between the principal 
block of SL2(q) and the principal block of a Borel subgroup, and a similar result for 
the non-simple non-principal block when p is odd. In particular, the two non-simple 
blocks are derived equivalent. We propose to consider a generalization of this situation. 
A particular case of that extension applies to G = SLr(q), r a prime dividing q − 1: the 
non-simple blocks all have the same number of simple modules and the corresponding 
blocks for proper local subgroups are isomorphic.

Progress in the understanding of modular representations of finite groups of Lie type 
in non-defining characteristic has mostly been achieved by extending some of the work 
of Lusztig (and Deligne-Lusztig) about characteristic 0 representations to characteristic 
�. Broué’s conjecture in this case has a formulation in terms of Deligne-Lusztig theory. 
The main difficulty in proving the conjecture has been about obtaining information 
about individual cohomology groups of Deligne-Lusztig varieties, rather than about their 
alternating sum. In particular, a key required vanishing property is still open in general, 
even for characteristic 0 coefficients.

The introduction of the notion of perverse equivalences and the conjecture that the 
equivalences expected from Deligne-Lusztig varieties should be perverse (joint work with 
Joe Chuang) lead to the fact that torus and Weyl group data determine the decom-
position matrices for large enough characteristic, using the conjectural combinatorial 
perversity function of Craven, and a rigidity property of perverse equivalences (joint 
work with David Craven).

We explain two ways in which toroidal structures appear by degeneration in the 
modular representation theory of finite groups of Lie type in non-defining characteristic. 
We give a “global” topological construction using a limit of completed classifying spaces, 
the starting point being Friedlander’s description of the completed classifying space of 
a finite group of Lie type in terms of homotopy fixed points on the classifying space of 
the corresponding Lie group. We provide also an explicit local algebraic construction. 
These lead to conjectural two-variable decomposition matrices for large characteristic 
(joint work with Olivier Dudas).

In part 2, we consider general finite groups. We review p-local group theory and p-
local representation theory and discuss Alperin and Broué’s conjectures. We introduce 



R. Rouquier / Journal of Algebra 656 (2024) 446–485 449
perverse equivalences, a type of derived equivalences between derived categories with 
filtrations, that induces abelian equivalences up to shifts on the slices of the filtration.

Part 3 introduces finite groups of Lie type as fixed points of a Frobenius endomor-
phism, or a more general Steinberg endomorphism of a reductive algebraic group. We 
discuss the p-local structure of finite groups of Lie type, both in defining and non-defining 
characteristic.

Part 4 is devoted to the modular representation theory of finite groups of Lie type in 
defining characteristic. We provide an explanation for Alperin’s conjecture. In the case of 
groups of finite Lie rank 1, we discuss the relation between representations of the group 
and of a Borel subgroup. We analyze next when a block with a given central character 
has the same number of simple modules as the principal block and raise the question of 
understanding the relation between the module categories of such blocks.

Parts 5 and 6 are concerned with the modular representation theory of finite groups 
of Lie type in non-defining characteristic �. We start with a discussion of Deligne-Lusztig 
varieties and endomorphisms coming from braid groups. We review Lusztig’s theory of 
characteristic 0 representations and describe modular counterparts. We finish §5 with a 
discussion of the particular form of Broué’s conjecture for finite groups of Lie type in 
non-defining characteristic.

Part 6 discusses two approaches to generic phenomena. The first approach is based 
on the description of �-completed classifying spaces of finite groups of Lie type in terms 
of fixed points under unstable Adams operations and we discuss the rigidification of a 
certain limit of those Adams operation, in relation with classifying spaces of loop groups. 
The second approach is based on a degeneration of the group algebra of the local block, 
and the relation with the rigidity of perverse equivalences. For general linear and unitary 
groups, there is a further relation with Hilbert schemes of points on surfaces.

We gather in the appendix a number of basic facts on representations of algebras and 
finite groups, in particular in relation with various types of equivalences. We give a very 
succinct survey of basic constructions involving complex reflection groups, braid groups 
and Hecke algebras.

I thank Cédric Bonnafé, David Craven, Olivier Dudas, Jesper Grodal, George Lusztig 
and Gunter Malle for their comments.

This article is based on two lectures given at the Institute for Advanced Study, Prince-
ton, in the fall 2020.

2. Finite groups

2.1. Group theory

2.1.1. Classification of finite simple groups
Every finite simple group is one of the following [5, §47]

• a cyclic group of prime order
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• an alternating group An for n ≥ 5
• a finite simple group of Lie type
• one of the 26 sporadic simple groups, with orders ranging from 7920 for the Mathieu 

group M11 discovered in 1861 to about 8 × 1053 for the Fischer-Griess monster 
discovered in 1973.

Finite groups of Lie type govern to a large extent the structure of general finite groups.

2.1.2. p-local group theory
Let G be a finite group, p a prime and P a Sylow p-subgroup of G.
The p-local group theory is the study of G using p-local subgroups, i.e. subgroups of 

the form NG(Q) for Q a non-trivial p-subgroup.
This was originally developed mostly in the case p = 2 and this underlies the proof of 

the classification of finite simple groups.
Here are some examples of results of p-local group theory. We denote by Op′(G) the 

largest normal subgroup of G of order prime to p.

• (Burnside 1897) When P is abelian, two elements of P that are conjugate in G are 
also conjugate in NG(P ) [63, Chap. 7, Theorem 1.1].

• (Frobenius) If NG(Q)/CG(Q) is a p-group for every non trivial subgroup Q of P , 
then G = Op′(G) � P [63, Chap. 7, Theorem 4.5].

• (Brauer-Fowler 1955) If G is simple and s ∈ G is an involution, then |G| ≤
(2|CG(s)|2)! [5, (45.4)].

• (Brauer-Suzuki 1959) If the Sylow 2-subgroups of G are quaternion groups, then G
is not simple [37, §3.3].

• (Glauberman 1966, case p = 2) If x is an element of order p of P that is not G-
conjugate to any other element of P , then G = Op′(G)CG(x) [37, Appendix].

• (Alperin 1967) One can tell if two elements of P are conjugate in G using only p-local 
subgroups [5, (38.1)].

Glauberman’s Theorem (which generalizes Brauer-Suzuki’s Theorem) holds also for 
odd primes, but the proof for odd primes uses the classification of finite simple groups. 
Modular representation theory of finite groups was developed by Brauer as a tool for 
studying finite groups. For example, the proof of the Brauer-Suzuki Theorem uses rep-
resentation theory in characteristic 2.

It is hoped that modular representation theory will eventually reach a point where it 
can be used to obtain a direct proof of Glauberman’s Theorem for odd primes and lead 
to simplifications of the proof of the classification of finite simple groups.

Modular representation theory leads to a generalization of local group theory, where 
Sylow subgroups are replaced by defect groups of blocks. A major theme of modular 
representation theory is to relate modular representations of a group and its local sub-
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groups, sometimes leading to versions of “factorization” results like Frobenius’s Theorem 
above replaced by an equivalence between module categories [27].

2.2. p-local representation theory

2.2.1. p-local representation theory is concerned with the study of representations of 
G over Zp and Fp (or finite extensions of those) in relation with p-local subgroups and 
their representations.

It involves character-theoretic aspects, in particular the value of complex characters 
of G on elements whose order is divisible by p. It involves also the study of simple and 
indecomposable representations and mod-p cohomology.

2.2.2. Let p be a prime number and O be the ring of integers of a finite extension K
of Qp. Let k be the residue field of O.

Let G be a finite group. The category kG-mod is not semisimple if p divides |G|, 
but it still splits as direct sum of indecomposable full abelian subcategories. This is 
induced by a corresponding decomposition of OG-mod. That decomposition comes from 
a decomposition of 1 as a sum of orthogonal primitive idempotents 1 =

∑
b b of Z(OG), 

the block idempotents. We have an algebra decomposition into blocks OG =
∏

b OGb

and a category decomposition OG-mod =
⊕

b OGb-mod. We will still denote by b the 
image of the idempotent in Z(kGb) and we have corresponding decompositions of kGb

and kGb-mod.
The principal block OGb0 of OG is the one such that b0 does not act by 0 on the 

trivial representation.
We will always assume that K contains all |G|-th roots of unity.
A defect group of a block OGb is a minimal subgroup D of G such that the restriction 

functor Db(OGb) → Db(OD) is faithful. A defect group is a p-subgroup of G and all 
defect groups are conjugate. The defect groups are trivial if and only if OGb is a matrix 
algebra over O (equivalently, kGb is semisimple). The defect groups of the principal block 
are the Sylow p-subgroups of G.

There is a unique block idempotent bD of ONG(D), the Brauer correspondent of b, 
such that the functor bDOGb ⊗OGb − : Db(OGb) → Db(ONG(D)bD) is faithful. The 
idempotent bD is actually contained in OCG(D).

2.3. Conjectures

2.3.1. Alperin’s weight conjecture
Alperin’s weight conjecture [1] asserts that the number of non-projective simple kG-

modules is locally determined.
A weight for G is a pair (Q, V ), where Q is a p-subgroup of G and V is a projective 

simple kNG(Q)/Q-module.
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Conjecture 2.1 (Alperin). The number of isomorphism classes of simple kG-modules is 
the same as the number of conjugacy classes of weights.

The conjecture has also a blockwise version.
We will explain in §4.2.1 that the conjecture has a bijective proof when G is a finite 

group of Lie type in defining characteristic, for example G = GLn(Fpr). This is the 
inspiration for the conjecture. In a sense, Alperin’s conjecture predicts that all finite 
groups behave like finite group of Lie type in defining characteristic.

Alperin’s weight conjecture was reduced by Navarro and Tiep [84] (and Späth [93]
for the blockwise version) to a statement about simple groups, involving the existence of 
bijections between simple modules and ordinary characters for certain local subgroups. A 
crucial missing case is that of isolated blocks of finite groups of Lie type in non-describing 
characteristic.

2.3.2. Broué’s conjecture
Broué’s conjecture [19] asserts that the derived category of kG-modules (excluding 

as above semi-simple parts) is determined locally, when Sylow p-subgroups are abelian. 
There is a blockwise version which we now state.

Conjecture 2.2 (Broué). Let OGb be a block with abelian defect group D. We have 
Db(OGb) � Db(ONG(D)bD).

When G is a finite group of Lie type in non-defining characteristic, Broué and others 
have proposed an explicit candidate for a functor realizing an equivalence, using Deligne-
Lusztig varieties (cf §5.4.1). In a sense, Broué’s conjecture predicts that all finite groups 
behave like finite groups of Lie type in non-defining characteristic as far as modular 
representations are concerned (with the abelian defect assumption), even though the 
sought-after equivalence won’t arise from something like a Deligne-Lusztig variety.

Remark 2.3. Broué’s conjecture does not extend in an obvious way to blocks with non-
abelian defect groups, cf for example §4.2.3.

On the other hand, one can generalize slightly Broué’s conjecture to the case where 
the hyperfocal subgroup of the defect group is abelian [90, Appendix A.2].

2.3.3. Comparison
The two conjectures lead to an odd phenomenon: finite groups, with respect to a prime 

p, behave like finite groups of Lie type in both defining and non-defining characteristic!
For blocks with abelian defect groups, Broué’s conjecture implies Alperin’s conjec-

ture. A major open problem (beyond proving these conjectures) is to find a structural 
statement like Broué’s conjecture for general blocks.

Note that the neighborhood of the trivial representation is determined locally: 
H∗(G, k) can be recovered as a subalgebra of H∗(P, k). When P is abelian (or when 
NG(P ) controls fusion), then H∗(G, k) = H∗(P, k)NG(P ) = H∗(NG(P ), k).
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A general version of Broué’s conjecture should contain both that fact and the informa-
tion about the number of simple modules. Going beyond the neighborhood of the trivial 
representation is discussed for finite groups of Lie type in non-defining characteristic in 
§6.1.4.

Alperin’s conjecture can be reformulated in terms of chains of p-subgroups [74]. Con-
sider the poset of non-trivial p-subgroups of G and the associated simplicial complex P
(n-simplices are chains Q0 < Q1 < · · · < Qn).

Alperin’s conjecture (for all finite groups) is equivalent to the equality (for all finite 
groups G)

∑
c∈P/G

(−1)|c|l′(k StabG(c)) = 0

where l′(kG) is the number of non-projective simple modules. The simplicial complex P
can be replaced by its subcomplex given by elementary abelian subgroups or by other 
complexes using subgroups Q such that Q = Op(NG(Q)): the sum does not change. Here 
we denote by Op(H) the largest normal p-subgroup of a finite group H.

There is also a blockwise version of that reformulation. This reformulation suggests 
that appropriate categories of representations of local subgroups could be glued to recover 
some weakened version of the category of representations of G.

2.4. Perverse equivalences

2.4.1. Definition
Let A and A′ be two finite dimensional algebras over a field k and let F : Db(A) ∼→

Db(A′) be an equivalence of triangulated categories. The equivalence F induces an iso-
morphism of abelian groups K0(Db(A)) = ZIrr(A) ∼→ ZIrr(A′) = K0(Db(A′)), but no 
bijection Irr(A) ∼→ Irr(A′). So, in the situation of Broué’s abelian defect conjecture 
(Conjecture 2.2), there is no expectation of a bijection between simple modules. We will 
introduce now a particular type of derived equivalence that induces such a bijection [35].

Fix π : Irr(A) → Z. An equivalence F : Db(A) ∼→ Db(A′) is perverse relative to π if 
there is a bijection f : Irr(A) ∼→ Irr(A′) such that

• given S ∈ Irr(A), if T is a composition factor of Hi(F (S)), then π(f−1(T )) < π(S)
for i �= −π(S)

• H−π(S)(F (S)) admits f(S) as a composition factor with multiplicity one, and all 
other composition factors T satisfy π(f−1(T )) < π(S).

When this holds, the map f is determined by F and π.
Given A and π, then A′ is unique up to Morita equivalence (if it exists).
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Remark 2.4. This is a particular case of a more general definition that involves the 
additional data of an order on Irr(A).

Perverse equivalences can be defined more generally for derived categories of abelian 
categories. A further generalization is the consideration of a filtered triangulated category 
with two t-structures and the notion of a shift of t-structures with respect to a perversity 
function: the t-structures are assumed to be compatible with the filtration and the t-
structures induced on the slices of the filtration differ by a shift given by the perversity 
function.

