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RAPHAËL ROUQUIER

In memory of Jacques Tits

Abstract. This article discusses the modular representation theory of finite groups of Lie
type from the viewpoint of Broué’s abelian defect group conjecture. We discuss both the
defining characteristic case, the inspiration for Alperin’s weight conjecture, and the non-defining
case, the inspiration for Broué’s conjecture. The modular representation theory of general
finite groups is conjectured to behave both like that of finite groups of Lie type in defining
characteristic, and in non-defining characteristic, to a large extent.

The expected behaviour of modular representation theory of finite groups of Lie type in
defining characteristic is particularly difficult to grasp along the lines of Broué’s conjecture,
and we raise a new question related to the change of central character.

We introduce a degeneration method in the modular representation theory of finite groups of
Lie type in non-defining characteristic. Combined with the rigidity property of perverse equiv-
alences, this provides a setting for two-variable decomposition matrices, for large characteristic.
This should help make progress towards finding decomposition matrices, an outstanding prob-
lem with few general results beyond the case of general linear groups. This last part is based
on joint work with David Craven and Olivier Dudas.
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1. Introduction

Every finite simple group is a finite group of Lie type, an alternating group, a cyclic group
of prime order, or one of the 26 sporadic groups. This provides a central role for finite groups
of Lie type in finite group theory.

Conjectures of Alperin and Broué predict that the modular representation theory of general
finite groups shares many features with that of finite groups of Lie type. Alperin’s prediction
is inspired by finite groups of Lie type in defining characteristic. On the other hand, Broué
predicts a behaviour similar to that of finite groups of Lie type in non-defining characteristic.

For simple finite groups of Lie type in defining characteristic, the assumptions of Broué’s
conjecture (abelian defect groups) are only satisfied for groups of type A1, like PSL2(Fq), outside
cases of simple blocks. Broué’s conjecture is known to hold in that case, but the combinatorics
involved in the proof have so far not been understood within the usual Lie theoretic or geometric
framework for SL2. An important problem is to find a proof of Broué’s conjecture for SL2(Fq)
that relates to the geometry associated with the group. A major open problem is to find
an extension of Broué’s conjecture that removes the assumption on Sylow subgroups, and
understanding Broué’s conjecture for defining characteristic representations of SL2(Fq) could
lead to understanding how the conjecture should extend to higher rank groups, and eventually
to all finite groups. Broué’s conjecture is about the existence of certain equivalences of derived
categories.

There are few known equivalences between blocks of finite groups of Lie type in defining
characteristic. We could locate two: the derived equivalence between the principal block of
SL2(q) and the principal block of a Borel subgroup, and a similar result for the non-simple non-
principal block when p is odd. In particular, the two non-simple blocks are derived equivalent.
We propose to consider a generalization of this situation. A particular case of that extension
applies to G = SLr(q), r a prime dividing q−1: the non-simple blocks all have the same number
of simple modules and the corresponding blocks for proper local subgroups are isomorphic.

Progress in the understanding of modular representations of finite groups of Lie type in non-
defining characteristic has mostly been achieved by extending some of the work of Lusztig (and
Deligne-Lusztig) about characteristic 0 representations to characteristic ℓ. Broué’s conjecture
in this case has a formulation in terms of Deligne-Lusztig theory. The main difficulty in proving
the conjecture has been about obtaining information about individual cohomology groups of
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Deligne-Lusztig varieties, rather than about their alternating sum. In particular, a key required
vanishing property is still open in general, even for characteristic 0 coefficients.

The introduction of the notion of perverse equivalences and the conjecture that the equiva-
lences expected from Deligne-Lusztig varieties should be perverse (joint work with Joe Chuang)
lead to the fact that torus and Weyl group data determine the decomposition matrices for large
enough characteristic, using the conjectural combinatorial perversity function of Craven, and a
rigidity property of perverse equivalences (joint work with David Craven).

We explain two ways in which toroidal structures appear by degeneration in the modular
representation theory of finite groups of Lie type in non-defining characteristic. We give a
”global” topological construction using a limit of completed classifying spaces, the starting
point being Friedlander’s description of the completed classifying space of a finite group of Lie
type in terms of homotopy fixed points on the classifying space of the corresponding Lie group.
We provide also an explicit local algebraic construction. These lead to conjectural two-variable
decomposition matrices for large characteristic (joint work with Olivier Dudas).

In part 2, we consider general finite groups. We review p-local group theory and p-local
representation theory and discuss Alperin and Broué’s conjectures. We introduce perverse
equivalences, a type of derived equivalences between derived categories with filtrations, that
induces abelian equivalences up to shifts on the slices of the filtration.

Part 3 introduces finite groups of Lie type as fixed points of a Frobenius endomorphism, or
a more general Steinberg endomorphism of a reductive algebraic group. We discuss the p-local
structure of finite groups of Lie type, both in defining and non-defining characteristic.

Part 4 is devoted to the modular representation theory of finite groups of Lie type in defining
characteristic. We provide an explanation for Alperin’s conjecture. In the case of groups of
finite Lie rank 1, we discuss the relation between representations of the group and of a Borel
subgroup. We analyze next when a block with a given central character has the same number
of simple modules as the principal block and raise the question of understanding the relation
between the module categories of such blocks.

Parts 5 and 6 are concerned with the modular representation theory of finite groups of Lie
type in non-defining characteristic ℓ. We start with a discussion of Deligne-Lusztig varieties
and endomorphisms coming from braid groups. We review Lusztig’s theory of characteristic
0 representations and describe modular counterparts. We finish §5 with a discussion of the
particular form of Broué’s conjecture for finite groups of Lie type in non-defining characteristic.

Part 6 discusses two approaches to generic phenomena. The first approach is based on the
description of ℓ-completed classifying spaces of finite groups of Lie type in terms of fixed points
under unstable Adams operations and we discuss the rigidification of a certain limit of those
Adams operation, in relation with classifying spaces of loop groups. The second approach is
based on a degeneration of the group algebra of the local block, and the relation with the rigidity
of perverse equivalences. For general linear and unitary groups, there is a further relation with
Hilbert schemes of points on surfaces.

We gather in the appendix a number of basic facts on representations of algebras and finite
groups, in particular in relation with various types of equivalences. We give a very succinct
survey of basic constructions involving complex reflection groups, braid groups and Hecke al-
gebras.



4 RAPHAËL ROUQUIER
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2. Finite groups

2.1. Group theory.

2.1.1. Classification of finite simple groups. Every finite simple group is one of the following
[Asch, §47]

• a cyclic group of prime order
• an alternating group An for n ≥ 5
• a finite simple group of Lie type
• one of the 26 sporadic simple groups, with orders ranging from 7920 for the Mathieu
groupM11 discovered in 1861 to about 8×1053 for the Fischer-Griess monster discovered
in 1973.

Finite groups of Lie type govern to a large extent the structure of general finite groups.

2.1.2. p-local group theory. Let G be a finite group, p a prime and P a Sylow p-subgroup of G.

The p-local group theory is the study of G using p-local subgroups, i.e. subgroups of the form
NG(Q) for Q a non-trivial p-subgroup.

This was originally developed mostly in the case p = 2 and this underlies the proof of the
classification of finite simple groups.

Here are some examples of results of p-local group theory. We denote by Op′(G) the largest
normal subgroup of G of order prime to p.

• (Burnside 1897) When P is abelian, two elements of P that are conjugate in G are also
conjugate in NG(P ) [Go, Chap.7, Theorem 1.1].

• (Frobenius) If NG(Q)/CG(Q) is a p-group for every non trivial subgroup Q of P , then
G = Op′(G)⋊ P [Go, Chap. 7, Theorem 4.5].

• (Brauer-Fowler 1955) If G is simple and s ∈ G is an involution, then |G| ≤ (2|CG(s)|2)!
[Asch, (45.4)].

• (Brauer-Suzuki 1959) If the Sylow 2-subgroups of G are quaternion groups, then G is
not simple [Co, §3.3].

• (Glauberman 1966, case p = 2) If x is an element of order p of P that is not G-conjugate
to any other element of P , then G = Op′(G)CG(x) [Co, Appendix].

• (Alperin 1967) One can tell if two elements of P are conjugate in G using only p-local
subgroups [Asch, (38.1)].