2.4.2. Examples
Consider the situation of Broué’s conjecture: we have a block OGb with defect group 

D. If there is an equivalence Db(OGb) ∼→ Db(ONG(D)bD) such that the induced equiva-
lence over k is perverse, then there is a total order on Irr(kGb) and on Irr(KGb) such that 
the decomposition matrix of OGb has the following shape (cf §7.1.3 for the definition of 
decomposition matrices):

1
∗ 1
...

. . . . . .
∗ . . . ∗ 1
∗ . . . . . . ∗
...

...
∗ . . . . . . ∗

In the situation of Broué’s abelian defect conjecture, perverse equivalences are known 
to exist in a number of cases: when defect groups are cyclic and conjecturally in the case 
of groups of Lie type in non-defining characteristic [35] (cf §5.4.1), for principal blocks 
with defect group of order 4 or 9 of groups with no simple factor A6 or M22 when p = 3
[40, Theorem 4.36]. Note that there is no perverse equivalence in the situation of Broué’s 
conjecture for principal 3-blocks of A6 and M22 [40, §5.3.2.3 and §5.4.3].

3. Finite groups of Lie type

We discuss now finite groups of Lie type (cf [83]).

3.1. Reductive groups

Let p be a prime number and F̄p be an algebraic closure of the finite field with p
elements. Given q a power of p, we denote by Fq the subfield of F̄p with q elements.

Let G be a (connected) reductive (linear) algebraic group over F̄p.
Let T0 be a maximal torus of G and B0 a Borel subgroup of G containing T0. Let 

X = X(T0) = Hom(T0, Gm) and Y = Y (T0) = Hom(Gm, T0). Let Φ ⊂ X denote the 
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set of roots, Δ the set of simple roots, Φ∨ the set of coroots and Δ∨ the set of simple 
coroots. Given α ∈ Δ∨, we denote by ωα the corresponding fundamental weight. Let ρ
be the half sum of the positive roots.

Let W = NG(T0)/T0 be the Weyl group and let S = (sα)α∈Δ be its generating set 
as a Coxeter group.

3.2. Rational structures

3.2.1. Frobenius endomorphisms
Let V0 = SpecA0 be an affine algebraic variety over Fq, where q is a power of p. The 

endomorphism F of V = V0 ×Fq
F̄q = Spec(A0 ⊗Fq

F̄p) given on A0 ⊗Fq
F̄p by a �→ aq

is called the (geometric) Frobenius endomorphism of V .
Given V ′ an affine algebraic variety over F̄p, an endomorphism F of V ′ is called a 

Frobenius endomorphism if there is a power q of p and an affine algebraic variety V0

defined over Fq with an isomorphism V ′ ∼→ V0 ×Fq
F̄q identifying F with the Frobenius 

endomorphism coming from V0. We say that F defines a rational structure for V ′ over Fq.

3.2.2. Steinberg endomorphisms
Let F be an endomorphism of G, a power of which is a Frobenius endomorphism 

(such an F is called a Steinberg endomorphism of G). The group G = GF is finite: this 
is a finite group of Lie type. We will put more generally H = HF for H an F -stable 
subgroup of G.

There exists an F -stable Borel subgroup B0 and an F -stable maximal torus T0 con-
tained in B0.

We say that (G, F ) is split if F acts by a multiple of the identity on X(T0). If (G, F )
is split then F is a Frobenius endomorphism.

Let δ be the minimal positive integer such that (G, F δ) is split and we define the 
positive real number q by the requirement that F δ defines a rational structure over Fqδ . 
The automorphism of X ⊗Z Q induced by F permutes the lines Qα for α ∈ Δ and this 
provides an automorphism φ of order δ of the Coxeter diagram of G. When G is simple 
and simply connected, the endomorphism F of G depends only on q and on φ, up to an 
inner automorphism.

If F is a Frobenius endomorphism, then F (α) = qφ(α) for all α ∈ Δ.
Let δ̄ be the minimal positive integer such that F δ̄ is a Frobenius endomorphism of G.

3.3. Finite simple groups of Lie type

The finite simple groups of Lie type are obtained by the following construction. We 
assume that G is simple and simply connected. Then, the group G/Z(G) = GF /Z(G)F
is simple (with some exceptions described after the classification below) and we obtain 
in this way all finite simple groups of Lie type. The group is denoted by δD(qδ̄), where 
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D is the type of the root system of G (equivalently, the type of the Dynkin diagram). 
We give now the list of all those finite simple groups, with restrictions on q if any.

• An(q), n ≥ 1
• Bn(q), n ≥ 2
• Cn(q), n ≥ 3
• Dn(q), n ≥ 4
• E6(q), E7(q), E8(q), F4(q), G2(q)
• 2An(q), n ≥ 2
• 2Dn(q), n ≥ 3
• 3D4(q), 2E6(q)
• 2B2(q2), q2 = 22m+1 for some m ≥ 1
• 2G2(q2), q2 = 32m+1 for some m ≥ 1
• 2F 4(q2), q2 = 22m+1 for some m ≥ 0

with the following exceptions: A1(2), A1(3), 2A2(2) and B2(2) are not simple and can 
be removed from the list. The derived subgroup of 2F 4(2) is simple and of index 2 in 
2F 4(2). It does not arise in another construction and that group (the Tits group) needs 
to be added to the list of finite simple groups of Lie type. Note that some finite simple 
groups of Lie type occur more than once in the classification.

3.4. Local structure

We consider the setting of §3.2.2.

3.4.1. Defining characteristic
Let U0 be the unipotent radical of B0. Then U0 is a Sylow p-subgroup of G.
An important class of subgroups in local group theory consists of those p-subgroups 

Q of G such that Q = Op(NG(Q)). In our setting where G is a finite group of Lie type 
and p is the defining characteristic, Q satisfies this condition if and only if Q is the group 
of F -fixed points of the unipotent radical of an F -stable parabolic subgroup of G [33, 
Remark 6.15].

Note that U0 is abelian if and only if the quotient of G by its radical is a product of 
groups of type A1.

Remark 3.1. Assume G is simple and simply connected with F -rank 1, i.e. of type A1

(group SL2(q)), 2A2 (group SU3(q2)), 2B2 (Suzuki group) or 2G2 (Ree group).
In that case, the Sylow p-subgroups of G have the trivial intersection property: given 

g ∈ G with g /∈NG(U0) = B0, we have U0 ∩ gU0g
−1 = 1. This implies that two subgroups 

of U0 that are conjugate in G are already conjugate in B0.
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3.4.2. Non-defining characteristic
We consider a prime number � �= p.
We denote by d the order of q in F×

� .
We assume here that F is a Frobenius endomorphism. The �-local structure of G has 

generic aspects explained in [22].
A Φd-subgroup of G is an F -stable torus S such that Φd(q−1F ) acts by 0 on Y (S) ⊗Q. 

Here, Φd is the d-th cyclotomic polynomial.
Let S be a Φd-subgroup of G. There is g ∈ G such that gT0g

−1 is F -stable and 
contains S. Let w be the image of g−1F (g) ∈ NG(T0) in W . Given s ∈ S, we have 
wF (g−1sg)w−1 = g−1F (s)g. It follows that the image of Y (g−1Sg) ⊗ Q in Y (T0) ⊗ Q
is a subspace on which Φd(w(q−1F )) acts by 0.

All maximal Φd-subgroups of G are G-conjugate. Let S be a maximal Φd-
subgroup of G and g, w be as above. The image of Y (S) in Y (T0) is Y (T0) ∩
ker(Φd(wq−1F )) | Y (T0) ⊗ Q).

Assume � > 3 and F is a Frobenius endomorphism. Let S be a maximal Φd-subgroup 
of G and L = CG(S), a Levi subgroup. Let T0 be a maximal F -stable torus of L and let 
WL = NL(T0)/T0. Let W ′ be the subgroup of W generated by roots orthogonal to all 
the roots corresponding to L. There exists an �-subgroup D′ of NG(T0)F whose image 
in W is a Sylow �-subgroup of W ′ and such that D′ ∩ T0 = 1. Then D = Z(L)F� � D′ is 
a Sylow �-subgroup of G [31] (cf also [33, Exercice 22.6]). Furthermore, D is abelian if 
and only if D′ = 1.

When D is abelian, we have an isomorphism NG(D)/CG(D) ∼→ (NW (WL)/WL)wF , 
where w is defined as above from S. The group NG(D)/CG(D) is a complex reflection 
group [77, Theorem 3.4] (cf [21, Theorem 5.7]). When L is a torus, then q−1wF is 
d-regular and this is explained in §7.2.3.

Remark 3.2. It is a remarkable fact that when D is abelian, then NG(D)/CG(D) is 
a reflection group. We showed in [92] that a suitable version of this property actually 
holds for all finite simple groups. We consider G0 a simple group with an abelian Sylow 
�-subgroup D such that H2(G, F�) = 0. Let G be a subgroup of Aut(G0) containing G0

and such that G/G0 is a Hall �′-subgroup of Out(G0). Then there exists

• a field extension K of F�

• an extension of the structure of F�-vector space on the largest elementary abelian 
subgroup Ω1(D) of D to a structure of K-vector space

• a subgroup N of GLK(Ω1(D))
• a subgroup Γ of Aut(K)

such that NG(D)/CG(D) = N�Γ and the normal subgroup of N generated by reflections 
acts irreducibly on Ω1(D).
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For example, when G0 = PSL2(�n), we view D � (Z/�)n as a one-dimensional vector 
space over K = F�n , we have N = K× and Γ is a Hall 2′-subgroup of Gal(K/F�).

It would be very interesting to find a role for reflection groups in Broué’s abelian 
defect group conjecture (Conjecture 2.2).

4. Defining characteristic

As we will see, it is much easier to parametrize irreducible representations of G in 
characteristic p than in characteristic 0 (cf [70]).

4.1. Simple modules and blocks

4.1.1. Rational representations
Let G be a reductive connected algebraic group over an algebraic closure F̄p of a finite 

field with p elements, where p is a prime number. We consider T0, B0, etc as in §3.1.
Let X+(T0) = {λ ∈ X(T0) | 〈λ, α∨〉 ≥ 0 ∀α ∈ Δ} be the set of dominant weights. 

Given λ ∈ X+(T0), let Lλ = G ×B0 (F̄p)λ be the associated line bundle on the flag 
variety G/B0. The rational G-module H0(G/B0, Lλ) has a unique simple submodule 
L(λ) and {L(λ)}λ∈X+(T0) is a full set of representatives of isomorphism classes of simple 
rational G-modules.

4.1.2. Representations of the finite group
We consider now the setting of §3.2.2.
Given r ≥ 0, we put Xr = {λ ∈ X+(T0) | 〈λ, α∨〉 < r ∀α ∈ Δ}.
Given λ ∈ X+, let L(λ) be the restriction of L(λ) to G.
Given A an abelian group, we put A∨ = Hom(A, F̄×

p ).
We assume in §4.1.2 that G is simply connected and simple and that F is a Frobenius 

endomorphism.
We have the following description of simple modules (Steinberg) [70, Theorem 2.11 and 

§20.2] and of their blocks and defect groups (Dagger and Humphreys) [70, Theorem 8.5 
and §20.3].

Theorem 4.1. The set {L(λ)}λ∈Xq
is a complete set of representatives of isomorphism 

classes of simple kG-modules.
There is one block of defect zero, with simple module the Steinberg module L((q −

1)ρ). The other blocks have maximal defect, they are parametrized by Z(G)∨. The simple 
modules in the block kGbζ corresponding to ζ ∈ Z(G)∨ are the L(λ) with λ|Z(G) = ζ and 
λ ∈ Xq \ {(q − 1)ρ}.

Remark 4.2. Note that the set of simple kG-modules and their dimensions depend only 
on q, not on the Frobenius endomorphism. For example, the sets of simple modules for 
SUn(q) and SLn(q) are obtained by restricting the same set of simple rational represen-
tations of SLn.
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Remark 4.3. When F is not a Frobenius endomorphism, Theorem 4.1 needs to be mod-
ified as follows [70, §20]. We assume F is not a Frobenius endomorphism. Note that 
F 2 is a Frobenius endomorphism defining a rational structure over Fq2 . Note also that 
Z(G) = 1. Define now Xq2,S as the set of λ ∈ Xq2 such that 〈λ, α∨〉 = 0 for every long 
simple root α. The set {L(λ)}λ∈Xq2,S

is a complete set of representatives of isomorphism 
classes of simple kG-modules.

The Steinberg module is L((q2 − 1)ρS), where

ρS =
∑
α∈S

α short

ωα.

It is in a block of defect zero and the principal block is the unique other block.

4.2. Alperin’s conjecture

4.2.1. Bijective proof
We assume in §4.2.1 that G is simply connected and F is a Frobenius endomorphism. 

We follow [30] and [33, §6.3].
Given I an F -stable subset of S, let LI be the corresponding standard Levi subgroup 

of G and let XI be the set of λ ∈ Xq such that given α ∈ Δ, we have 〈λ, α∨〉 = q − 1 if 
and only if α ∈ I. We have Xq =

∐
I⊂S XI .

• Restriction from T0 to T0 induces a bijection

XI
∼→ Irrk(T0/(T0 ∩ [LI , LI ]))

∼→ L∨
I .

• Given ζ ∈ L∨
I , the kLI -module StLI

⊗ ζ is simple and projective. This provides a 
bijection from L∨

I to the set of isomorphism classes of projective simple kLI -modules.
• Let Q be a p-subgroup of G such that kNG(Q)/Q has a simple projective module. 

Then Op(NG(Q)/Q) = 1 and it follows (cf §3.4.1) that Q is the subgroup of F -fixed 
points of the unipotent radical of an F -stable parabolic subgroup of G. So, we have a 
bijection from the union over I an F -stable subset of S of the sets of isomorphism classes 
of projective simple kLI -modules to the set of G-conjugacy classes of pairs (Q, V ) where 
Q is a p-subgroup of G and V a simple projective kNG(Q)/Q-module, taken up to 
isomorphism.

Together with the bijection from Xq to Irrk(G), we obtain a bijection between Irrk(G)
and the set of G-conjugacy classes of pairs (Q, V ) where Q is a p-subgroup of G and V a 
simple projective kNG(Q)/Q-module, taken up to isomorphism. This confirms Alperin’s 
conjecture for G.
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X+

∼

X+
q

∼

∼ ∐
I⊂S

I F -stable

Irrk(T0/(T0 ∩ [LI , LI ]))

∼

∐
I⊂S

I F -stable

{proj simple kLI -modules}

∼

Irr(G) Irrk(G) ∼ {(Q,V ) |Q ≤ G, V proj simple k(NG(Q)/Q)-module}/G

4.2.2. Abelian defect
If G is simple and kG has a block with non-trivial abelian defect groups, then G is of 

type A1 (cf §3.4.1 and Theorem 4.1). Broué’s abelian defect group conjecture has been 
solved for SL2(Fq) ([34] for q = p2, [85] for the principal block, [98] for the non-principal 
block with maximal defect and [97] for the proof that the equivalence is a composition 
of perverse equivalences). The solution involves some rather complicated combinatorial 
and algebraic constructions.

Remark 4.4. Assume G is semisimple and simply connected, split over Fp and assume 
that p is larger than the Coxeter number of G. We denote by R =

⊕
α∈Δ Zα the root 

lattice.
Consider the full subcategory C of the derived category of bounded complexes of finite-

dimensional B0-modules whose objects are those C such that Hi(C) has weights in pR
for all i. The functor R IndG

B0
induces an equivalence from C to the bounded derived 

category of the principal block of finite-dimensional representations of G ([4] for the 
case of quantum groups at a root of unity and [69] for an adaption and details of the 
characteristic p case).

It would be very interesting if this equivalence could be used to relate representations 
of G and B0 over k, particularly in the case of SL2. This would possibly shed light on 
how Broué’s conjecture could be generalized to non-abelian defect groups.

4.2.3. Groups of F -rank 1
When G has F -rank 1, the induction and restriction functors provide inverse stable 

equivalences (cf §7.1.2) between kB0 and kG because the Sylow p-subgroups of G have 
the trivial intersection property (cf §3.4.1).

The principal blocks of kB0 and kG are actually derived equivalent when G = SL2(q), 
but this is known not to generalize to all groups of F -rank 1. It is known in a number 
of cases that the principal blocks of kG and kB0 are not derived equivalent because 
the centers are not isomorphic: for 2G2(q2) when q2 ≥ 27 [28] and for G = SU3(q)
when 3 ≤ q ≤ 8 [16]. It is also known that the principal blocks of OG and OB0 are 
not derived equivalent because the centers are not isomorphic for G = 2B2(q2) when 
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q2 ≥ 8 [36]. Note that in this last case the centers of the principal blocks of kG and kB0
are isomorphic. It is expected that the principal blocks of kG and kB0 are not derived 
equivalent in that case.

4.3. Change of central character

4.3.1. Number of simple modules in a block
We assume in §4.3 that F is a Frobenius endomorphism.
Let γ̄ = ResT0

Z(G) : X → Z(G)∨.

Lemma 4.5. Let ζ ∈ Z(G)∨. The number of simple modules in kGbζ is less than or equal 
to that for the principal block kGb0. There is equality if and only if ζ ∈

⋂
α∈Δ∨ γ̄(Zωα).

Proof. Let γ : X → T∨
0 be the restriction map. It induces an isomorphism X/(F−1)X ∼→

T∨
0 . Let I be a φ-stable subset of Δ. Let X ′

I be the set of λ ∈ Xq such that

• given α/∈I, we have 〈λ, α∨〉 = q − 1
• given α ∈ I, there is i ≥ 0 such that 〈λ, φi(α∨)〉 �= q − 1.

The map γ restricts to a bijection X ′
I

∼→ γ(
⊕

α∈I Zωα).
The restriction γ̄|X′

I
factors as

X ′
I

γ|X′
I−−−→

∼
γ(
⊕
α∈I

Zωα) γI−→ Z(G)∨

where γI is given by restricting from T0 to Z(G).
Let ζ ∈ Z(G)∨. Put δI,ζ = 1 if γ−1

I (ζ) �= ∅ and δI,ζ = 0 otherwise.
We have

| Irrk(kGbζ)| =
∑
I

|γ̄−1(ζ) ∩X ′
I | =

∑
I

|γ−1
I (ζ)| =

∑
I

δI,ζ |γ−1
I (0)|

where I runs over non-empty φ-stable subsets of Δ. This shows the requested inequality.
We have δI,ζ = 1 if and only if ζ ∈ γ̄(

⊕
α∈I Zωα). Note that γ̄(ωα) = γ̄(ωφ(α)) for all 

α. The equivalence of the lemma follows. �
The tables of [Bki, Lie 4,5,6] show that outside type A, there is a fundamental weight 

in the root lattice, hence 
⋂

α∈Δ∨ γ̄(Zωα) = 0.
Assume G = SLn(q) (in which case we put ε = 1) or G = SUn(q) (in which case we put 

ε = −1). We have 
⋂

α∈Δ∨ γ̄(Zωα) �= 0 if and only if n = �r for some prime �|(q − ε) and 
r ≥ 1. In that case Z(G) � Z/(gcd(�r, q − ε)Z) and the non-trivial characters of Z(G)∨
with order � are those non-trivial characters ζ such that kGbζ has the same number of 
simple modules as kGb0.
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4.3.2. Equivalences
We consider the setting above where G = SL�r(q) or G = SU�r (q) with � a prime 

dividing q − ε.

Question 4.6. Let ζ be a character of order � of Z(G)∨. What is the relation between 
kGb0-mod and kGbζ-mod? Are the blocks kGb0 and kGbζ stably equivalent?

Note that if P is a proper F -stable parabolic subgroup of G, then the character ζ of 
Z(G) extends to P . Given Q a non-trivial p-subgroup of G, there is a proper F -stable 
parabolic subgroup P of G such that NG(Q) ⊂ P (cf [33, Remark 6.15]). It follows that 
ζ extends to NG(Q). As a consequence (cf Remark 4.8 below), the blocks of proper local 
subgroups corresponding to kGb0 and kGbζ are isomorphic. If those local equivalences 
could be glued (cf [90, §7.3] for a setting for gluing), then we would obtain a stable 
equivalence answering positively the question.

When �r = 2 and ε = 1, the question has a positive answer. The blocks are actually 
derived equivalent, since they are both derived equivalent to the corresponding blocks of 
kB0 (cf §4.2.2), and those blocks are isomorphic. Cf also [96] for a direct construction as 
a composition of perverse equivalences.

When �r = 3 and ε = −1, the question has also a positive answer since the blocks are 
both stably equivalent to the corresponding blocks of kB0 (cf §4.2.3), and those blocks 
are isomorphic.

Remark 4.7. Note that we do not expect the blocks to be derived equivalent in general. 
Consider the case G = SL3(4). Let us show that there are no perfect isometries between 
the principal 2-block and a non-principal 2-block of SL3(4). In particular, those blocks 
are not derived equivalent over O.

The principal block of G has 9 irreducible characters: 1, 20, 35, 35, 35′, 45, 45, 63
and 63. Let b be one of the non-principal block idempotents with positive defect. The 
irreducible characters of KGb are those with central character a given primitive cubic 
root of unity. They are 151, 152, 153, 21, 45, 45, 63, 63 and 84.

Let I be a perfect isometry from OGb0 to OGb. Let η =
∑

χ∈Irr(KGb0) χ ⊗ I(χ). Let 
g be an element of order 5 and h an element of even order. We have

0 = η(g, h) = I(1)(h) + αI(63)(h) + ᾱI(63)(h)

with α = 1−
√

5
2 and ᾱ = 1+

√
5

2 . It follows that I(63)(h) = I(63)(h) = −I(1)(h). Taking 
h an involution, we deduce that {I(1), I(63), I(63} ⊂ {±151, ±152, ±153, ±63, ±63}. 
Taking h of order 4, we obtain that {I(1), I(63), I(63} ⊂ {±21, ±45, ±45, ±63, ±63}. 
This is a contradiction.

Remark 4.8. Let G be a finite group and ζ a character of Z(G)p′ , the largest p′-subgroup 
of Z(G). Let
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eζ = 1
|Z(G)p′ |

∑
z∈Z(G)p′

ζ(z)−1z

be the associated idempotent.
If ζ extends to a character ζ̃ of G, then there is an isomorphism of algebras

e1kG
∼→ eζkG,

∑
g∈G

agg �→
∑
g∈G

ζ̃(g)−1agg.

In general, the algebras e1kG and eζkG can have rather different module categories and 
invariants. When the extension assumption holds for all p-local subgroups, we could hope 
that the algebras are at least stably equivalent. More precisely, assume that given any 
non-trivial p-subgroup Q of G, the character ζ extends to NG(Q). Are the algebras e1kG

and eζkG stably equivalent?
One can ask similar questions for two linear characters of Z(G). For example, let d

be an integer prime to the order of ζ. What is the relation between eζkG and eζdkG? If 
ζd can be obtained from ζ by applying a field automorphism of k, then the rings eζkG
and eζdkG are isomorphic, but they need not be isomorphic as k-algebras (nor even 
derived equivalent), as shown by Benson and Kessar [6, Example 5.1]. In their examples, 
Op(G) �= 1.

5. Non-defining characteristic

We consider a connected reductive algebraic group G with a Steinberg endomorphism 
F as in §3.2.2. We fix a prime � distinct from p. We will be discussing mod-� represen-
tations of G. We fix K a finite extension of Q� containing all |G|-th roots of unity and 
denote by O its ring of integers and by k its residue field.

In §5.1 and §5.2, we recall constructions and results of Deligne-Lusztig and Lusztig 
[43,44,78,79].

5.1. Deligne-Lusztig varieties

5.1.1. Definition
Consider the Lang covering L : G → G, g �→ g−1F (g). This is a surjective étale 

Galois morphism, with Galois group G.
Let P be a parabolic subgroup of G and let U be its unipotent radical. Assume there 

is an F -stable Levi subgroup L with P = U �L. The associated Deligne-Lusztig variety 
is L−1(F (U)). It has a free left (resp. right) action of G (resp. L) by multiplication. We 
can also consider its quotient YU = L−1(F (U))/(U ∩ F (U)), which has the same �-adic 
cohomology. One can consider further the variety XU = YU/L. The varieties YU and 
XU are smooth.

Remark 5.1. When P is F -stable, then YU = G/U is a finite set.
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5.1.2. Case of tori
A particular role is played by Deligne-Lusztig varieties associated to tori. Let us 

give another model for those. Fix B0 an F -stable Borel subgroup of G and T0 an F -
stable maximal torus contained in B0. Let U0 be the unipotent radical of B0 and let 
W = NG(T0)/T0.

Let B be the variety of Borel subgroups of G. There is a decomposition B × B =∐
w∈W O(w) into orbits for the diagonal action of G, where O(w) is the orbit containing 

(B0, wB0w
−1).

Given w ∈ W , we put

X(w) = {B ∈ B | (B, F (B)) ∈ O(w)}.

Let ẇ ∈ NG(T0) with image w ∈ W . We put

Y (ẇ) = {gU0 ∈ G/U0 | g−1F (g) ∈ U0ẇU0}.

There is a left action of G on X(w) and Y (ẇ) by left multiplication and a right action of 
TwF

0 on Y (ẇ) by right multiplication. The map gU0 �→ gB0g
−1 induces an isomorphism 

of G-varieties G \ Y (ẇ) ∼→ X(w). The varieties X(w) and Y (ẇ) have pure dimension 
l(w), the length of w (cf §7.2.4).

Let h ∈ G such that h−1F (h) = ẇ. The maximal torus T = hT0h
−1 is F -stable and 

the isomorphism T0
∼→ T, t �→ hth−1 restricts to an isomorphism TwF

0
∼→ TF .

There is a commutative diagram

YhU0h−1
g 	→ghU0

∼

g(U∩F (U)) 	→g(U∩F (U))L

Y (ẇ)

gU0 	→gB0g
−1

XhU0h−1
g 	→ghB0h

−1g−1

∼
X(w)

where the horizontal maps are G-equivariant isomorphisms and the top horizontal map 
is equivariant for the right action of T , via its identification with TwF

0 above.
Two elements w and w′ of W are F -conjugate if there is v ∈ W such that w′ =

v−1wF (v).
The construction of T from w induces a bijection from the set of F -conjugacy classes 

of W to the set of G-conjugacy classes of F -stable maximal tori of G.

Remark 5.2. The varieties X(w) are known to be affine in many cases, but it is not known 
if they are affine in general. The affinity is known when q is larger than the Coxeter 
number of G [43, Theorem 9.7] and when w has minimal length in its F -conjugacy class 
([78, Corollary 2.8], [86, §5], [67, Theorem 1.3] and [14]).
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5.1.3. Endomorphisms
We follow [26], inspired by an earlier construction of Lusztig [79, pp. 24–25].
Given w1, . . . , wr ∈ W , let

XF (w1, . . . , wr) = {(B1, . . . ,Br) ∈ Br | (Bi,Bi+1) ∈ O(wi),

1 ≤ i < r and (Br, F (B1)) ∈ O(wr)}.

The variety XF (w1, . . . , wr) depends only on the element b = λ(w1) · · ·λ(wr) of B+
W (cf 

§7.2.4 for the notations), up to canonical isomorphism [42] and we denote it by XF (b).
There is an action of φ on BW by bs �→ bφ(s) for s ∈ S. Note that given n > 0, we 

have a morphism

ιn : XF (b) → XFn(bφ(b) · · ·φn−1(b))

(B1, . . . ,Br) �→ (B1, . . . ,Br, F (B1), . . . , F (Br), . . . , Fn−1(B1), . . . , Fn−1(Br)).

Given 0 ≤ i ≤ r, the morphism

Dw1,...,wi
: XF (w1, . . . , wr) → XF (wi+1, . . . , wr, φ(w1), . . . , φ(wi))

(B1, . . . ,Br) �→ (Bi+1, . . . ,Br, F (B1), . . . , F (Bi))

is purely inseparable. Given b′, b′′ ∈ B+
W , this provides a morphism Db′ : XF (b′b′′) →

XF (b′′φ(b′)).
Let b ∈ B+

W such that (bφ)d = πrφd for some d, r > 0. We define an action of CB+
W

(bφ)
on XF (b) as follows.