Glauberman’s Theorem (which generalizes Brauer-Suzuki’s Theorem) holds also for odd
primes, but the proof for odd primes uses the classification of finite simple groups. Modu-
lar representation theory of finite groups was developed by Brauer as a tool for studying finite
groups. For example, the proof of the Brauer-Suzuki Theorem uses representation theory in
characteristic 2.

It is hoped that modular representation theory will eventually reach a point where it can be
used to obtain a direct proof of Glauberman’s Theorem for odd primes and lead to simplifica-
tions of the proof of the classification of finite simple groups.
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Modular representation theory leads to a generalization of local group theory, where Sylow
subgroups are replaced by defect groups of blocks. A major theme of modular representation
theory is to relate modular representations of a group and its local subgroups, sometimes leading
to versions of ”factorization” results like Frobenius’s Theorem above replaced by an equivalence
between module categories [BrouPu].

2.2. p-local representation theory.

2.2.1. p-local representation theory is concerned with the study of representations of G over Zp
and Fp (or finite extensions of those) in relation with p-local subgroups and their representa-
tions.

It involves character-theoretic aspects, in particular the value of complex characters of G on
elements whose order is divisible by p. It involves also the study of simple and indecomposable
representations and mod-p cohomology.

2.2.2. Let p be a prime number and O be the ring of integers of a finite extension K of Qp.
Let k be the residue field of O.

Let G be a finite group. The category kG-mod is not semisimple if p divides |G|, but it
still splits as direct sum of indecomposable full abelian subcategories. This is induced by a
corresponding decomposition of OG-mod. That decomposition comes from a decomposition of
1 as a sum of orthogonal primitive idempotents 1 =

∑
b b of Z(OG), the block idempotents.

We have an algebra decomposition into blocks OG =
∏

bOGb and a category decomposition
OG-mod =

⊕
bOGb-mod. We will still denote by b the image of the idempotent in Z(kGb)

and we have corresponding decompositions of kGb and kGb-mod.
The principal block OGb0 of OG is the one such that b0 does not act by 0 on the trivial

representation.

We will always assume that K contains all |G|-th roots of unity.

A defect group of a block OGb is a minimal subgroup D of G such that the restriction
functor Db(OGb) → Db(OD) is faithful. A defect group is a p-subgroup of G and all defect
groups are conjugate. The defect groups are trivial if and only if OGb is a matrix algebra over
O (equivalently, kGb is semisimple). The defect groups of the principal block are the Sylow
p-subgroups of G.
There is a unique block idempotent bD of ONG(D), the Brauer correspondent of b, such that

the functor bDOGb ⊗OGb − : Db(OGb) → Db(ONG(D)bD) is faithful. The idempotent bD is
actually contained in OCG(D).

2.3. Conjectures.

2.3.1. Alperin’s weight conjecture. Alperin’s weight conjecture [Alp] asserts that the number of
non-projective simple kG-modules is locally determined.
A weight for G is a pair (Q, V ), where Q is a p-subgroup of G and V is a projective simple

kNG(Q)/Q-module.

Conjecture 2.1 (Alperin). The number of isomorphism classes of simple kG-modules is the
same as the number of conjugacy classes of weights.



6 RAPHAËL ROUQUIER

The conjecture has also a blockwise version.

We will explain in §4.2.1 that the conjecture has a bijective proof when G is a finite group
of Lie type in defining characteristic, for example G = GLn(Fpr). This is the inspiration for
the conjecture. In a sense, Alperin’s conjecture predicts that all finite groups behave like finite
group of Lie type in defining characteristic.

2.3.2. Broué’s conjecture. Broué’s conjecture [Brou1] asserts that the derived category of kG-
modules (excluding as above semi-simple parts) is determined locally, when Sylow p-subgroups
are abelian. There is a blockwise version which we now state.

Conjecture 2.2 (Broué). Let OGb be a block with abelian defect group D. We have Db(OGb) ≃
Db(ONG(D)bD).

When G is a finite group of Lie type in non-defining characteristic, Broué and others have
proposed an explicit candidate for a functor realizing an equivalence, using Deligne-Lusztig
varieties (cf §5.4.1). In a sense, Broué’s conjecture predicts that all finite groups behave like
finite groups of Lie type in non-defining characteristic as far as modular representations are
concerned (with the abelian defect assumption), even though the sought-after equivalence won’t
arise from something like a Deligne-Lusztig variety.

Remark 2.3. Broué’s conjecture does not extend in an obvious way to blocks with non-abelian
defect groups, cf for example §4.2.3.
On the other hand, one can generalize slightly Broué’s conjecture to the case where the

hyperfocal subgroup of the defect group is abelian [Rou1, Appendix A.2].

2.3.3. Comparison. The two conjectures lead to an odd phenomenon: finite groups, with re-
spect to a prime p, behave like finite groups of Lie type in both defining and non-defining
characteristic!

For blocks with abelian defect groups, Broué’s conjecture implies Alperin’s conjecture. A
major open problem (beyond proving these conjectures) is to find a structural statement like
Broué’s conjecture for general blocks.

Note that the neighborhood of the trivial representation is determined locally: H∗(G, k) can
be recovered as a subalgebra of H∗(P, k). When P is abelian (or when NG(P ) controls fusion),
then H∗(G, k) = H∗(P, k)NG(P ) = H∗(NG(P ), k).

A general version of Broué’s conjecture should contain both that fact and the information
about the number of simple modules. Going beyond the neighborhood of the trivial represen-
tation is discussed for finite groups of Lie type in non-defining characteristic in §6.1.4.

Alperin’s conjecture can be reformulated in terms of chains of p-subgroups [KnRob]. Consider
the poset of non-trivial p-subgroups of G and the associated simplicial complex P (n-simplices
are chains Q0 < Q1 < · · · < Qn).

Alperin’s conjecture (for all finite groups) is equivalent to the equality (for all finite groups
G) ∑

c∈P/G

(−1)|c|l′(k StabG(c)) = 0

where l′(kG) is the number of non-projective simple modules. The simplicial complex P can
be replaced by its subcomplex given by elementary abelian subgroups or by other complexes
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using subgroups Q such that Q = Op(NG(Q)): the sum does not change. Here we denote by
Op(H) the largest normal p-subgroup of a finite group H.

There is also a blockwise version of that reformulation. This reformulation suggests that
appropriate categories of representations of local subgroups could be glued to recover some
weakened version of the category of representations of G.

2.4. Perverse equivalences.

2.4.1. Definition. Let A and A′ be two finite dimensional algebras over a field k and let
F : Db(A)

∼→ Db(A′) be an equivalence of triangulated categories. The equivalence F in-

duces an isomorphism of abelian groups K0(D
b(A)) = ZIrr(A) ∼→ ZIrr(A′) = K0(D

b(A′)), but no

bijection Irr(A)
∼→ Irr(A′). So, in the situation of Broué’s abelian defect conjecture (Conjecture

2.2), there is no expectation of a bijection between simple modules. We will introduce now a
particular type of derived equivalence that induces such a bijection [ChRou].

Fix π : Irr(A) → Z. An equivalence F : Db(A)
∼→ Db(A′) is perverse relative to π if there is

a bijection f : Irr(A)
∼→ Irr(A′) such that

• given S ∈ Irr(A), if T is a composition factor of H i(F (S)), then π(f−1(T )) < π(S) for
i ̸= −π(S)

• H−π(S)(F (S)) admits f(S) as a composition factor with multiplicity one, and all other
composition factors T satisfy π(f−1(T )) < π(S).

When this holds, the map f is determined by F and π.

Given A and π, then A′ is unique up to Morita equivalence (if it exists).

Remark 2.4. This is a particular case of a more general definition that involves the additional
data of an order on Irr(A).
Perverse equivalences can be defined more generally for derived categories of abelian cate-

gories. A further generalization is the consideration of a filtered triangulated category with two
t-structures and the notion of a shift of t-structures with respect to a perversity function: the
t-structures are assumed to be compatible with the filtration and the t-structures induced on
the slices of the filtration differ by a shift given by the perversity function.