Let b′ ∈ CB+
W

(bφ). There are t > 0 and b′′ ∈ B+
W such that πrt = bb′b′′. We identify 

XF (b) with a subvariety of XFdt(πrt) using the embedding ιdt. The endomorphism Db′

of XFdt(πrt) preserves XF (b).
The constructions above extend to the varieties Y . The composite morphism BW

can−−→
W = NG(T0)/T0 lifts to a morphism σ : BW → NG(T0). Given w1, . . . , wr ∈ W , we 
have a variety

YF (w1, . . . , wr)

= {(g1U0, . . . , grU0) ∈ (G/U0)r |
{
g−1
i gi+1 ∈ U0σ(λ(wi))U0 for 1 ≤ i < r

g−1
r F (g1) ∈ U0σ(λ(wr))U0

}.

It has a left action of G by diagonal left multiplication and a right action of Tw1···wrF
0

by diagonal right multiplication. We have a G-equivariant morphism corresponding to 
the quotient by Tw1···wrF

0

YF (w1, . . . , wr) → XF (w1, . . . , wr),

(g1U0, . . . , grU0) �→ (g1B0g
−1
1 , . . . , grB0g

−1
r ).
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The variety YF (w1, . . . , wr) depends only on the element b = λ(w1) · · ·λ(wr) of B+
W , 

up to canonical isomorphism and we denote it by YF (b). Given b′, b′′ ∈ B+
W , we obtain 

a morphism Db′ : YF (b′b′′) → YF (b′′φ(b′)) and we have an action of CB+
W

(bφ) on YF (b)
compatible with the action on XF (b).

5.1.4. Deligne-Lusztig functors
Let P be a parabolic subgroup of G with unipotent radical U and an F -stable Levi 

complement L. The complex Λc(YU, Z�) of �-adic cohomology with compact support 
of YU [88,91] is a bounded complex of �-permutation Z�(G × Lopp)-modules. It is well 
defined up to homotopy. Its cohomology groups are the Hi

c(YU, Z�).
Given R a commutative Z�-algebra, we put Λc(YU, R) = Λc(YU, Z�) ⊗Z�

R. We obtain 
a functor

RG
L⊂P = Λc(YU, R) ⊗RL − : Db(RL-mod) → Db(RG-mod).

When R = Q̄�, the functor RG
L⊂P induces a morphism

RG
L⊂P : G0(Q̄�L) → G0(Q̄�G).

Note that this morphism is expected to depend only on L, and not on P. This is 
known to hold except possibly when q = 2, the parabolic subgroup P is not F -stable 
and the Dynkin diagram of G contains a subdiagram of type E6 (cf [43, Corollary 4.3]
and [44,11]).

Remark 5.3. When P is F -stable, then RL⊂P = R[G/U ] ⊗RL − is the Harish-Chandra 
induction functor.

We denote by ∗RG
L⊂P : G0(Q̄�G) → G0(Q̄�L) the adjoint of RG

L⊂P.

5.2. Characteristic 0 representations

5.2.1. Tori and characters
Let T be an F -stable maximal torus of G. Fix M a positive integer multiple of δ such 

that (wF )M (t) = tq
M for all t ∈ T and w ∈ W (cf §3.2.2 for the definitions of δ and q). 

Let ζ (resp. ξ) be a root of unity of order qM − 1 of F̄p (resp. Q̄�).
The morphism

N : Y (T) → T, y �→ y(ζ)F (y(ζ)) · · ·FM−1(y(ζ))

is surjective and induces an isomorphism Y (T)/
(
(F − 1)(Y (T)

) ∼→ T .
The morphism

X(T) → Hom(Y (T), Q̄×
� ), χ �→ (y �→ ξ〈χ,y+F (y)+···+FM−1(y)〉)
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factors through Hom(N, Q̄×
� ) and gives a surjective morphism X(T) → Hom(T, Q̄×

� ). 
That induces an isomorphism

X(T)/
(
(F − 1)(X(T)

) ∼→ IrrQ̄�
(T ).

5.2.2. Tori and dual groups
Let (G∗, T∗

0, F
∗) be a triple dual to (G, T0, F ): the group G∗ is a Langlands dual of 

G, there is a given isomorphism X(T∗
0) 

∼→ Y (T0), and F ∗ is a Steinberg endomorphism 
of G∗ stabilizing T∗

0 and dual to F . Furthermore, there is a given isomorphism W ∗ =
NG∗(T∗

0)/T∗
0

∼→ W = NG(T0)/T0 and we identify those groups. Note that the action 
of F ∗ on W ∗ corresponds to the action of F−1 on W .

Let T be an F -stable maximal torus of G. It corresponds to an F -conjugacy class (w)
of W (cf §5.1.2). We denote by T∗ an F ∗-stable maximal torus of G∗ whose (G∗)F∗ -
conjugacy class is given by the F ∗-conjugacy class (w−1). Furthermore, the identification 
of T∗

0 with the dual of T0 provides an isomorphism between T∗ and the dual of T, and 
that isomorphism is well-defined up to the action of (NG(T)/T)F . Via the constructions 
of §5.2.1, this gives an isomorphism IrrQ̄�

(T ) ∼→ (T∗)F∗ .
This construction provides a bijection from the set of G-conjugacy classes of pairs 

(T, θ), where T is an F -stable maximal torus of G and θ ∈ IrrQ̄�
(TF ) to the set of 

(G∗)F∗-conjugacy classes of pairs (T∗, s) where T∗ is an F ∗-stable maximal torus of G∗

and s ∈ (T∗)F∗ .

5.2.3. Jordan-Lusztig decomposition
Let us recall the Jordan decomposition of conjugacy classes. An element g ∈ G can 

be decomposed uniquely as g = tu where t is semi-simple, u is unipotent and ut = tu. 
Denote by Cl(G) (resp. Clss(G), Clunip(G)) the set of conjugacy classes of elements 
(resp. semi-simple, unipotent elements) of G.

The Jordan decomposition induces a bijection

Cl(G) ∼→
∐

(t)∈Clss(G)

Clunip(CG(t))

where t runs over conjugacy classes of semi-simple elements of G.
Given (s) a conjugacy class of semi-simple elements of (G∗)F∗ , we denote by 

IrrQ̄�
(G, (s)) the set of irreducible representations of G that occur in the θ-isotypic 

component of H∗
c (YU, Q̄�) for some Borel subgroup of G with unipotent radical U and 

containing an F -stable maximal torus T and θ ∈ IrrQ̄�
(T ) such that (T, θ) corresponds 

to (T∗, s) by the bijection of §5.2.2 for some F ∗-stable maximal torus T∗ of G∗ contain-
ing s.
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The unipotent representations of G are those in IrrQ̄�
(G, 1). They are the irreducible 

representations of G that occur in H∗
c (X(w), Q̄�) for some w ∈ W .

We have the Deligne-Lusztig decomposition (cf [33, Theorem 8.24])

IrrQ̄�
(G) =

∐
(s)∈Clss(G∗)F∗

IrrQ̄�
(G, (s))

where (s) runs over conjugacy classes of semi-simple elements of (G∗)F∗ .
Let s be a semi-simple element of (G∗)F∗ . When CG∗(s) is connected, let (CG∗(s)∗, F )

be dual to (CG∗(s), F ∗). Note that CG∗(s)∗ need not occur as a subgroup of G.
Lusztig constructed a bijection (cf [33, Theorem 15.8])

IrrQ̄�
(
(
CG∗(s)∗

)F
, 1) ∼→ IrrQ̄�

(G, (s)).

When CG∗(s) is a Levi subgroup of G∗, then CG∗(s)∗ can be realized as an F -stable 
Levi subgroup L of G and the bijection is given by

ρ �→ ±RG
L⊂P(ρ⊗ η) (1)

where η is the one-dimensional representation of L corresponding by duality to s ∈
Z(L∗)F∗ and P is a parabolic subgroup of G with Levi complement L.

When Z(G) is connected, one obtains the Jordan-Lusztig decomposition of characters

IrrQ̄�
(G) ∼→

∐
(s)∈Clss(G∗)F∗

IrrQ̄�
(
(
CG∗(s)∗

)F
, 1).

If Z(G) is connected, then Clss(G∗)F∗ can be replaced by Clss((G∗)F∗).

5.2.4. Unipotent representations
Lusztig constructed a parametrization of simple unipotent representations of G by a 

combinatorially defined set U(W, φ) that depends only on the Weyl group W and on the 
finite order automorphism φ induced by F of the reflection representation of W . The 
degrees of the irreducible unipotent representations are polynomials in q (the generic 
degrees). Lusztig also defined a partition of U(W, φ) into families, and a partial order on 
the set of families.

When G = GLn, the simple unipotent representations are parametrized by partitions 
of n. When G = GLn(q), the simple unipotent representations are the components of 
IndG

B Q̄�.
0
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5.3. Modular representations

5.3.1. Blocks and Lusztig series
Let t be a semi-simple element of (G∗)F∗ of order prime to �. We put

e(t) = eG(t) =
∑

(s)∈Cl�(CG∗ (t)F
∗
)

χ∈IrrQ̄�
(G,(st))

eχ

where Cl� denotes the set of conjugacy classes of �-elements.
This idempotent of Z(KG) is actually in Z(OG) [25], hence it is a sum of (orthog-

onal) block idempotents. In other terms, 
⋃

(s)∈Cl�(CG∗ (t)F∗ ) IrrQ̄�
(G, (st)) is a union of 

characters in blocks.
A unipotent block is a block kGb such that be(1) = b.
Given B a Borel subgroup of G containing an F -stable maximal torus T, with unipo-

tent radical U and given θ ∈ Irr(T )�′ such that the pair (T, θ) corresponds to a pair 
(T∗, t), then Λc(YU, O)eθ is an object of OGe(t)-perf. Furthermore, those complexes (for 
varying B, T and θ) generate OGe(t)-perf (the smallest full thick triangulated subcate-
gory containing those is the whole category) [12, Theorem A’].

There is a similar statement for derived categories when all elementary abelian �-
subgroups of G are contained in tori [9, Theorem 1.2].

5.3.2. Jordan decomposition
Broué conjectured [20] a modular version of (1): assume CG∗(t) is a Levi subgroup 

of G∗, with corresponding dual an F -stable Levi subgroup L in G, and let η be dual to 
t. Let P be a parabolic subgroup of G with unipotent radical U and Levi complement 
L. Then HdimYU(YU, O) ⊗ η induces a Morita equivalence between OGeG(t) and OLeL(1). 
This was proven in [20] when L is a torus, while the general case is [12, Theorem 11.8]. 
There is an extension of that result to the case where CG∗(t)◦ is a Levi subgroup [9].

Remark 5.4. The geometric approach has not enabled us to relate isolated blocks, i.e. 
corresponding to a semi-simple �′-element t of (G∗)F∗ such that CG∗(t)◦ is not contained 
in a proper Levi subgroup, to unipotent blocks. It is conjectured though that any block 
is Morita equivalent to a unipotent block, for a possibly non-connected group.

5.3.3. Unipotent blocks
Assume p and � are good for G and �� ||Z(G)/Z(G)◦| · |Z(G∗)/Z(G∗)◦|. We also 

assume for the remainder of §5.3 that F is a Frobenius endomorphism.
There is a “d-Harish Chandra” parametrization of blocks of kG [32,23].
An F -stable Levi subgroup of G is d-split if it is the centralizer of a Φd-subgroup of 

G. A simple unipotent representation ρ of G is said to be d-cuspidal if ∗RG
L⊂P(ρ) = 0

for all proper d-split Levi subgroups L of G with P a parabolic subgroup of G with Levi 
complement L.
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There is a parametrization of the set of unipotent blocks by the set G-conjugacy classes 
of pairs (L, λ) where L is a d-split Levi subgroup of G and λ is a d-cuspidal unipotent 
character of G: the simple unipotent representations in the block corresponding to (L, λ)
are those that occur in RG

L⊂P(λ) for some P.
The parametrization of classes of pairs (L, λ) above depends only on (W, φ) and d, 

and the corresponding subset of U(W, φ) depends only on d [23].

5.3.4. Unipotent decomposition matrices
Fix a total order on IrrQ̄�

(G, 1) such that if ρi is in the family Fi for i ∈ {1, 2} and 
F1 < F2, then ρ1 < ρ2 (cf §5.2.4).

The following result was conjectured by Geck [59] and proven by [29], following earlier 
work on basic sets [60,62] and proofs for GLn(q) in [49], for GUn(q) in [60] and for classical 
groups and certain � (linear primes, for which the blocks are related to blocks of GLn(q)) 
in [66].

Theorem 5.5. There is a (unique) bijection β : IrrQ̄�
(G, 1) ∼→ Irr(kGe1) such that 

dec([ρ]) ∈ [β(ρ)] +
∑

ρ′>ρ Z≥0[β(ρ′)] for any ρ ∈ IrrQ̄�
(G, 1).

The theorem above together with Lusztig’s work (§5.2.4) provides a parametrization 
of the set of simple kGe1-modules by a set that depends only on (W, φ).

It is conjectured that, given W and d (the order of q in F×
� ), for � large enough, the 

square part of the decomposition matrix involving unipotent representations depends 
only on (W, φ) and d, i.e., it is independent of � and q. This is known for GLn(q) [49]
and for linear primes and classical groups [66].

The determination of this “generic” square matrix is a major open problem in the 
study of decomposition matrices for finite groups of Lie type in non-defining characteris-
tic. The recent [54] provides a number of new decomposition matrices for groups of low 
rank.

Assume G is split. The algebra EndOG(IndG
B0

O) is isomorphic to the Hecke algebra 
of W over O (cf §7.2.4), specialized at x = q. The decomposition matrix of that spe-
cialized Hecke algebra is equal to the submatrix of the decomposition matrix with rows 
parametrized by simple modules that are direct summands of IndG

B0
K (principal series 

representations) and columns by simple modules that are quotients of IndG
B0

k ([48], cf 
also [33, Theorem 5.28]). The former depends only on d, if � is large enough, as it is the 
same as the one for the Hecke algebra at x a primitive d-th root of unity, over C [61]. This 
shows the genericity property for a small submatrix. Similar considerations can be used 
to prove genericity properties for small submatrices along the diagonal corresponding to 
various Harish-Chandra series using relative Hecke algebras.

Let a = ν�(Φd(q)). Theorem 5.5 asserts that the decomposition matrix has the follow-
ing shape. Here, the gray entries are on rows corresponding to principal series irreducible 
characters and columns corresponding to modular simple representations that are quo-
tients of IndG

B k. The gray entries give the decomposition matrix of the Hecke algebra.

0
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1
1

1
1

1

1
1

1

1

∗

∗

principal series

# rows depends on �a

Hecke

unipotent

Assume G = GLn(q). Let A = OG/
(
OG ∩(

⊕
χ/∈ IrrQ̄�

(G,1) eχKG)
)
. The simple unipo-

tent representations of kG are the same as the simple A-modules. The algebra A is Morita 
equivalent to the q-Schur algebra of Sn over O specialized at x = q [49,95].

The q-Schur algebra is the endomorphism ring of the direct sum of induced trivial 
modules from Hecke algebras of all standard parabolic subgroups. For � large enough, its 
decomposition matrix is the same as the one obtained for x a primitive d-the root of unity 
over C. So, the square part of the unipotent decomposition matrix of GLn(q) coincides 
with the decomposition matrix of the q-Schur algebra in characteristic 0, at a primitive 
d-th root of unity. One deduces the genericity property for decomposition matrices of 
GLn(q). Furthermore, this matrix has a description in terms of the combinatorics of the 
canonical basis of the Fock space for the quantum group of sld [75,76,3].

Remark 5.6. One can define analogs of q-Schur algebras by generalizing the construction 
to other types of groups, but they do not seem to have good descriptions nor good 
properties like quasi-heredity, except under particular assumptions making the category 
of representations look like the one for general linear groups (for example, classical groups 
and linear primes). The case of unipotent blocks with cyclic defect, fully understood 
now [39], shows already the substantial complications related to the presence of cuspidal 
representations. We propose in §6 to take a limit q → 1 in the �-adic topology, which 
makes q → ∞ in the real topology.
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5.4. Broué’s conjecture

5.4.1. General version
Let b be a block idempotent of OG, D a defect group. Assume D is abelian and 

L = CG(D) is a Levi subgroup of G. Let bD ∈ OL be the Brauer correspondent of b and 
let b′D be a block idempotent of OL with b′DbD = b′D.

Given P a parabolic subgroup of G with unipotent radical U and Levi complement 
L, there is a complex of (OG, OL)-bimodules Λc(YU, O)b′D.

Conjecture 5.7. There is a choice of P and an extension of the right action of CG(D)
on Λc(YU, O)b′D to an action of NG(D, b′D) such that Λc(YU, O)b′D induces a Rickard 
equivalence between bOG and b′DONG(D, b′D).

We refer to §7.1.2 for the notion of Rickard equivalences.
The choice of P and the construction of the extension of the action have been the 

source of developments involving complex reflection groups, their braid groups and Hecke 
algebras, regular elements and centralizers, Garside categories and Deligne-Lusztig vari-
eties [21].

With J. Chuang, we conjecture that the derived equivalence will be perverse, with a 
non-decreasing perversity function (for an order as in §5.3.4) [35]. This would imply the 
triangularity of the decomposition matrix (cf §2.4.2), a known result (Theorem 5.5). A 
conjectural perversity function has been proposed by Craven [38], cf §5.4.3 below. This 
implies that the module category of a block with abelian defect groups is determined by 
Weyl-group type data, together with the perversity function.

When �|(q − 1), the parabolic subgroup P can be chosen to be F -stable and the 
conjecture was proven by Puig [87] (cf [33, Theorem 23.12] for a detailed exposition 
of the principal block case). The difficulty is to construct an extension of the action. 
As a consequence, for unipotent blocks, the unipotent square part of the decomposition 
matrix is unitriangular, a fact obtained independently by Hiß [68, Korollar 3.2].

5.4.2. Case of a torus
We assume that �� |(q − 1), that b is the principal block idempotent and that L = T

is a torus. So D is a Sylow �-subgroup of G. Since CG(D) = T, it follows that this torus 
corresponds to a regular F -conjugacy class (w) of elements of W (cf §7.2.3). Furthermore, 
the group NG(D)/CG(D) is isomorphic to CW (wφ), a complex reflection group. We 
denote by Bd its braid group (cf §7.2.1).

Let w ∈ W such that (λ(w)φ)d = πφd. As explained in §5.1.3, there is a right action 
of T � CB+

W
(λ(w)φ) on Y (λ(w)), hence a right action on Λc(Y (λ(w)), O) commuting 

with the action of G.
It is conjectured that there is a representative C of Λc(Y (λ(w)), O) in the quotient 

of the homotopy category of complexes of O(G × (T � CB+ (λ(w)φ))opp)-modules by 

W
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complexes whose restriction to O(G ×T ) is homotopy equivalent to 0 with the following 
properties:

• the right action of O(T�CB+
W

(λ(w)φ)) on C factors through an action of ONG(D)bD
• the resulting complex of (OGb, ONG(D)bD)-bimodules induces a Rickard equivalence 

between the principal blocks of G and NG(D).

This conjecture is known to hold when X(w) is a curve [91, Corollaire 4.7] and when 
w is a Coxeter element [13,50,52,55]. In those cases the monoid CB+

W
(λ(w)φ) is cyclic 

and its action on Y (λ(w)) is given by powers of F .

5.4.3. Disjunction of cohomology for Deligne-Lusztig varieties
After extending scalars to Q̄�, one obtains a version of Conjecture 5.7 that is also an 

open problem. Restricting to unipotent representations, the crucial missing fact is the 
disjunction of the cohomology groups. We state here a conjecture of [26] for the case 
where L = T is a torus.

Conjecture 5.8. Let w ∈ W such that (λ(w)φ)m = πφm for some m ≥ 1. Given i �= j, 
we have HomQ̄�G

(Hi
c(X(w), Q̄�), Hj

c (X(w), Q̄�)) = 0.

Craven [38] has defined a function Cm : IrrQ̄�
(G, 1) → Z depending only on the 

generic degree of the representation and on m and has conjectured that when ρ occurs 
in Hi

c(X(w), Q̄�), it occurs in degree i = Cm(ρ).
Conjecture 5.8 (together with Craven’s conjecture) is known to hold when w is a 

Coxeter element [78] and for groups of rank 2 [47]. For GLn, it is known in general (cf 
[45] for m = n − 1 and [51, Corollary 3.2] and [10, Theorem 4.3] in general).

This conjecture is implied by the refined version of Conjecture 5.7 discussed in §5.4.2. 
In the case where w = w0, Conjecture 5.8 is older and due to Lusztig [79, p.25, line 
13]. Also, Conjecture 5.8 was proven earlier by Lusztig when w is a Coxeter element of 
minimal length in its class [78].

Conjecture 5.8 can be extended to X(b), where b ∈ B+
W is such that (bF )m = πrFm

for some m, r ≥ 1. The particular case where b = π is known to hold [10].
Conjecture 5.8 can be extended to the case of Deligne-Lusztig varieties associated to 

Levi subgroups [46].
More recently, Lusztig [81, §7] has conjectured that the disjunction property of Con-

jecture 5.8 should hold (in the split case) for elements w ∈ W of minimal length in their 
conjugacy class and such that the trace of the endomorphism of the Hecke algebra given 
by h �→ TwhTw−1 is in Z≥0[x].

6. Degeneration and genericity

We consider here the setting of §3.2.2.
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6.1. Classifying spaces and character sheaves

6.1.1. Completed classifying spaces
Consider the ring of Witt vectors R = W (F̄p). Let GR be a reductive algebraic group 

over R with a maximal torus TR and with an isomorphism GR ×R F̄p
∼→ G restricting 

to TR×R F̄p
∼→ T0. We fix an embedding of R into C and we denote by G(C) = GR(C)

the associated complex Lie group. We also put T(C) = TR(C).
Specialization provides an isomorphism Aut(TR) ∼→ Aut(T0) and we denote by ϕ the 

automorphism of TR lifting F .
We denote by ϕ the automorphism of T(C) induced by F . The corresponding au-

tomorphism Bϕ of the �-completed classifying space (BT(C))∧� extends uniquely to an 
automorphism ψ of (BG(C))∧� ([56, Theorem 1.6] and [71, Theorem 2.5]).

Furthermore, a theorem of Friedlander [57, Theorem 12.2] (cf also [18, Theorem 3.1]) 
shows there is an isomorphism

(BG)∧�
∼→

(
(BG(C))∧�

)hψ
where hψ denotes taking homotopy fixed points by the group Z acting as powers of ψ.

6.1.2. Dependence on q
Consider the group Out((BG(C))∧� ) of homotopy classes of homotopy automorphisms 

of (BG(C))∧� . There is an isomorphism [2, Theorem 1.2]

Out((BG(C))∧� ) ∼→ NGL(Y (T0)⊗Z�)(W, {Z�β}β∈Φ∨)/W.

Given α ∈ Out((BG(C))∧� ), the space (BG(C))∧� )hα depends only on the closed 
subgroup 〈α〉 of Out((BG(C))∧� ) [18, Corollary 2.5], where we use the �-adic topology.

When (G, F ) is split, then ϕ is the automorphism x �→ xq and ψ is the unstable Adams 
operation ψq. Note that the unstable Adams operation ψq is defined more generally for 
q ∈ Z×

� .
In general, when G is simple and F is a Frobenius endomorphism, then the element 

of NGL(Y (T0)⊗Z�)(W, {Z�β}β∈Φ∨)/W induced by ψ is of the form σ · (q id) where σ has 
finite order and ψ = σψq (up to homotopy). In types 2An, 2D2n+1 and 2E6, one has also 
ψ = ψ−q.

The description ψ = σ · (q id) still works for types 2B2 and 2F 4 (resp. 2G2) when 2
(resp. 3) is a square modulo �.

Assume � is odd. The space (BG)∧� depends only on the order d of q in F×
� and on 

ν�(qd − 1) [18, §3 and Proposition 3.2].
Also, B(2An(q))∧� � B(An(q′))∧� , B(2D2n+1(q))∧� � B(D2n+1(q′))∧� and B(2E6(q))∧� �

B(E6(q′))∧� if q and −q′ have the same order d in F×
� and ν�(qd − 1) = ν�((−q′)d − 1)

[18, Proposition 3.3].
Note that (BG)∧� determines the thick subcategory of Db(F�G) generated by the 

trivial module, so this triangulated category has the same genericity properties.
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6.1.3. Classifying spaces of loop groups
We assume (G, F ) is split and put ε = 1 or (G, F ) has type 2An, 2D2n+1 or 2E6 and 

put ε = −1. We assume �|εq − 1.
We have a family of spaces (BG(C)∧� )hψ1+�h̄ over Z�, constant over Z×

� -orbits:

(BG(C)∧� )hψ1+�h̄

Z� = {h̄}

ν�

Z�/Z×
�

∼

Z≥0 ∪ {∞}

One could attempt to make sense of this as a continuous family, and then make sense 
of the limit of those spaces as h̄ → 0 to obtain

” lim
h̄→0

”(BG(C)∧� )hψ1+�h̄ � (BG(C)∧� )hid = L(BG(C))∧� � B(LG(C))∧� ,

where L(X) = Maps(S1, X) is the free loop space and in particular LG(C) is the loop 
group associated to G(C). So, from the point of view of �-completed classifying spaces, 
the loop group LG(C) appears as G(F1).

In other terms,

” lim
νl(εq−1)→∞

”BG(Fq)∧� � B(LG(C))∧� .

So the space B(LG(C))∧� appears as a degeneration of the family of spaces BG(Fq)∧�
for varying q. Here, we use the abusive notation G(Fq) to denote a possibly twisted 
group in a family.

As a consequence, we have also a description of the limit (“generic version”) of the 
thick subcategory of Db(F�G) generated by the trivial module as ν�(εq − 1) → ∞: it is 
the homotopy category of perfect A∞-modules over the A∞-algebra H∗(BLG(C), F�), 
since the thick subcategory of Db(F�G) generated by the trivial module is equivalent to 
perfect A∞-modules over Ext∗F�G

(F�, F�).
Note that while the family of algebras H∗(G, F�) stabilizes [73, Theorem 18], the 

stabilization does not hold when the A∞-algebra structure is taken into account (cf 
Remark 6.1 below).

Remark 6.1. When G = Gm, we have BLG(C) = BLC× � S1 × CP∞, a space whose 
mod-� cohomology is formal as an algebra. The A∞-structure on H∗(BF×

q , F�) can be 
chosen so that there is a single higher multiplication m�r , where r = ν�(q − 1) [82, 
Appendix B, Example 2.2]. This higher multiplication disappears in the limit r → ∞.
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Remark 6.2. The relation between the cohomology of the finite group and that of the 
loop group becomes much more subtle for small � (and r). An approach using the string 
topology is given in [65].

Remark 6.3. Considering the usual topology instead of the �-adic one, we obtain 
limBG(Fq)∧� = BG(F̄q)∧� � BG(C)∧� [58, Theorem 1.4].

6.1.4. Rigidification and character sheaves
In the previous section, we explained how to obtain, under some assumptions, a generic 

version of the modular representation theory of G, in the neighborhood of the trivial 
representation.

To move away from the neighborhood of the trivial representation, we consider a more 
rigid version of B(LG(C))∧� . There is a homotopy equivalence B(LG(C)) � G(C)

hG(C) , the 
homotopy adjoint quotient.

We can now consider the derived category of D-modules on the stack G(C)
G(C) , or con-

structible sheaves with k-coefficients. This is the G(C)-equivariant derived category of 
G(C), for the adjoint action, and it has a thick subcategory of unipotent objects, also 
called the derived unipotent character sheaves, providing a non semi-simple enrichment 
of Lusztig’s theory [7, Definition 6.8]. It is conjectured that the principal series part of 
this triangulated category (i.e., its principal block) is equivalent, for � not too small, to 
the derived category of differential graded modules over k[h × h∗] � W , where h is the 
Lie algebra of T0 over k. A similar result is known for the adjoint quotient LieG

G [89].
For G = GLn, all unipotent character sheaves are in the principal series, so the 

description coincides with our degeneration approach in §6.2 below.
An important problem is to find a conjecture for an algebraic description of the derived 

unipotent character sheaves, beyond the principal series, starting with the case G = Sp4. 
This is related to the problem of finding a canonical generic description of the category 
of unipotent representations in characteristic zero, cf [80].