2.4.2. Examples. Consider the situation of Broué’s conjecture: we have a block OGb with
defect group D. If there is an equivalence Db(OGb) ∼→ Db(ONG(D)bD) such that the induced
equivalence over k is perverse, then there is a total order on Irr(kGb) and on Irr(KGb) such
that the decomposition matrix of OGb has the following shape (cf §7.1.3 for the definition of
decomposition matrices):

1
∗ 1
...

. . . . . .
∗ . . . ∗ 1
∗ . . . . . . ∗
...

...
∗ . . . . . . ∗

In the situation of Broué’s abelian defect conjecture, perverse equivalences are known to exist
in a number of cases: when defect groups are cyclic and conjecturally in the case of groups
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of Lie type in non-defining characteristic [ChRou] (cf §5.4.1), for principal blocks with defect
group of order 4 or 9 of groups with no simple factor A6 or M22 when p = 3 [CrRou1, Theorem
4.36]. Note that there is no perverse equivalence in the situation of Broué’s conjecture for
principal 3-blocks of A6 and M22 [CrRou1, §5.3.2.3 and §5.4.3].

3. Finite groups of Lie type

We discuss now finite groups of Lie type (cf [MalTe]).

3.1. Reductive groups. Let p be a prime number and F̄p be an algebraic closure of the finite
field with p elements. Given q a power of p, we denote by Fq the subfield of F̄p with q elements.

Let G be a (connected) reductive (linear) algebraic group over F̄p.
Let T0 be a maximal torus of G and B0 a Borel subgroup of G containing T0. Let X =

X(T0) = Hom(T0,Gm) and Y = Y (T0) = Hom(Gm,T0). Let Φ ⊂ X denote the set of roots,
∆ the set of simple roots, Φ∨ the set of coroots and ∆∨ the set of simple coroots. Given α ∈ ∆∨,
we denote by ωα the corresponding fundamental weight. Let ρ be the half sum of the positive
roots.

Let W = NG(T0)/T0 be the Weyl group and let S = (sα)α∈∆ be its generating set as a
Coxeter group.

3.2. Rational structures.

3.2.1. Frobenius endomorphisms. Let V0 = SpecA0 be an affine algebraic variety over Fq, where
q is a power of p. The endomorphism F of V = V0×Fq F̄q = Spec(A0⊗Fq F̄p) given on A0⊗Fq F̄p

by a 7→ aq is called the (geometric) Frobenius endomorphism of V .
Given V ′ an affine algebraic variety over F̄p, an endomorphism F of V ′ is called a Frobenius

endomorphism if there is a power q of p and an affine algebraic variety V0 defined over Fq with

an isomorphism V ′ ∼→ V0 ×Fq F̄q identifying F with the Frobenius endomorphism coming from
V0. We say that F defines a rational structure for V ′ over Fq.

3.2.2. Steinberg endomorphisms. Let F be an endomorphism of G, a power of which is a
Frobenius endomorphism (such an F is called a Steinberg endomorphism of G). The group
G = GF is finite: this is a finite group of Lie type. We will put more generally H = HF for H
an F -stable subgroup of G.
There exists an F -stable Borel subgroup B0 and an F -stable maximal torus T0 contained in

B0.

We say that (G, F ) is split if F acts by a multiple of the identity on X(T0). If (G, F ) is split
then F is a Frobenius endomorphism.

Let δ be the minimal positive integer such that (G, F δ) is split and we define the positive real
number q by the requirement that F δ defines a rational structure over Fqδ . The automorphism
of X ⊗Z Q induced by F permutes the lines Qα for α ∈ ∆ and this provides an automorphism
ϕ of order δ of the Coxeter diagram of G. When G is simple and simply connected, the
endomorphism F of G depends only on q and on ϕ, up to an inner automorphism.

If F is a Frobenius endomorphism, then F (α) = qϕ(α) for all α ∈ ∆.

Let δ̄ be the minimal positive integer such that F δ̄ is a Frobenius endomorphism of G.
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3.3. Finite simple groups of Lie type. The finite simple groups of Lie type are obtained
by the following construction. We assume that G is simple and simply connected. Then, the
group G/Z(G) = GF/Z(G)F is simple (with some exceptions described after the classification
below) and we obtain in this way all finite simple groups of Lie type. The group is denoted

by δD(qδ̄), where D is the type of the root system of G (equivalently, the type of the Dynkin
diagram). We give now the list of all those finite simple groups, with restrictions on q if any.

• An(q), n ≥ 1
• Bn(q), n ≥ 2
• Cn(q), n ≥ 3
• Dn(q), n ≥ 4
• E6(q), E7(q), E8(q), F4(q), G2(q)
• 2An(q), n ≥ 2
• 2Dn(q), n ≥ 3
• 3D4(q),

2E6(q)
• 2B2(q

2), q2 = 22m+1 for some m ≥ 1
• 2G2(q

2), q2 = 32m+1 for some m ≥ 1
• 2F 4(q

2), q2 = 22m+1 for some m ≥ 0

with the following exceptions: A1(2), A1(3),
2A2(2) and B2(2) are not simple and can be

removed from the list. The derived subgroup of 2F 4(2) is simple and of index 2 in 2F 4(2). It
does not arise in another construction and that group (the Tits group) needs to be added to
the list of finite simple groups of Lie type. Note that some finite simple groups of Lie type
occur more than once in the classification.

3.4. Local structure. We consider the setting of §3.2.2.

3.4.1. Defining characteristic. Let U0 be the unipotent radical of B0. Then U0 is a Sylow
p-subgroup of G.
An important class of subgroups in local group theory consists of those p-subgroups Q of G

such that Q = Op(NG(Q)). In our setting where G is a finite group of Lie type and p is the
defining characteristic, Q satisfies this condition if and only if Q is the group of F -fixed points
of the unipotent radical of an F -stable parabolic subgroup of G [CaEn2, Remark 6.15].

Note that U0 is abelian if and only if the quotient of G by its radical is a product of groups
of type A1.

Remark 3.1. Assume G is simple and simply connected with F -rank 1, i.e. of type A1 (group
SL2(q)),

2A2 (group SU3(q
2)), 2B2 (Suzuki group) or 2G2 (Ree group).

In that case, the Sylow p-subgroups of G have the trivial intersection property: given g ∈ G
with g ̸∈NG(U0) = B0, we have U0 ∩ gU0g

−1 = 1. This implies that two subgroups of U0 that
are conjugate in G are already conjugate in B0.

3.4.2. Non-defining characteristic. We consider a prime number ℓ ̸= p.
We denote by d the order of q in F×

ℓ .

We assume here that F is a Frobenius endomorphism. The ℓ-local structure of G has generic
aspects explained in [BrouMal].

A Φd-subgroup of G is an F -stable torus S such that Φd(q
−1F ) acts by 0 on Y (S)⊗Q. Here,

Φd is the d-th cyclotomic polynomial.
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Let S be a Φd-subgroup of G. There is g ∈ G such that gT0g
−1 is F -stable and contains

S. Let w be the image of g−1F (g) ∈ NG(T0) in W . Given s ∈ S, we have wF (g−1sg)w−1 =
g−1F (s)g. It follows that the image of Y (g−1Sg) ⊗ Q in Y (T0) ⊗ Q is a subspace on which
Φd(w(q

−1F )) acts by 0.
All maximal Φd-subgroups of G are G-conjugate. Let S be a maximal Φd-subgroup of G and

g, w be as above. The image of Y (S) in Y (T0) is Y (T0) ∩ ker(Φd(wq
−1F )) | Y (T0)⊗Q).

Assume ℓ > 3 and F is a Frobenius endomorphism. Let S be a maximal Φd-subgroup
of G and L = CG(S), a Levi subgroup. Let T0 be a maximal F -stable torus of L and let
WL = NL(T0)/T0. Let W ′ be the subgroup of W generated by roots orthogonal to all the
roots corresponding to L. There exists an ℓ-subgroup D′ of NG(T0)

F whose image in W is a
Sylow ℓ-subgroup ofW ′ and such that D′∩T0 = 1. Then D = Z(L)Fℓ ⋊D′ is a Sylow ℓ-subgroup
of G [Ca2] (cf also [CaEn2, Exercice 22.6]). Furthermore, D is abelian if and only if D′ = 1.