Note that the category breaks down according to Harish-Chandra series, but it would 
be desirable to find a description that does not use cuspidal objects.

6.1.5. General d
The first constructions of §6.1.3 can be performed without the assumption that �|εq−1. 

Denote by d the order of εq in F×
� . Let ζ be a primitive d-th root of unity in Z�.

One can consider the family of spaces (BG(C)∧� )hψζ+�h̄ over Z� = {h̄} and

” lim
νl(Φd(εq))→∞

”BG(Fq)∧� � ” lim
h̄→0

”(BG(C)∧� )hψζ+�h̄ � L(BG(C)∧� )hμd .

Here μd is the cyclic group of order d acting on BG(C)∧� by ψx, x ∈ μd(Z�).
The space (BG(C)∧� )hμd is an �-compact group [64]. Its “Weyl group” is a complex (or 

rather �-adic) reflection group, not a Coxeter group in general. To proceed as in §6.1.4
we would need an appropriately rigidified version of the space L(BG(C)∧� )hμd .
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Remark 6.4. In [72], Kessar, Malle and Semeraro explain how to understand Alperin’s 
conjecture in the setting of �-completed classifying spaces. One can expect there is a 
framework which encompasses both the cohomological aspects, which was our starting 
point, and the character counts, which they study.

6.2. Degeneration

6.2.1. Degeneration of group algebras of abelian �-groups
Let P be an abelian �-group isomorphic to (Z/�r)n. Let V = J(F�P )/J(F�P )2. This is 

an n-dimensional vector space over F�. Fix a morphism of F�-modules σ : V → J(F�P )
that is a right inverse to the quotient map J(F�P ) → V . The map σ extends uniquely 
to a morphism of F�-algebras S(V ) → F�P . That morphism induces an isomorphism

S(V )/(v�
r

)v∈V
∼→ F�P. (2)

Consider now a finite �′-group E acting on P . The vector space V is an F�E-module. 
Since J(F�P ) is a semi-simple F�E-module, there exists a σ as above that is a morphism 
of F�E-modules. The isomorphism (2) is equivariant for the action of E, hence it extends 
to an isomorphism of F�-algebras

(
S(V )/(v�

r

)v∈V

)
� E

∼→ F�(P � E).

Consider now a general finite abelian �-group P acted on by a finite �′-group E. There 
exists an E-stable decomposition P = P1×· · ·×Pm such that Pi � (Z/�ri)ni for some ri
and ni. Put Vi = J(F�Pi)/J(F�Pi)2. The construction above provides an isomorphism 
of F�-algebras

(
S(V )/(

⋃
i

{v�ri }v∈Vi
)
)

� E
∼→ F�(P � E).

Consider the graded F�[t]-algebra A = F�[t] ⊗Λ(V ) ⊗ S(V ), where F�[t] ⊗F� ⊗S(V )
is in degree 0 and F� ⊗ V ⊗ F� is in degree −1.

We define a structure of differential (F�[t] ⊗ F� ⊗ S(V ))-algebra on A by setting 
d(1 ⊗ v ⊗ 1) = t ⊗ 1 ⊗ v�

ri for v ∈ Vi.
We have Hi(F�(t) ⊗F�[t] A) = 0 for m �= 0 and

H0(F�(t) ⊗F�[t] A) = (F�(t) ⊗ S(V ))/(
⋃
i

{tv�ri }v∈Vi
� F�(t) ⊗ S(V )/(

⋃
i

{v�ri }v∈Vi
).

So, the algebra F�(P � E) is, up to quasi-isomorphism, a deformation of the graded 
algebra 

(
Λ(V ) ⊗S(V )

)
�E. The derived category of F�(P �E)-modules is a deformation 

of the derived category of dg modules over the graded algebra (with zero differential) (
Λ(V ) ⊗ S(V )

)
� E.
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Koszul duality provides an equivalence from the derived category of finitely generated 
differential graded modules over the graded algebra (with zero differential) 

(
Λ(V ) ⊗

S(V )
)

�E to the derived category of finitely generated differential graded modules over 
the graded algebra S(V ∗ ⊕ V ) � E (here V is in degree 0 and V ∗ in degree 2).

To summarize, Db(F�(P � E)) degenerates into the derived category of differential 
graded coherent sheaves on the orbifold [(V × V ∗)/E].

6.2.2. Genericity of perverse equivalences
The discussion here is based on joint work with David Craven [41]. We consider the 

setting of §5.4.1 and we assume to simplify that b is the principal block. So D is a Sylow 
�-subgroup of G and there is an isomorphism of algebras kNG(D)bD � kD � E where 
E = NG(D)/CG(D).

It is conjectured that there is a perverse equivalence between kD � E and kGb, with 
a specific perversity function π : IrrC(E) ∼→ Irrk(E) → Z. That function depends only 
on the type of the group G and on d, not on q or �.

As explained in §3.4.2, the group E is a reflection group. We denote by KE the field 
of definition of its reflection representation V and by OE the ring of integers of KE. Let 
R = OE [|W |−1] and let VR be an RE-module, finitely generated and projective over R, 
such that V � K ⊗R VR.

We conjecture that the function π defines a t-structure on the derived category of 
differential graded modules over the graded algebra (Λ(VR) ⊗ S(VR)) � E, where (R ⊗
S(VR)) � E is in degree 0 and VR ⊗ R in degree −1. The heart A of that t-structure 
would be a “generic version” of kGb, i.e., a limit as ν�(Φd(εq)) → ∞. A ridigity property 
of perverse simple objects would show that the classes of the indecomposable projective 
objects of A ⊗R KE expressed in terms of the classes of the simple KEE-modules would 
give the transpose of the square unipotent part of the decomposition matrix of the 
principal �-block of G for � large enough. Note that the presence of a double grading on 
(Λ(V ) ⊗ S(V )) � E leads to a two-variable deformation of the matrix.

Remark 6.5. The discussion generalizes to the case of non-principal blocks. The block of 
the normalizer is isomorphic to a twist of the group algebra of the semi-direct product 
by a 2-cocycle but that cocycle is expected to be always trivial.

Remark 6.6. We expect the algebra S(V ⊕V ∗) �E to control generic aspects of the mod-
ular representation theory of G. This algebra admits deformations as rational Cherednik 
algebras and the “t = 0” case is expected to relate to unipotent representations [15,8].

6.2.3. Hilbert schemes
We discuss here joint work with Olivier Dudas.
Assume that G = GLn. Let m = �n

d �. We have V � Km
E and W � (Z/d)m � Sm. 

Let Xd be the minimal resolution of A2
K /(Z/d), where Z/d is embedded in SL2(KE).
E
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Let Hilbm(Xd) be the Hilbert scheme of m points on Xd and π : Hilbn(Xd) → Sm(Xd)
be the Hilbert-Chow map. Let f : A2m → Sm(Xd) be the quotient map by (Z/d)m�Sm.

Combining Koszul duality with the derived McKay equivalence, we obtain an equiv-
alence between the derived category of differential graded (Λ(V ) ⊗ S(V )) � E-modules 
and the derived category of dg coherent sheaves on Hilbm(Xd), where we consider the 
Gm-action on Xd coming from its action on A2 with weights 0 and −2. The conjecture 
in §6.2.2 implies the existence of a particular t-structure on that derived category.

When d = 1 and ε = −1, the combinatorics of Macdonald polynomials can be used 
to obtain a conjectural combinatorial formula for the two-parameter deformed decom-
position matrix of Un(q). That conjecture has been checked for n ≤ 11, using the 
determination of the decomposition matrices in [53].

7. Appendix

7.1. Representations

7.1.1. Categories
Let A be an algebra over a commutative regular local noetherian ring R and assume 

A is a free R-module of finite rank. By module, we mean left module. We identify right 
A-modules with left modules for the opposite algebra Aopp.

Given M an A-module, we put M∗ = HomR(M, R), a right A-module.
We denote by Irr(A) the set of isomorphism classes of simple A-modules.
We denote by A-mod the abelian category of finitely generated A-modules. We denote 

by G0(A) the Grothendieck group of A-mod.
We denote by Db(A) (resp. Hob(A)) the derived (resp. homotopy) category of bounded 

complexes of finitely generated A-modules. We denote by A-perf the full subcategory 
of Db(A) of complexes quasi-isomorphic to bounded complexes of finitely generated 
projective A-modules.

Let A-stab be the triangulated category quotient Db(A)/A-perf. When A is symmetric 
as an R-algebra, the inclusion A-mod ↪→ Db(A) induces an equivalence of categories from 
the additive category quotient of A-mod by its subcategory of A-modules of the form 
A ⊗R V where V ∈ R-mod, to A-stab.

7.1.2. Equivalences
Let A and B be two finite-dimensional algebras over a commutative noetherian ring 

R.
Let C be a bounded complex of (A, B)-bimodules, all of whose terms are finitely 

generated and projective as left A-modules and as right B-modules. Assume there is a 
complex L (resp. M) of (A, A)-bimodules (resp. (B, B)-bimodules) such that there are 
isomorphisms of complexes of (A, A)-bimodules and (B, B)-bimodules

C ⊗B C∗ � A⊕ L and C∗ ⊗A C � B ⊕M.
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We say that M induces a

• Morita equivalence if Ci = 0 for i �= 0 and L = M = 0
• Rickard equivalence if L and M are homotopy equivalent to 0
• derived equivalence if L and M are acyclic
• stable equivalence if L and M are perfect.

These conditions ensure that C ⊗B − induces an equivalence

• (Morita) B-mod ∼→ A-mod
• (Rickard) Hob(B) ∼→ Hob(A)
• (derived) Db(B) ∼→ Db(A)
• (stable) B-stab ∼→ A-stab

7.1.3. Finite groups
Let G be a finite group. We put IrrR(G) = Irr(RG). Consider a prime p and a finite 

field extension K of Qp. Let O be its ring of integers and k the residue field. We assume 
that K contains all |G|-th roots of unity. This ensures that KG is a product of matrix 
algebras over K and that all simple kG modules are absolutely simple.

Let M be a finitely generated KG-module. There exists an OG-module M ′ that is 
free over O and such that M ′⊗OK � M . Let M ′′ = M ′⊗O k. The class [M ′′] in G0(kG)
depends only on [M ] ∈ G0(KG) and we put dec([M ]) = [M ′′]. This defines a morphism 
of abelian groups, the decomposition map, dec : G0(KG) → G0(kG). The decomposition 
matrix is the matrix of dec in the bases Irrk(G) (columns) and IrrK(G) (rows).

7.2. Braid groups and Hecke algebras

7.2.1. Braid groups
Let V be a finite dimensional complex vector space. A reflection s of V is a finite 

order automorphism of V such that ker(s − 1) is a hyperplane.
Let W be a finite subgroup of GL(V ) generated by reflections (a complex reflection 

group). Let R be the set of reflections in W and A = {ker(s − 1)}s∈R be the set of 
reflecting hyperplanes.

We put V reg = V \
⋃

H∈A H. The group W acts freely on V reg, i.e., the quotient map 
q : V reg → V reg/W is unramified.

Let x0 ∈ V reg. The braid group of W is BW = π1(V reg/W, q(x0)). The map q gives a 
bijection from (homotopy classes of) paths in V reg starting at x0 and ending in W (x0)
to (homotopy classes of) loops in V reg/W based at q(x0), and we will identify those two 
types of objects. There is a surjective morphism BW → W : it sends w to the homotopy 
class of a path in V reg from x0 to w(x0). We denote by π ∈ BW the homotopy class of 
the path t �→ exp(2iπt)x0. This is a central element of BW .
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7.2.2. Hecke algebras
Given H ∈ A, let eH be the order of the fixator of H in W . Let R =

Z[{q±1
H,r}H∈A/W,0≤r<eH ].

We define the Hecke algebra H = H(W ) of W as the quotient of the group algebra 
RBW by the ideal generated by 

∏
0≤r<eH

(σH − qH,r), where H runs over A and σH is 
a generator of the monodromy around the image of H in V/W [24, Definition 4.21].

The specialization qH,r �→ exp(2iπr/eH) of H is the group algebra ZW .

7.2.3. Regular elements
We recall some constructions and results of Springer [94].
Let σ be an element of finite order of NGL(V )(W ). Let w ∈ W and let v ∈ V reg be an 

eigenvector of wσ with eigenvalue ζ. Let d be the order of ζ. The element wσ is said to 
be ζ-regular, or d-regular. If w′ ∈ W and w′σ is ζ-regular, then w′σ is W -conjugate to 
wσ.

Let Vζ = ker(wσ − ζ). The group CW (wσ) acting on Vζ is a reflection group.
The inclusion Vζ ↪→ V induces an isomorphism ιζ : Vζ/CW (wσ) ∼→ (V/W )μd , where 

μd = {ζn idV }n∈Z/d.
Assume ζ = exp(2iπ/d) and x0 = v. There exists wd ∈ BW such that (wdσ)d = πσd

[26, Proposition 6.5]. When σ = 1 we can take for wd ∈ BW the homotopy class of the 
path t �→ exp(2iπt/d)x0.

The map ιζ induces a morphism BCW (wσ) = π1(V reg
ζ /CW (wσ), q(x0)) → BW =

π1(V reg/W, q(x0)). Its image is contained in CBW
(wdσ).

7.2.4. Real reflection groups
We assume now that V = VR ⊗R C and W is a subgroup of GL(VR). All reflections 

of W have order 2.
Fix a connected component C of the space VR ∩ V reg and let C̄ be its closure. Let S

be the subset of R of reflections s such that ker(s −1) ∩C̄ has codimension 1 in VR. Then 
(W, S) is a Coxeter group. We denote by l : W → Z≥0 its length function: given w ∈ W , 
the integer l(w) is the minimal m such that w = si1 · · · sim for some si1 , . . . , sim ∈ S.

Choose now x0 ∈ C. Given s ∈ S, let σs ∈ BW be the homotopy class of the path that 
is the concatenation of t �→ x0+tix0, t �→ (1 −t)x0+ts(x0) +ix0 and t �→ s(x0) +(1 −t)ix0.

There is an isomorphism

〈(bs)s∈S | bsbtbs · · ·︸ ︷︷ ︸
mst terms

= btbsbt · · ·︸ ︷︷ ︸
mst terms

∀s, t ∈ S} ∼→ BW , bs �→ σs (3)

where mst is the order of st [17]. We identify BW with the group on the left side of (3)
and we denote by B+

W its submonoid generated by (bs)s∈S .
There is a map λ : W → BW given by λ(w) = bs1 · · · bsr if w = s1 · · · sr is any reduced 

decomposition of w ∈ W with si ∈ S. Denote by w0 the longest element of W . We have 
π = λ(w0)2.
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Let x be an indeterminate and let H(W ) be the “usual” Hecke algebra of W , i.e., the 
Z[x±1]-algebra generated by (Ts)s∈S with relations

(Ts − x)(Ts + 1) = 0, TsTtTs · · ·︸ ︷︷ ︸
mst terms

= TtTsTt · · ·︸ ︷︷ ︸
mst terms

for s, t ∈ S.

The isomorphism (3) induces an isomorphism between H(W ) and the specialization 
of H(W ) at qH,0 �→ x, qH,1 �→ −1.

Data availability

No data was used for the research described in the article.

References

[1] J. Alperin, Weights for finite groups, in: The Arcata Conference on Representations of Finite Groups, 
vol. 1, Amer. Math. Soc., 1987, pp. 369–379.

[2] K.K.S. Andersen, J. Grodal, The classification of 2-compact groups, J. Am. Math. Soc. 22 (2009) 
387–436.

[3] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n), J. Math. Kyoto Univ. 
36 (1996) 789–808.

[4] S. Arkhipov, R. Bezrukavnikov, V. Ginzburg, Quantum groups, the loop Grassmannian, and the 
Springer resolution, J. Am. Math. Soc. 17 (2004) 595–678.

[5] M. Aschbacher, Finite Group Theory, Cambridge Univ. Press, 2000.
[6] D. Benson, R. Kessar, Blocks inequivalent to their Frobenius twists, J. Algebra 315 (2007) 588–599.
[7] D. Ben-Zvi, D. Nadler, The character theory of a complex group, preprint, arXiv :0904 .1247.
[8] C. Bonnafé, Calogero-Moser spaces vs unipotent representations, preprint, arXiv :2112 .13684.
[9] C. Bonnafé, J.-F. Dat, R. Rouquier, Derived categories and Deligne-Lusztig varieties II, Ann. Math. 

185 (2017) 609–670.
[10] C. Bonnafé, O. Dudas, R. Rouquier, Translation by the full twist and Deligne-Lusztig varieties, J. 

Algebra 558 (2020) 129–145.
[11] C. Bonnafé, J. Michel, Computational proof of the Mackey formula for q > 2, J. Algebra 327 (2011) 

506–526.
[12] C. Bonnafé, R. Rouquier, Catégories dérivées et variétés de Deligne-Lusztig, Publ. Math. Inst. 

Hautes Études Sci. 97 (2003) 1–59.
[13] C. Bonnafé, R. Rouquier, Coxeter orbits and modular representations, Nagoya Math. J. 183 (2006) 

1–34.
[14] C. Bonnafé, R. Rouquier, Affineness of Deligne-Lusztig varieties for minimal length elements, J. 

Algebra 320 (2008) 1200–1206.
[15] C. Bonnafé, R. Rouquier, Cherednik algebras and Calogero-Moser cells, preprint, arXiv :1708 .09764.
[16] S. Bouc, A. Zimmermann, On a question of Rickard on tensor products of stably equivalent algebras, 

Exp. Math. 26 (2017) 31–44.
[17] E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen 

Spiegelungsgruppe, Invent. Math. 12 (1971) 57–61.
[18] C. Broto, J.M. Møller, B. Oliver, Equivalences between fusion systems of finite groups of Lie type, 

J. Am. Math. Soc. 25 (2012) 1–20.
[19] M. Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181–182 (1990) 61–92.
[20] M. Broué, Isométries de caractères et équivalences de Morita ou dérivées, Publ. Math. Inst. Hautes 

Études Sci. 71 (1990) 45–63.
[21] M. Broué, Reflection groups, braid groups, Hecke algebras, finite reductive groups, in: Current 

Developments in Mathematics, 2000, International Press, 2001, pp. 1–103.
[22] M. Broué, G. Malle, Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis, 

Math. Ann. 292 (1992) 241–262.

http://refhub.elsevier.com/S0021-8693(23)00517-3/bibF40C36AB96D55A69CBAFFBE2EE595F66s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibF40C36AB96D55A69CBAFFBE2EE595F66s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibE02DEFA6D2C2D5DDFF15EC1DFFF4FDC2s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibE02DEFA6D2C2D5DDFF15EC1DFFF4FDC2s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib864D72283695E6EDD1FCDCEB473DE77Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib864D72283695E6EDD1FCDCEB473DE77Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA0DE3695E24114EF4130D7AD57DC9E16s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA0DE3695E24114EF4130D7AD57DC9E16s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib4FC128728EAB5196B002BFA92A6B72DFs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA1AC8F4CA5971193D199B7B1541C8BB1s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibD86705F78842DFF15F79BE8D44342A2Ds1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibB0D8913D4DFB85C2325C0773FF52AE98s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib898D65135424CC5F88048ADAD80D4497s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib898D65135424CC5F88048ADAD80D4497s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib4021E2751BBC08A3356028D3795C1399s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib4021E2751BBC08A3356028D3795C1399s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib12BFD4E5BD6D3743B39E7BF1EC8D3F26s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib12BFD4E5BD6D3743B39E7BF1EC8D3F26s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib3860108ED8C50AD2BE4F58004B6D66EFs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib3860108ED8C50AD2BE4F58004B6D66EFs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibC8FB4840AEFDC77C43F1B838A637C81Bs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibC8FB4840AEFDC77C43F1B838A637C81Bs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib26BF56115767CDAF9532465DA03099EFs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib26BF56115767CDAF9532465DA03099EFs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA0BEBF3F60F3CF2D083BF6A58DE38B60s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibC377E3DEEE7069EED0FA914BCD2985B9s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibC377E3DEEE7069EED0FA914BCD2985B9s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib088BE2CF89B1D89755C97582B43491EEs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib088BE2CF89B1D89755C97582B43491EEs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib8E39F697BAB89C961573814F8FB92B2Es1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib8E39F697BAB89C961573814F8FB92B2Es1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibB5C146E2A7B9EEE57788825A35D80756s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib374A90727189AF978EA2BAF08431A05Bs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib374A90727189AF978EA2BAF08431A05Bs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib8B26BEDE14DED0CF5C159C7AD828248Cs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib8B26BEDE14DED0CF5C159C7AD828248Cs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib1FA70C1AC70FFAFAAB0A1E584168CE1Es1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib1FA70C1AC70FFAFAAB0A1E584168CE1Es1


R. Rouquier / Journal of Algebra 656 (2024) 446–485 483
[23] M. Broué, G. Malle, J. Michel, Generic blocks of finite reductive groups, Astérisque 212 (1993) 7–92.
[24] M. Broué, G. Malle, R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine 

Angew. Math. 500 (1998) 127–190.
[25] M. Broué, J. Michel, Blocs et séries de Lusztig dans un groupe réductif fini, J. Reine Angew. Math. 

395 (1989) 56–67.
[26] M. Broué, J. Michel, Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-

Lusztig associées, in: Finite Reductive Groups, Birkhäuser, 1997, pp. 73–139.
[27] M. Broué, L. Puig, A Frobenius theorem for blocks, Invent. Math. 56 (1980) 117–128.
[28] J. Brough, I. Schwabrow, On centers of 3-blocks of the Ree groups 2G2(q), J. Algebra 492 (2017) 

57–73.
[29] O. Brunat, O. Dudas, J. Taylor, Unitriangular shape of decomposition matrices of unipotent blocks, 

Ann. Math. 192 (2020) 583–663.
[30] M. Cabanes, Brauer morphism between modular Hecke algebras, J. Algebra 115 (1988) 1–31.
[31] M. Cabanes, Unicité du sous-groupe abélien distingué maximal dans certains sous-groupes de Sylow, 

C. R. Acad. Sci. Paris 318 (1994) 889–894.
[32] M. Cabanes, M. Enguehard, On unipotent blocks and their ordinary characters, Invent. Math. 117 

(1994) 149–164.
[33] M. Cabanes, M. Enguehard, Representation Theory of Finite Reductive Groups, Cambridge Univ. 

Press, 2004.
[34] J. Chuang, Derived equivalence in SL2(p2), Trans. Am. Math. Soc. 353 (2001) 2897–2913.
[35] J. Chuang, R. Rouquier, Perverse equivalences, preprint.
[36] G. Cliff, On centers of 2-blocks of Suzuki groups, J. Algebra 226 (2000) 74–90.
[37] M.J. Collins, Representations and Characters of Finite Groups, Cambridge Univ. Press, 1990.
[38] D. Craven, Perverse equivalences and Broué’s conjecture II: the cyclic case, preprint, arXiv :1207 .

0116.
[39] D. Craven, O. Dudas, R. Rouquier, Brauer trees of unipotent blocks, J. Eur. Math. Soc. 22 (2020) 

2821–2877.
[40] D. Craven, R. Rouquier, Perverse equvalences and Broué’s conjecture, Adv. Math. 248 (2013) 1–58.
[41] D. Craven, R. Rouquier, Perverse equivalences and genericity, in preparation.
[42] P. Deligne, Action du groupe des tresses sur une catégorie, Invent. Math. 128 (1997) 159–175.
[43] P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Ann. Math. 103 (1976) 

103–161.
[44] P. Deligne, G. Lusztig, Duality for representations of a reductive group over a finite field, J. Algebra 

81 (1983) 540–545.
[45] F. Digne, J. Michel, Endomorphisms of Deligne-Lusztig varieties, Nagoya Math. J. 183 (2006) 

35–103.
[46] F. Digne, J. Michel, Parabolic Deligne-Lusztig varieties, Adv. Math. 257 (2014) 136–218.
[47] F. Digne, J. Michel, R. Rouquier, Cohomologie des variétés de Deligne-Lusztig, Adv. Math. 209 

(2007) 749–822.
[48] R. Dipper, On quotients of Hom-functors and representations of finite general linear groups, I, J. 

Algebra 130 (1990) 235–259.
[49] R. Dipper, G. James, The q-Schur algebra, Proc. Lond. Math. Soc. 59 (1989) 23–50.
[50] O. Dudas, Coxeter orbits and Brauer trees, Adv. Math. 229 (2012) 3398–3435.
[51] O. Dudas, Cohomology of Deligne-Lusztig varieties for unipotent blocks of GLn(q), Represent. 

Theory 17 (2013) 647–662.
[52] O. Dudas, Coxeter orbits and Brauer trees II, Int. Math. Res. Not. 15 (2014) 4100–4123.
[53] O. Dudas, G. Malle, Decomposition matrices for low rank unitary groups, Proc. Lond. Math. Soc. 

110 (2015) 1515–1557.
[54] O. Dudas, G. Malle, Decomposition matrices for groups of Lie type in non-defining characteristic, 

preprint, arXiv :2001 .06395.
[55] O. Dudas, R. Rouquier, Coxeter orbits and Brauer trees III, J. Am. Math. Soc. 27 (2014) 1117–1145.
[56] E. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. Math. 

101 (1975) 510–520.
[57] E. Friedlander, Etale Homotopy of Simplicial Schemes, Princeton University Press, 1982.
[58] E. Friedlander, G. Mislin, Cohomology of classifying spaces of complex Lie groups and related 

discrete groups, Comment. Math. Helv. 59 (1984) 347–361.
[59] M. Geck, Verallgemeinerte Gelfand-Graev Charaktere und Zerlegungszahlen endlicher Gruppen vom 

Lie-Typ, Dissertation, RWTH Aachen, 1990.

http://refhub.elsevier.com/S0021-8693(23)00517-3/bibAE9F90B6B130F73060C0D3A1913820A5s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibE0FF87A0E2CECC3D948DD3F7391003A2s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibE0FF87A0E2CECC3D948DD3F7391003A2s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib960C82FB93BE2163F70A5CC15CBCEAEFs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib960C82FB93BE2163F70A5CC15CBCEAEFs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib31E3ED9EA013409FD900CD21F7FCA820s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib31E3ED9EA013409FD900CD21F7FCA820s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibB5E0716CA4E57E5911625F54DE77B34Ds1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibB8DF02AB001D1207F2B982360F4DE3B8s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibB8DF02AB001D1207F2B982360F4DE3B8s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib6EA0387893AE6BDC4E24306A59F5FACAs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib6EA0387893AE6BDC4E24306A59F5FACAs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib78051A30108660D16FBAB33146FB2033s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA32434D5EC5643F5FA49A7A6FFF934CAs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA32434D5EC5643F5FA49A7A6FFF934CAs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib7204DF66B2DABC2B5EE3E0E7EA0AF315s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib7204DF66B2DABC2B5EE3E0E7EA0AF315s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibDA8EC9052E605AB72F9FB6ED3D85B993s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibDA8EC9052E605AB72F9FB6ED3D85B993s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib93ADA40DA341D3F06C6B5392C2A501C5s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib30781641129E34DE0449CCB1FBA670DAs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib6BC2D2565EE5FBDE75273949F2D2DF0As1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib46CE6EED09DD5A60280B497637D1697As1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib46CE6EED09DD5A60280B497637D1697As1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibC887E4CD343A07D1DD80778FAFD8BEDAs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibC887E4CD343A07D1DD80778FAFD8BEDAs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib451EDFEDB035425216617115A1C570D8s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib2084C04F7A380A68B653E5FC82D352F0s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib76FA05EB8E5A7F59482F51F135CD8965s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib76FA05EB8E5A7F59482F51F135CD8965s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib860F14082F88504914648089ECDD0606s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib860F14082F88504914648089ECDD0606s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib0BD496C1E3E883500D3F0A2873A8A66Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib0BD496C1E3E883500D3F0A2873A8A66Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib5C45A565D6064788A943DC4F8FF6EB74s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibBE53FE42A86149FC57716948830553B7s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibBE53FE42A86149FC57716948830553B7s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibFAD95EFB2010B0FEABBC20FD490CE734s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibFAD95EFB2010B0FEABBC20FD490CE734s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib12ED1F014EA4A527FD0652118E933765s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib5C76D2847B4C28F58641CE9073B83FA2s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibAD744F11FE4632BAD3410C5E1DFCCF1Cs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibAD744F11FE4632BAD3410C5E1DFCCF1Cs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib2EC40932C3E6F819EA1C62A16515F16Es1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib65BDF85F5F57669BF4771558263A8038s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib65BDF85F5F57669BF4771558263A8038s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA34ACE0DF1028C420858E86F92C0EDBBs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA34ACE0DF1028C420858E86F92C0EDBBs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib78B406B7B2B4215D79BFD4049937D966s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib9F2C216538AD310D86DAD5865E3DDE0Bs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib9F2C216538AD310D86DAD5865E3DDE0Bs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibD2DBEA1974383D28F831DB3C18F4EFA3s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib6A315CF7C107ACE6EA527D9D9B4F77ADs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib6A315CF7C107ACE6EA527D9D9B4F77ADs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA10252586FB9BE280082C1605DDC0B0Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA10252586FB9BE280082C1605DDC0B0Fs1


484 R. Rouquier / Journal of Algebra 656 (2024) 446–485
[60] M. Geck, Basic sets of Brauer characters of finite groups of Lie type II, J. Lond. Math. Soc. 47 
(1993) 225–268.