When D is abelian, we have an isomorphism NG(D)/CG(D)
∼→ (NW (WL)/WL)

wF , where
w is defined as above from S. The group NG(D)/CG(D) is a complex reflection group [LeSp,
Theorem 3.4] (cf [Brou3, Theorem 5.7]). When L is a torus, then q−1wF is d-regular and this
is explained in §7.2.3.

Remark 3.2. It is a remarkable fact that when D is abelian, then NG(D)/CG(D) is a reflection
group. We showed in [Rou3] that a suitable version of this property actually holds for all finite
simple groups. We consider G0 a simple group with an abelian Sylow ℓ-subgroup D such that
H2(G,Fℓ) = 0. Let G be a subgroup of Aut(G0) containing G0 and such that G/G0 is a Hall
ℓ′-subgroup of Out(G0). Then there exists

• a field extension K of Fℓ,
• an extension of the structure of Fℓ-vector space on the largest elementary abelian sub-
group Ω1(D) of D to a structure of K-vector space

• a subgroup N of GLK(Ω1(D))
• a subgroup Γ of Aut(K)

such that NG(D)/CG(D) = N ⋊Γ and the normal subgroup of N generated by reflections acts
irreducibly on Ω1(D).
For example, when G0 = PSL2(ℓ

n), we view D ≃ (Z/ℓ)n as a one-dimensional vector space
over K = Fℓn , we have N = K× and Γ is a Hall 2′-subgroup of Gal(K/Fℓ).

It would be very interesting to find a role for reflection groups in Broué’s abelian defect group
conjecture (Conjecture 2.2).

4. Defining characteristic

As we will see, it is much easier to parametrize irreducible representations of G in character-
istic p than in characteristic 0 (cf [Hu]).

4.1. Simple modules and blocks.

4.1.1. Rational representations. Let G be a reductive connected algebraic group over an alge-
braic closure F̄p of a finite field with p elements, where p is a prime number. We consider T0,
B0, etc as in §3.1.
Let X+(T0) = {λ ∈ X(T0) | ⟨λ, α∨⟩ ≥ 0 ∀α ∈ ∆} be the set of dominant weights. Given

λ ∈ X+(T0), let Lλ = G×B0 (F̄p)λ be the associated line bundle on the flag variety G/B0. The
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rational G-module H0(G/B0,Lλ) has a unique simple submodule L(λ) and {L(λ)}λ∈X+(T0) is
a full set of representatives of isomorphism classes of simple rational G-modules.

4.1.2. Representations of the finite group. We consider now the setting of §3.2.2.
Given r ≥ 0, we put Xr = {λ ∈ X+(T0) | ⟨λ, α∨⟩ < r ∀α ∈ ∆}.
Given λ ∈ X+, let L(λ) be the restriction of L(λ) to G.
Given A an abelian group, we put A∨ = Hom(A, F̄×

p ).

We assume in §4.1.2 that G is simply connected and simple and that F is a Frobenius
endomorphism.

We have the following description of simple modules (Steinberg) [Hu, Theorem 2.11 and
§20.2] and of their blocks and defect groups (Dagger and Humphreys) [Hu, Theorem 8.5 and
§20.3].

Theorem 4.1. The set {L(λ)}λ∈Xq is a complete set of representatives of isomorphism classes
of simple kG-modules.

There is one block of defect zero, with simple module the Steinberg module L((q − 1)ρ). The
other blocks have maximal defect, they are parametrized by Z(G)∨. The simple modules in the
block kGbζ corresponding to ζ ∈ Z(G)∨ are the L(λ) with λ|Z(G) = ζ and λ ∈ Xq \ {(q − 1)ρ}.

Remark 4.2. Note that the set of simple kG-modules and their dimensions depend only on q,
not on the Frobenius endomorphism. For example, the sets of simple modules for SUn(q) and
SLn(q) are obtained by restricting the same set of simple rational representations of SLn.

Remark 4.3. When F is not a Frobenius endomorphism, Theorem 4.1 needs to be modified as
follows [Hu, §20]. We assume F is not a Frobenius endomorphism. Note that F 2 is a Frobenius
endomorphism defining a rational structure over Fq2 . Note also that Z(G) = 1. Define now
Xq2,S as the set of λ ∈ Xq2 such that ⟨λ, α∨⟩ = 0 for every long simple root α. The set
{L(λ)}λ∈Xq2,S

is a complete set of representatives of isomorphism classes of simple kG-modules.

The Steinberg module is L((q2 − 1)ρS), where

ρS =
∑
α∈S
α short

ωα.

It is in a block of defect zero and the principal block is the unique other block.

4.2. Alperin’s conjecture.

4.2.1. Bijective proof. We assume in §4.2.1 that G is simply connected and F is a Frobenius
endomorphism. We follow [Ca1] and [CaEn2, §6.3].
Given I an F -stable subset of S, let LI be the corresponding standard Levi subgroup of G

and let XI be the set of λ ∈ Xq such that given α ∈ ∆, we have ⟨λ, α∨⟩ = q − 1 if and only if
α ∈ I. We have Xq =

∐
I⊂S XI .

• Restriction from T0 to T0 induces a bijection XI
∼→ Irrk(T0/(T0 ∩ [LI , LI ]))

∼→ L∨
I .

• Given ζ ∈ L∨
I , the kLI-module StLI

⊗ ζ is simple and projective. This provides a bijection
from L∨

I to the set of isomorphism classes of projective simple kLI-modules.

• Let Q be a p-subgroup of G such that kNG(Q)/Q has a simple projective module. Then
Op(NG(Q)/Q) = 1 and it follows (cf §3.4.1) that Q is the subgroup of F -fixed points of the
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unipotent radical of an F -stable parabolic subgroup of G. So, we have a bijection from the
union over I an F -stable subset of S of the sets of isomorphism classes of projective simple
kLI-modules to the set of G-conjugacy classes of pairs (Q, V ) where Q is a p-subgroup of G
and V a simple projective kNG(Q)/Q-module, taken up to isomorphism.

Together with the bijection from Xq to Irrk(G), we obtain a bijection between Irrk(G) and
the set of G-conjugacy classes of pairs (Q, V ) where Q is a p-subgroup of G and V a simple
projective kNG(Q)/Q-module, taken up to isomorphism. This confirms Alperin’s conjecture
for G.

X+

∼

��

X+
q

∼

��

oo ∼ //
∐
I⊂S

I F -stable

Irrk(T0/(T0 ∩ [LI , LI ]))

∼

��∐
I⊂S

I F -stable

{proj simple kLI-modules}

∼

��
Irr(G) Irrk(G)oo

∼
//___ {(Q, V ) |Q ≤ G, V proj simple k(NG(Q)/Q)-module}/G

4.2.2. Abelian defect. If G is simple and kG has a block with non-trivial abelian defect groups,
then G is of type A1 (cf §3.4.1 and Theorem 4.1). Broué’s abelian defect group conjecture has
been solved for SL2(Fq) ([Ch] for q = p2, [Ok] for the principal block, [Yo] for the non-principal
block with maximal defect and [Wo2] for the proof that the equivalence is a composition of per-
verse equivalences). The solution involves some rather complicated combinatorial and algebraic
constructions.

Remark 4.4. Assume G is semisimple and simply connected, split over Fp and assume that p
is larger than the Coxeter number of G. We denote by R =

⊕
α∈∆ Zα the root lattice.

Consider the full subcategory C of the derived category of bounded complexes of finite-
dimensional B0-modules whose objects are those C such that H i(C) has weights in pR for all
i. The functor R IndG

B0
induces an equivalence from C to the bounded derived category of the

principal block of finite-dimensional representations of G ([ArkBeGi] for the case of quantum
groups at a root of unity and [HoKaSc] for an adaption and details of the characteristic p case).

It would be very interesting if this equivalence could be used to relate representations of G
and B0 over k, particularly in the case of SL2. This would possibly shed light on how Broué’s
conjecture could be generalized to non-abelian defect groups.

4.2.3. Groups of F -rank 1. When G has F -rank 1, the induction and restriction functors pro-
vide inverse stable equivalences (cf §7.1.2) between kB0 and kG because the Sylow p-subgroups
of G have the trivial intersection property (cf §3.4.1).