[61] M. Geck, Brauer trees of Hecke algebras, Commun. Algebra 20 (1992) 2937–2973.
[62] M. Geck, G. Hiß, Basic sets of Brauer characters of finite groups of Lie type, J. Reine Angew. Math. 

418 (1991) 173–188.
[63] D. Gorenstein, Finite Groups, Chelsea Publ. Company, 1980.
[64] J. Grodal, The classification of p-compact groups and homotopical group theory, in: Proc. Intl. 

Congress of Mathematicians, Hyderabad, 2010, 2010, pp. 973–1001.
[65] J. Grodal, A. Lahtinen, String topology and finite groups of Lie type, preprint, arXiv :2003 .07852.
[66] J. Gruber, G. Hiß, Decomposition numbers of finite classical groups for linear primes, J. Reine 

Angew. Math. 485 (1997) 55–91.
[67] X. He, On the affineness of Deligne-Lusztig varieties, J. Algebra 320 (2008) 1207–1219.
[68] G. Hiß, Zerlegungszahlen endlicher Gruppen vom Lie-Typ in nicht-definierender Charakteristik, 

Habilitationsschrift, 1990.
[69] T.L. Hodge, P. Karuppuchamy, L.L. Scott, Remarks on the ABG induction theorem, preprint, 

arXiv :1603 .05699.
[70] J.E. Humphreys, Modular Representations of Finite Groups of Lie Type, London Math. Soc. Lecture 

Note Series, vol. 326, Cambridge Univ. Press, 2006.
[71] S. Jackowski, J. McClure, B. Oliver, Self-homotopy equivalences of classifying spaces of compact 

connected Lie groups, Fundam. Math. 147 (1995) 99–1126.
[72] R. Kessar, G. Malle, J. Semeraro, Weight conjectures for �-compact groupes and spetses, preprint, 

arXiv :2008 .07213.
[73] D. Kishimoto, A. Kono, On the cohomology of free and twisted loop spaces, J. Pure Appl. Algebra 

214 (2010) 646–653.
[74] R. Knörr, G.R. Robinson, Some remarks on a conjecture of Alperin, J. Lond. Math. Soc. 39 (1989) 

48–60.
[75] A. Lascoux, B. Leclerc, J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum 

affine algebras, Commun. Math. Phys. 181 (1996) 205–263.
[76] B. Leclerc, J.-Y. Thibon, Canonical bases of q-deformed Fock spaces, Int. Math. Res. Not. 9 (1996) 

447–456.
[77] G. Lehrer, T.A. Springer, Intersection multiplicities and reflection subquotients of unitary reflection 

groups, I, in: Geometric Group Theory Down Under, W. de Gruyter, 1999, pp. 181–193.
[78] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976) 101–159.
[79] G. Lusztig, Representations of Finite Chevalley Groups, American Math. Soc., 1978.
[80] G. Lusztig, Homology bases arising from reductive groups over a finite field, in: Algebraic Groups 

and Their Representations, Kluwer, 1998, pp. 53–72.
[81] G. Lusztig, Positive conjugacy classes in Weyl groups, Bull. Inst. Math. Acad. Sin. 15 (2020) 

277–285.
[82] D. Madsen, Homological aspects of representation theory, PhD thesis, NUT Trondheim, 2002.
[83] G. Malle, D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type, Cambridge Univ. 

Press, 2011.
[84] G. Navarro, P.H. Tiep, A reduction theorem for the Alperin weight conjecture, Invent. Math. 184 

(2010) 529–565.
[85] T. Okuyama, Derived equivalences in SL2(q), preprint, 2000.
[86] S. Orlik, M. Rapoport, Deligne-Lusztig varieties and period domains over finite fields, J. Algebra 

320 (2008) 1220–1234.
[87] L. Puig, Algèbres de source de certains blocs des groupes de Chevalley, Astérisque 181–182 (1990) 

221–236.
[88] J. Rickard, Finite group actions and étale cohomology, Publ. Math. IHES 80 (1994) 81–94.
[89] L. Rider, Formality for the nilpotent cone and a derived Springer correspondence, Adv. Math. 235 

(2013) 208–236.
[90] R. Rouquier, Block theory via stable and Rickard equivalences, in: Modular Representation Theory 

of Finite Groups, de Gruyter, 2001, pp. 101–146.
[91] R. Rouquier, Complexes de chaînes étales et courbes de Deligne-Lusztig, J. Algebra 57 (2002) 

482–508.
[92] R. Rouquier, Automizers as extended reflection groups, J. Algebra 398 (2014) 407–412.
[93] B. Späth, A reduction theorem for the blockwise Alperin weight conjecture, J. Group Theory 16 

(2013) 159–220.
[94] T.A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974) 159–198.

http://refhub.elsevier.com/S0021-8693(23)00517-3/bib4BC00E48C1F4093982ABB4C9B78FF11Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib4BC00E48C1F4093982ABB4C9B78FF11Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibE0C1E93992443CF792ECE7ACAB6B0A06s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib7945BED1B26356761D839292BA04A754s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib7945BED1B26356761D839292BA04A754s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib5F075AE3E1F9D0382BB8C4632991F96Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib4DF64FF2DB6367829E4FB16D88FB6D55s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib4DF64FF2DB6367829E4FB16D88FB6D55s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib7B172884200E6FAD8A256DE8FA762316s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib2F0299FA5BFD768A1DE52C1A4A069806s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib2F0299FA5BFD768A1DE52C1A4A069806s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA64CF5823262686E1A28B2245BE34CE0s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibC1A5298F939E87E8F962A5EDFC206918s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibC1A5298F939E87E8F962A5EDFC206918s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibFA0C5B562E85151D8E3B0EFC9B5FC599s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibFA0C5B562E85151D8E3B0EFC9B5FC599s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib9FABEC19F0EE826F7822CCD41DD4F553s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib9FABEC19F0EE826F7822CCD41DD4F553s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib5345E8486D58468AADDC1672BD619AA0s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib5345E8486D58468AADDC1672BD619AA0s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib2A137B0669A338E76BAF41567ECC1493s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib2A137B0669A338E76BAF41567ECC1493s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib130C008578155421EFD568C92A1E420Cs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib130C008578155421EFD568C92A1E420Cs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibB8CA950A03896868D60C8BB65EAC860As1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibB8CA950A03896868D60C8BB65EAC860As1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib48FD9E3DC172610794280EABC0C01B3Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib48FD9E3DC172610794280EABC0C01B3Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA0D755FF2BE89C56DB474E20E10617DDs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibA0D755FF2BE89C56DB474E20E10617DDs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibDB7495A5B70C1BF9B585E51854E9DB91s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibDB7495A5B70C1BF9B585E51854E9DB91s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibE97F8B3A2D6BF864D174862179A657D9s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib9BAA28DE57945EDD0FD77DCF2AE8F951s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib1EC769210C73138389E63D9884B6EFD0s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib1EC769210C73138389E63D9884B6EFD0s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibC31AC1D24B7781173AA8EAD39140448Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibC31AC1D24B7781173AA8EAD39140448Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibCF1EF61FBEC0EB674A2AD96DDFE5256Ds1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib0F6979FCCB34C6F5B11B731682E2D75Cs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib0F6979FCCB34C6F5B11B731682E2D75Cs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib0139B5EFA20A23A69D8C93637DA5349Es1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib0139B5EFA20A23A69D8C93637DA5349Es1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib4C2ED3A5E9358529BFC825091F9C69DFs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib4C2ED3A5E9358529BFC825091F9C69DFs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibD6889A89A0BB45B31E300CA0972E66F9s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibD6889A89A0BB45B31E300CA0972E66F9s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib1B62A3FFEACA213CF4AB591AF812F083s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibBD4A5535230DA488220B6061B7C17035s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibBD4A5535230DA488220B6061B7C17035s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib09B82D31723A177D3BDEB214B201529Cs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib09B82D31723A177D3BDEB214B201529Cs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib4FBDED7DBBBB4C8D85D1915415A0F43Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib4FBDED7DBBBB4C8D85D1915415A0F43Fs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibAB4A3F7E764B81050FE44382068A331As1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib72E3D0D77BBA8DC534721A4906104EEFs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib72E3D0D77BBA8DC534721A4906104EEFs1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib5390DC6EEE2FBDD1F0224DA0209718AAs1


R. Rouquier / Journal of Algebra 656 (2024) 446–485 485
[95] M. Takeuchi, The group ring of GLn(q) and the q-Schur algebra, J. Math. Soc. Jpn. 48 (1996) 
259–274.

[96] W. Wong, Some perverse equivalences of SL(2, q) in its defining characteristic, preprint, arXiv :
1707 .05512.

[97] W. Wong, Perverse equivalence in SL(2, q), J. Algebra 579 (2021) 365–387.
[98] Y. Yoshii, Broué’s conjecture for the nonprincipal block of SL(2, q) with full defect, J. Algebra 321 

(2009) 2486–2499.

http://refhub.elsevier.com/S0021-8693(23)00517-3/bib86A1EA3ADF8FBB53EB7A9B6B6B01C020s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib86A1EA3ADF8FBB53EB7A9B6B6B01C020s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib1A2C97651A0F5E5D958155D5356C15F9s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib1A2C97651A0F5E5D958155D5356C15F9s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bibF938670416C5E6B0F4B4BE9C8F8A8D64s1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib3700F097E741A7702F7E4AC61ED88C1As1
http://refhub.elsevier.com/S0021-8693(23)00517-3/bib3700F097E741A7702F7E4AC61ED88C1As1

	Modular representations of finite groups and Lie theory
	1 Introduction
	2 Finite groups
	2.1 Group theory
	2.1.1 Classification of finite simple groups
	2.1.2 p-local group theory

	2.2 p-local representation theory
	2.3 Conjectures
	2.3.1 Alperin’s weight conjecture
	2.3.2 Broué’s conjecture
	2.3.3 Comparison

	2.4 Perverse equivalences
	2.4.1 Definition
	2.4.2 Examples


	3 Finite groups of Lie type
	3.1 Reductive groups
	3.2 Rational structures
	3.2.1 Frobenius endomorphisms
	3.2.2 Steinberg endomorphisms

	3.3 Finite simple groups of Lie type
	3.4 Local structure
	3.4.1 Defining characteristic
	3.4.2 Non-defining characteristic


	4 Defining characteristic
	4.1 Simple modules and blocks
	4.1.1 Rational representations
	4.1.2 Representations of the finite group

	4.2 Alperin’s conjecture
	4.2.1 Bijective proof
	4.2.2 Abelian defect
	4.2.3 Groups of F-rank 1

	4.3 Change of central character
	4.3.1 Number of simple modules in a block
	4.3.2 Equivalences


	5 Non-defining characteristic
	5.1 Deligne-Lusztig varieties
	5.1.1 Definition
	5.1.2 Case of tori
	5.1.3 Endomorphisms
	5.1.4 Deligne-Lusztig functors

	5.2 Characteristic 0 representations
	5.2.1 Tori and characters
	5.2.2 Tori and dual groups
	5.2.3 Jordan-Lusztig decomposition
	5.2.4 Unipotent representations

	5.3 Modular representations
	5.3.1 Blocks and Lusztig series
	5.3.2 Jordan decomposition
	5.3.3 Unipotent blocks
	5.3.4 Unipotent decomposition matrices

	5.4 Broué’s conjecture
	5.4.1 General version
	5.4.2 Case of a torus
	5.4.3 Disjunction of cohomology for Deligne-Lusztig varieties


	6 Degeneration and genericity
	6.1 Classifying spaces and character sheaves
	6.1.1 Completed classifying spaces
	6.1.2 Dependence on q
	6.1.3 Classifying spaces of loop groups
	6.1.4 Rigidification and character sheaves
	6.1.5 General d

	6.2 Degeneration
	6.2.1 Degeneration of group algebras of abelian l-groups
	6.2.2 Genericity of perverse equivalences
	6.2.3 Hilbert schemes


	7 Appendix
	7.1 Representations
	7.1.1 Categories
	7.1.2 Equivalences
	7.1.3 Finite groups

	7.2 Braid groups and Hecke algebras
	7.2.1 Braid groups
	7.2.2 Hecke algebras
	7.2.3 Regular elements
	7.2.4 Real reflection groups


	Data availability
	References