The principal blocks of kB0 and kG are actually derived equivalent when G = SL2(q), but
this is known not to generalize to all groups of F -rank 1. It is known in a number of cases
that the principal blocks of kG and kB0 are not derived equivalent because the centers are
not isomorphic: for 2G2(q

2) when q2 ≥ 27 [BrougSchw] and for G = SU3(q) when 3 ≤ q ≤ 8
[BouZi]. It is also known that the principal blocks of OG and OB0 are not derived equivalent
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because the centers are not isomorphic for G = 2B2(q
2) when q2 ≥ 8 [Cl]. Not that in this last

case the centers of the principal blocks of kG and kB0 are isomorphic. It is expected that the
principal blocks of kG and kB0 are not derived equivalent in that case.

4.3. Change of central character.

4.3.1. Number of simple modules in a block. We assume in §4.3 that F is a Frobenius endo-
morphism.

Let γ̄ = ResT0

Z(G) : X → Z(G)∨.

Lemma 4.5. Let ζ ∈ Z(G)∨. The number of simple modules in kGbζ is less than or equal to
that for the principal block kGb0. There is equality if and only if ζ ∈

⋂
α∈∆∨ γ̄(Zωα).

Proof. Let γ : X → T∨
0 be the restriction map. It induces an isomorphism X/(F − 1)X

∼→ T∨
0 .

Let I be a ϕ-stable subset of ∆. Let X ′
I be the set of λ ∈ Xq such that

• given α ̸∈I, we have ⟨λ, α∨⟩ = q − 1
• given α ∈ I, there is i ≥ 0 such that ⟨λ, ϕi(α∨)⟩ ≠ q − 1.

The map γ restricts to a bijection X ′
I

∼→ γ(
⊕

α∈I Zωα).
The restriction γ̄|X′

I
factors as

X ′
I

γ|X′
I−−→

∼
γ(
⊕
α∈I

Zωα)
γI−→ Z(G)∨

where γI is given by restricting from T0 to Z(G).
Let ζ ∈ Z(G)∨. Put δI,ζ = 1 if γ−1

I (ζ) ̸= ∅ and δI,ζ = 0 otherwise.
We have

| Irrk(kGbζ)| =
∑
I

|γ̄−1(ζ) ∩X ′
I | =

∑
I

|γ−1
I (ζ)| =

∑
I

δI,ζ |γ−1
I (0)|

where I runs over non-empty ϕ-stable subsets of ∆. This shows the requested inequality.

We have δI,ζ = 1 if and only if ζ ∈ γ̄(
⊕

α∈I Zωα). Note that γ̄(ωα) = γ̄(ωϕ(α)) for all α. The
equivalence of the lemma follows. □

The tables of [Bki, Lie 4,5,6] show that outside type A, there is a fundamental weight in the
root lattice, hence

⋂
α∈∆∨ γ̄(Zωα) = 0.

Assume G = SLn(q) (in which case we put ε = 1) or G = SUn(q) (in which case we put
ε = −1). We have

⋂
α∈∆∨ γ̄(Zωα) ̸= 0 if and only if n = ℓr for some prime ℓ|(q − ε) and r ≥ 1.

In that case Z(G) ≃ Z/(gcd(ℓr, q − ε)Z) and the non-trivial characters of Z(G)∨ with order ℓ
are those non-trivial characters ζ such that kGbζ has the same number of simple modules as
kGb0.

4.3.2. Equivalences. We consider the setting above where G = SLℓr(q) or G = SUℓr(q) with ℓ
a prime dividing q − ε.

Question 4.6. Let ζ be a character of order ℓ of Z(G)∨. What is the relation between kGb0-mod
and kGbζ-mod? Are the blocks kGb0 and kGbζ stably equivalent?
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Note that if P is a proper F -stable parabolic subgroup of G, then the character ζ of Z(G)
extends to P . Given Q a non-trivial p-subgroup of G, there is a proper F -stable parabolic
subgroup P of G such that NG(Q) ⊂ P (cf [CaEn2, Remark 6.15]). It follows that ζ extends
to NG(Q). As a consequence (cf Remark 4.8 below), the blocks of proper local subgroups
corresponding to kGb0 and kGbζ are isomorphic. If those local equivalences could be glued
(cf [Rou1, §7.3] for a setting for gluing), then we would obtain a stable equivalence answering
positively the question.

When ℓr = 2 and ε = 1, the question has a positive answer. The blocks are actually derived
equivalent, since they are both derived equivalent to the corresponding blocks of kB0 (cf §4.2.2),
and those blocks are isomorphic. Cf also [Wo1] for a direct construction as a composition of
perverse equivalences.

When ℓr = 3 and ε = −1, the question has also a positive answer since the blocks are
both stably equivalent to the corresponding blocks of kB0 (cf §4.2.3), and those blocks are
isomorphic.

Remark 4.7. Note that we do not expect the blocks to be derived equivalent in general.
Consider the case G = SL3(4). Let us show that there are no perfect isometries between the
principal 2-block and a non-principal 2-block of SL3(4). In particular, those blocks are not
derived equivalent over O.

The principal block of G has 9 irreducible characters: 1, 20, 35, 35, 35′, 45, 45, 63 and 63. Let
b be one of the non-principal block idempotents with positive defect. The irreducible characters
of KGb are those with central character a given primitive cubic root of unity. They are 151,
152, 153, 21, 45, 45, 63, 63 and 84.
Let I be a perfect isometry from OGb0 to OGb. Let η =

∑
χ∈Irr(KGb0) χ⊗ I(χ). Let g be an

element of order 5 and h an element of even order. We have

0 = η(g, h) = I(1)(h) + αI(63)(h) + ᾱI(63)(h)

with α = 1−
√
5

2
and ᾱ = 1+

√
5

2
. It follows that I(63)(h) = I(63)(h) = −I(1)(h). Taking h an in-

volution, we deduce that {I(1), I(63), I(63} ⊂ {±151,±152,±153,±63,±63}. Taking h of order
4, we obtain that {I(1), I(63), I(63} ⊂ {±21,±45,±45,±63,±63}. This is a contradiction.

Remark 4.8. Let G be a finite group and ζ a character of Z(G)p′ , the largest p′-subgroup of
Z(G). Let

eζ =
1

|Z(G)p′|
∑

z∈Z(G)p′

ζ(z)−1z

be the associated idempotent.

If ζ extends to a character ζ̃ of G, then there is an isomorphism of algebras

e1kG
∼→ eζkG,

∑
g∈G

agg 7→
∑
g∈G

ζ̃(g)−1agg.

In general, the algebras e1kG and eζkG can have rather different module categories and in-
variants. When the extension assumption holds for all p-local subgroups, we could hope that
the algebras are at least stably equivalent. More precisely, assume that given any non-trivial
p-subgroup Q of G, the character ζ extends to NG(Q). Are the algebras e1kG and eζkG stably
equivalent?
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One can ask similar questions for two linear characters of Z(G). For example, let d be an
integer prime to the order of ζ. What is the relation between eζkG and eζdkG? If ζd can be
obtained from ζ by applying a field automorphism of k, then the rings eζkG and eζdkG are
isomorphic, but they need not be isomorphic as k-algebras (nor even derived equivalent), as
shown by Benson and Kessar [BeKe, Example 5.1]. In their examples, Op(G) ̸= 1.

5. Non-defining characteristic

We consider a connected reductive algebraic group G with a Steinberg endomorphism F as
in §3.2.2. We fix a prime ℓ distinct from p. We will be discussing mod-ℓ representations of G.
We fix K a finite extension of Qℓ containing all |G|-th roots of unity and denote by O its ring
of integers and by k its residue field.

In §5.1 and §5.2, we recall constructions and results of Deligne-Lusztig and Lusztig [DeLu1,
DeLu2, Lu1, Lu2].

5.1. Deligne-Lusztig varieties.

5.1.1. Definition. Consider the Lang covering L : G → G, g 7→ g−1F (g). This is a surjective
étale Galois morphism, with Galois group G.

Let P be a parabolic subgroup of G and let U be its unipotent radical. Assume there is
an F -stable Levi subgroup L with P = U ⋊ L. The associated Deligne-Lusztig variety is
L−1(F (U)). It has a free left (resp. right) action of G (resp. L) by multiplication. We can also
consider its quotient YU = L−1(F (U))/(U ∩ F (U)), which has the same ℓ-adic cohomology.
One can consider further the variety XU = YU/L. The varieties YU and XU are smooth.

Remark 5.1. When P is F -stable, then YU = G/U is a finite set.

5.1.2. Case of tori. A particular role is played by Deligne-Lusztig varieties associated to tori.
Let us give another model for those. Fix B0 an F -stable Borel subgroup of G and T0 an
F -stable maximal torus contained in B0. Let U0 be the unipotent radical of B0 and let
W = NG(T0)/T0.

Let B be the variety of Borel subgroups of G. There is a decomposition B×B =
∐

w∈W O(w)
into orbits for the diagonal action of G, where O(w) is the orbit containing (B0, wB0w

−1).
Given w ∈ W , we put

X(w) = {B ∈ B | (B, F (B)) ∈ O(w)}.

Let ẇ ∈ NG(T0) with image w ∈ W . We put

Y (ẇ) = {gU0 ∈ G/U0 | g−1F (g) ∈ U0ẇU0}.

There is a left action of G on X(w) and Y (ẇ) by left multiplication and a right action of TwF
0 on

Y (ẇ) by right multiplication. The map gU0 7→ gB0g
−1 induces an isomorphism of G-varieties

G \ Y (ẇ)
∼→ X(w). The varieties X(w) and Y (ẇ) have pure dimension l(w), the length of w

(cf §7.2.4).
Let h ∈ G such that h−1F (h) = ẇ. The maximal torus T = hT0h

−1 is F -stable and the

isomorphism T0
∼→ T, t 7→ hth−1 restricts to an isomorphism TwF

0
∼→ TF .
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There is a commutative diagram

YhU0h−1

g 7→ghU0

∼
//

g(U∩F (U))7→g(U∩F (U))L

��

Y (ẇ)

gU0 7→gB0g−1

��
XhU0h−1

g 7→ghB0h−1g−1

∼ // X(w)

where the horizontal maps are G-equivariant isomorphisms and the top horizontal map is
equivariant for the right action of T , via its identification with TwF

0 above.

Two elements w and w′ of W are F -conjugate if there is v ∈ W such that w′ = v−1wF (v).

The construction of T from w induces a bijection from the set of F -conjugacy classes of W
to the set of G-conjugacy classes of F -stable maximal tori of G.

Remark 5.2. The varieties X(w) are known to be affine in many cases, but it is not known
if they are affine in general. The affinity is known when q is larger than the Coxeter number
of G [DeLu1, Theorem 9.7] and when w has minimal length in its F -conjugacy class ([Lu1,
Corollary 2.8], [OrRa, §5], [He, Theorem 1.3] and [BoRou3]).

5.1.3. Endomorphisms. We follow [BrouMi2], inspired by an earlier construction of Lusztig
[Lu2, pp. 24–25].

Given w1, . . . , wr ∈ W , let

XF (w1, . . . , wr) = {(B1, . . . ,Br) ∈ Br | (Bi,Bi+1) ∈ O(wi), 1 ≤ i < r and (Br, F (B1)) ∈ O(wr)}.
The variety XF (w1, . . . , wr) depends only on the element b = λ(w1) · · ·λ(wr) of B+

W (cf §7.2.4
for the notations), up to canonical isomorphism [De] and we denote it by XF (b).
There is an action of ϕ on BW by bs 7→ bϕ(s) for s ∈ S. Note that given n > 0, we have a

morphism

ιn : XF (b) → XFn(bϕ(b) · · ·ϕn−1(b))

(B1, . . . ,Br) 7→ (B1, . . . ,Br, F (B1), . . . , F (Br), . . . , F
n−1(B1), . . . , F

n−1(Br)).

Given 0 ≤ i ≤ r, the morphism

Dw1,...,wi
: XF (w1, . . . , wr) → XF (wi+1, . . . , wr, ϕ(w1), . . . , ϕ(wi))

(B1, . . . ,Br) 7→ (Bi+1, . . . ,Br, F (B1), . . . , F (Bi))

is purely inseparable. Given b′, b′′ ∈ B+
W , this provides a morphismDb′ : XF (b

′b′′) → XF (b
′′ϕ(b′)).

Let b ∈ B+
W such that (bϕ)d = πrϕd for some d, r > 0. We define an action of CB+

W
(bϕ) on

XF (b) as follows.
Let b′ ∈ CB+

W
(bϕ). There are t > 0 and b′′ ∈ B+

W such that πrt = bb′b′′. We identify XF (b)

with a subvariety of XF dt(πrt) using the embedding ιdt. The endomorphism Db′ of XF dt(πrt)
preserves XF (b)

The constructions above extend to the varieties Y . The composite morphism BW
can−−→ W =

NG(T0)/T0 lifts to a morphism σ : BW → NG(T0). Given w1, . . . , wr ∈ W , we have a variety

YF (w1, . . . , wr) = {(g1U0, . . . , grU0) ∈ (G/U0)
r |

{
g−1
i gi+1 ∈ U0σ(λ(wi))U0 for 1 ≤ i < r

g−1
r F (g1) ∈ U0σ(λ(wr))U0

}.



MODULAR REPRESENTATIONS OF FINITE GROUPS AND LIE THEORY 17

It has a left action of G by diagonal left multiplication and a right action of Tw1···wrF
0 by diagonal

right multiplication. We have a G-equivariant morphism corresponding to the quotient by
Tw1···wrF

0

YF (w1, . . . , wr) → XF (w1, . . . , wr), (g1U0, . . . , grU0) 7→ (g1B0g
−1
1 , . . . , grB0g

−1
r ).

The variety YF (w1, . . . , wr) depends only on the element b = λ(w1) · · ·λ(wr) of B+
W , up to

canonical isomorphism and we denote it by YF (b). Given b′, b′′ ∈ B+
W , we obtain a morphism

Db′ : YF (b
′b′′) → YF (b

′′ϕ(b′)) and we have an action of CB+
W
(bϕ) on YF (b) compatible with the

action on XF (b).

5.1.4. Deligne-Lusztig functors. Let P be a parabolic subgroup of G with unipotent radical
U and an F -stable Levi complement L. The complex Λc(YU,Zℓ) of ℓ-adic cohomology with
compact support of YU [Ric1, Rou2] is a bounded complex of ℓ-permutation Zℓ(G × Lopp)-
modules. It is well defined up to homotopy. Its cohomology groups are the H i

c(YU,Zℓ).

Given R a commutative Zℓ-algebra, we put Λc(YU, R) = Λc(YU,Zℓ) ⊗Zℓ
R. We obtain a

functor

RG
L⊂P = Λc(YU, R)⊗RL − : Db(RL-mod) → Db(RG-mod).

When R = Q̄ℓ, the functor RG
L⊂P induces a morphism

RG
L⊂P : G0(Q̄ℓL) → G0(Q̄ℓG).

Note that this morphism is expected to depend only on L, and not on P. This is known to
hold except possibly when q = 2, the parabolic subgroup P is not F -stable and the Dynkin
diagram of G contains a subdiagram of type E6 (cf [DeLu1, Corollary 4.3] and [DeLu2, BoMi]).

Remark 5.3. When P is F -stable, then RL⊂P = R[G/U ]⊗RL− is the Harish-Chandra induc-
tion functor.

We denote by ∗RG
L⊂P : G0(Q̄ℓG) → G0(Q̄ℓL) the adjoint of RG

L⊂P.

5.2. Characteristic 0 representations.

5.2.1. Tori and characters. Let T be an F -stable maximal torus of G. FixM a positive integer
multiple of δ such that (wF )M(t) = tq

M
for all t ∈ T and w ∈ W (cf §3.2.2 for the definitions

of δ and q). Let ζ (resp. ξ) be a root of unity of order qM − 1 of F̄p (resp. Q̄ℓ).
The morphism

N : Y (T) → T, y 7→ y(ζ)F (y(ζ)) · · ·FM−1(y(ζ))

is surjective and induces an isomorphism Y (T)/
(
(F − 1)(Y (T)

) ∼→ T .
The morphism

X(T) → Hom(Y (T), Q̄×
ℓ ), χ 7→ (y 7→ ξ⟨χ,y+F (y)+···+FM−1(y)⟩)

factors through Hom(N, Q̄×
ℓ ) and gives a surjective morphism X(T) → Hom(T, Q̄×

ℓ ). That

induces an isomorphism X(T)/
(
(F − 1)(X(T)

) ∼→ IrrQ̄ℓ
(T ).
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5.2.2. Tori and dual groups. Let (G∗,T∗
0, F

∗) be a triple dual to (G,T0, F ): the group G∗ is

a Langlands dual of G, there is a given isomorphism X(T∗
0)

∼→ Y (T0), and F
∗ is a Steinberg

endomorphism of G∗ stabilizing T∗
0 and dual to F . Furthemore, there is a given isomorphism

W ∗ = NG∗(T∗
0)/T

∗
0

∼→ W = NG(T0)/T0 and we identify those groups. Note that the action of
F ∗ on W ∗ corresponds to the action of F−1 on W .

Let T be an F -stable maximal torus of G. It corresponds to an F -conjugacy class (w) of
W (cf §5.1.2). We denote by T∗ an F ∗-stable maximal torus of G∗ whose (G∗)F

∗
-conjugacy

class is given by the F ∗-conjugacy class (w−1). Furthermore, the identification of T∗
0 with the

dual of T0 provides an isomorphism between T∗ and the dual of T, and that isomorphism is
well-defined up to the action of (NG(T)/T)F . Via the constructions of §5.2.1, this gives an

isomorphism IrrQ̄ℓ
(T )

∼→ (T∗)F
∗
.

This construction provides a bijection from the set of G-conjugacy classes of pairs (T, θ),
where T is an F -stable maximal torus of G and θ ∈ IrrQ̄ℓ

(TF ) to the set of (G∗)F
∗
-conjugacy

classes of pairs (T∗, s) where T∗ is an F ∗-stable maximal torus of G∗ and s ∈ (T∗)F
∗
.

5.2.3. Jordan-Lusztig decomposition. Let us recall the Jordan decomposition of conjugacy classes.
An element g ∈ G can be decomposed uniquely as g = tu where t is semi-simple, u is unipo-
tent and ut = tu. Denote by Cl(G) (resp. Clss(G), Clunip(G)) the set of conjugacy classes of
elements (resp. semi-simple, unipotent elements) of G.
The Jordan decomposition induces a bijection

Cl(G)
∼→

∐
(t)∈Clss(G)

Clunip(CG(t))

where t runs over conjugacy classes of semi-simple elements of G.

Given (s) a conjugacy class of semi-simple elements of (G∗)F
∗
, we denote by IrrQ̄ℓ

(G, (s)) the
set of irreducible representations of G that occur in the θ-isotypic component of H∗

c (YU, Q̄ℓ)
for some Borel subgroup of G with unipotent radical U and containing an F -stable maximal
torus T and θ ∈ IrrQ̄ℓ

(T ) such that (T, θ) corresponds to (T∗, s) by the bijection of §5.2.2 for
some F ∗-stable maximal torus T∗ of G∗ containing s.

The unipotent representations of G are those in IrrQ̄ℓ
(G, 1). They are the irreducible repre-

sentations of G that occur in H∗
c (X(w), Q̄ℓ) for some w ∈ W .

We have the Deligne-Lusztig decomposition (cf [CaEn2, Theorem 8.24])

IrrQ̄ℓ
(G) =

∐
(s)∈Clss(G∗)F∗

IrrQ̄ℓ
(G, (s))

where (s) runs over conjugacy classes of semi-simple elements of (G∗)F
∗
.

Let s be a semi-simple element of (G∗)F
∗
. When CG∗(s) is connected, let (CG∗(s)∗, F ) be

dual to (CG∗(s), F ∗). Note that CG∗(s)∗ need not occur as a subgroup of G.
Lusztig constructed a bijection (cf [CaEn2, Theorem 15.8])

IrrQ̄ℓ
(
(
CG∗(s)∗

)F
, 1)

∼→ IrrQ̄ℓ
(G, (s)).

When CG∗(s) is a Levi subgroup of G∗, then CG∗(s)∗ can be realized as an F -stable Levi
subgroup L of G and the bijection is given by

(1) ρ 7→ ±RG
L⊂P(ρ⊗ η)
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where η is the one-dimensional representation of L corresponding by duality to s ∈ Z(L∗)F
∗

and P is a parabolic subgroup of G with Levi complement L.

When Z(G) is connected, one obtains the Jordan-Lusztig decomposition of characters

IrrQ̄ℓ
(G)

∼→
∐

(s)∈Clss(G∗)F∗

IrrQ̄ℓ
(
(
CG∗(s)∗

)F
, 1).

If Z(G) is connected, then Clss(G
∗)F

∗
can be replaced by Clss((G

∗)F
∗
).

5.2.4. Unipotent representations. Lusztig constructed a parametrization of simple unipotent
representations of G by a combinatorially defined set U(W,ϕ) that depends only on the Weyl
group W and on the finite order automorphism ϕ induced by F of the reflection representation
ofW . The degrees of the irreducible unipotent representations are polynomials in q (the generic
degrees). Lusztig also defined a partition of U(W,ϕ) into families, and a partial order on the
set of families.

When G = GLn, the simple unipotent representations are parametrized by partitions of n.
When G = GLn(q), the simple unipotent representations are the components of IndGB0

Q̄ℓ.

5.3. Modular representations.

5.3.1. Blocks and Lusztig series. Let t be a semi-simple element of (G∗)F
∗
of order prime to ℓ.

We put

e(t) = eG(t) =
∑

(s)∈Clℓ(CG∗ (t)F
∗
)

χ∈IrrQ̄ℓ
(G,(st))

eχ

where Clℓ denotes the set of conjugacy classes of ℓ-elements.
This idempotent of Z(KG) is actually in Z(OG) [BrouMi1], hence it is a sum of (orthogonal)

block idempotents. In other terms,
⋃

(s)∈Clℓ(CG∗ (t)F∗ ) IrrQ̄ℓ
(G, (st)) is a union of characters in

blocks.
A unipotent block is a block kGb such that be(1) = b.

Given B a Borel subgroup of G containing an F -stable maximal torus T, with unipotent
radical U and given θ ∈ Irr(T )ℓ′ such that the pair (T, θ) corresponds to a pair (T∗, t), then
Λc(YU,O)eθ is an object of OGe(t)-perf. Furthermore, those complexes (for varying B, T and
θ) generate OGe(t)-perf (the smallest full thick triangulated subcategory containing those is
the whole category) [BoRou1, Theorem A’].

There is a similar statement for derived categories when all elementary abelian ℓ-subgroups
of G are contained in tori [BoDaRou, Theorem 1.2].

5.3.2. Jordan decomposition. Broué conjectured [Brou2] a modular version of (1): assume
CG∗(t) is a Levi subgroup of G∗, with corresponding dual an F -stable Levi subgroup L in
G, and let η be dual to t. Let P be a parabolic subgroup of G with unipotent radical U and
Levi complement L. Then HdimYU(YU,O) ⊗ η induces a Morita equivalence between OGeG(t)
and OLeL(1). This was proven in [Brou2] when L is a torus, while the general case is [BoRou1,

Theorem 11.8]. There is an extension of that result to the case where CG∗(t)◦ is a Levi subgroup
[BoDaRou].
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Remark 5.4. The geometric approach has not enabled us to relate isolated blocks, i.e. cor-
responding to a semi-simple ℓ′-element t of (G∗)F

∗
such that CG∗(t)◦ is not contained in a

proper Levi subgroup, to unipotent blocks. It is conjectured though that any block is Morita
equivalent to a unipotent block, for a possibly non-connected group.

5.3.3. Unipotent blocks. Assume p and ℓ are good for G and ℓ ̸ ||Z(G)/Z(G)◦|·|Z(G∗)/Z(G∗)◦|.
We also assume for the remainder of §5.3 that F is a Frobenius endomorphism.

There is a ”d-Harish Chandra” parametrization of blocks of kG [CaEn1, BrouMalMi].
An F -stable Levi subgroup of G is d-split if it is the centralizer of a Φd-subgroup of G. A

simple unipotent representation ρ of G is said to be d-cuspidal if ∗RG
L⊂P(ρ) = 0 for all proper

d-split Levi subgroups L of G with P a parabolic subgroup of G with Levi complement L.

There is a parametrization of the set of unipotent blocks by the set G-conjugacy classes of
pairs (L, λ) where L is a d-split Levi subgroup of G and λ is a d-cuspidal unipotent character
of G: the simple unipotent representations in the block corresponding to (L, λ) are those that
occur in RG

L⊂P(λ) for some P.
The parametrization of classes of pairs (L, λ) above depends only on (W,ϕ) and d, and the

corresponding subset of U(W,ϕ) depends only on d [BrouMalMi].

5.3.4. Unipotent decomposition matrices. Fix a total order on IrrQ̄ℓ
(G, 1) such that if ρi is in

the family Fi for i ∈ {1, 2} and F1 < F2, then ρ1 < ρ2 (cf §5.2.4).
The following result was conjectured by Geck [Ge1] and proven by [BruDuTa], following

earlier work on basic sets [Ge2, GeHi] and proofs for GLn(q) in [DipJa], for GUn(q) in [Ge2]
and for classical groups and certain ℓ (linear primes, for which the blocks are related to blocks
of GLn(q)) in [GruHi].

Theorem 5.5. There is a (unique) bijection β : IrrQ̄ℓ
(G, 1)

∼→ Irr(kGe1) such that dec([ρ]) ∈
[β(ρ)] +

∑
ρ′>ρ Z≥0[β(ρ

′)] for any ρ ∈ IrrQ̄ℓ
(G, 1).

The theorem above together with Lusztig’s work (§5.2.4) provides a parametrization of the
set of simple kGe1-modules by a set that depends only on (W,ϕ).

It is conjectured that, given W and d (the order of q in F×
ℓ ), for ℓ large enough, the square

part of the decomposition matrix involving unipotent representations depends only on (W,ϕ)
and d, i.e., it is independent of ℓ and q. This is known for GLn(q) [DipJa] and for linear primes
and classical groups [GruHi].

The determination of this ”generic” square matrix is a major open problem in the study of
decomposition matrices for finite groups of Lie type in non-defining characteristic. The recent
[DuMal2] provides a number of new decomposition matrices for groups of low rank.

Assume G is split. The algebra EndOG(Ind
G
B0

O) is isomorphic to the Hecke algebra of W
over O (cf §7.2.4), specialized at x = q. The decomposition matrix of that specialized Hecke
algebra is equal to the submatrix of the decomposition matrix with rows parametrized by simple
modules that are direct summands of IndGB0

K (principal series representations) and columns by

simple modules that are quotients of IndGB0
k [Dip]. The former depends only on d, if ℓ is large

enough, as it is the same as the one for the Hecke algebra at x a primitive d-th root of unity, over
C [Ge3]. This shows the genericity property for a small submatrix. Similar considerations can
be used to prove genericity properties for small submatrices along the diagonal corresponding
to various Harish-Chandra series using relative Hecke algebras.
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Let a = νℓ(Φd(q)). Theorem 5.5 asserts that the decomposition matrix has the following
shape. Here, the gray entries are on rows corresponding to principal series irreducible characters
and columns corresponding to modular simple representations that are quotients of IndGB0

k. The
gray entries give the decomposition matrix of the Hecke algebra.

1
1

1
1

1

1
1

1

1

∗

∗

principal series

# rows depends on ℓa

Hecke

unipotent

Assume G = GLn(q). Let A = OG/
(
OG ∩ (

⊕
χ ̸∈ IrrQ̄ℓ

(G,1) eχKG)
)
. The simple unipotent

representations of kG are the same as the simple A-modules. The algebra A is Morita equivalent
to the q-Schur algebra of Sn over O specialized at x = q [DipJa, Ta].
The q-Schur algebra is the endomorphism ring of the direct sum of induced trivial modules

from Hecke algebras of all standard parabolic subgroups. For ℓ large enough, its decomposition
matrix is the same as the one obtained for x a primitive d-the root of unity over C. So, the
square part of the unipotent decomposition matrix of GLn(q) coincides with the decomposition
matrix of the q-Schur algebra in characteristic 0, at a primitive d-th root of unity. One deduces
the genericity property for decomposition matrices of GLn(q). Furthermore, this matrix has
a description in terms of the combinatorics of the canonical basis of the Fock space for the
quantum group of sld [LaLeTh, LeTh, Ar].

Remark 5.6. One can define analogs of q-Schur algebras by generalizing the construction to
other types of groups, but they do not seem to have good descriptions nor good properties like
quasi-heredity, except under particular assumptions making the category of representations
look like the one for general linear groups (for example, classical groups and linear primes).
The case of unipotent blocks with cyclic defect, fully understood now [CrDuRou], shows already
the substantial complications related to the presence of cuspidal representations. We propose
in §6 to take a limit q → 1 in the ℓ-adic topology, which makes q → ∞ in the real topology.
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5.4. Broué’s conjecture.

5.4.1. General version. Let b be a block idempotent of OG, D a defect group. Assume D is
abelian and L = CG(D) is a Levi subgroup of G. Let bD ∈ OL be the Brauer correspondent
of b and let b′D be a block idempotent of OL with b′DbD = b′D.
Given P a parabolic subgroup of G with unipotent radical U and Levi complement L, there

is a complex of (OG,OL)-bimodules Λc(YU,O)b′D.

Conjecture 5.7. There is a choice of P and an extension of the right action of CG(D) on
Λc(YU,O)b′D to an action of NG(D, b

′
D) such that Λc(YU,O)b′D induces a Rickard equivalence

between bOG and b′DONG(D, b
′
D).

We refer to §7.1.2 for the notion of Rickard equivalences.
The choice of P and the construction of the extension of the action have been the source

of developments involving complex reflection groups, their braid groups and Hecke algebras,
regular elements and centralizers, Garside categories and Deligne-Lusztig varieties [Brou3].

With J. Chuang, we conjecture that the derived equivalence will be perverse, with a non-
decreasing perversity function (for an order as in §5.3.4) [ChRou]. This would imply the trian-
gularity of the decomposition matrix (cf §2.4.2), a known result (Theorem 5.5). A conjectural
perversity function has been proposed by Craven [Cr], cf §5.4.3 below. This implies that the
module category of a block with abelian defect groups is determined by Weyl-group type data,
toegther with the perversity function.

When ℓ|(q − 1), the parabolic subgroup P can be chosen to be F -stable and the conjecture
was proven by Puig [Pu] (cf [CaEn2, Theorem 23.12] for a detailed exposition of the principal
block case). The difficulty is to construct an extension of the action. As a consequence, for
unipotent blocks, the unipotent square part of the decomposition matrix is diagonal, a fact
obtained independently by Hiß [Hi, Korollar 3.2].

5.4.2. Case of a torus. We assume that ℓ̸ |(q− 1), that b is the principal block idempotent and
that L = T is a torus. So D is a Sylow ℓ-subgroup of G. Since CG(D) = T, it follows that this
torus corresponds to a regular F -conjugacy class (w) of elements ofW (cf §7.2.3). Furthermore,
the group NG(D)/CG(D) is isomorphic to CW (wϕ), a complex reflection group. We denote by
Bd its braid group (cf §7.2.1).

Let w ∈ W such that (λ(w)ϕ)d = πϕd. As explained in §5.1.3, there is a right action of
T ⋊ CB+

W
(λ(w)ϕ) on Y (λ(w)), hence a right action on Λc(Y (λ(w)),O) commuting with the

action of G.
It is conjectured that there is a representative C of Λc(Y (λ(w)),O) in the quotient of the

homotopy category of complexes of O(G× (T ⋊CB+
W
(λ(w)ϕ))opp)-modules by complexes whose

restriction to O(G× T ) is homotopy equivalent to 0 with the following properties:

• the right action of O(T ⋊ CB+
W
(λ(w)ϕ)) on C factors through an action of ONG(D)bD

• the resulting complex of (OGb,ONG(D)bD)-bimodules induces a Rickard equivalence
between the principal blocks of G and NG(D).

This conjecture is known to hold when X(w) is a curve [Rou2, Corollaire 4.7] and when w
is a Coxeter element [BoRou2, Du1, Du3, DuRou]. In those cases the monoid CB+

W
(λ(w)ϕ) is

cyclic and its action on Y (λ(w)) is given by powers of F .
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5.4.3. Disjunction of cohomology for Deligne-Lusztig varieties. After extending scalars to Q̄ℓ,
one obtains a version of conjecture 5.7 that is also an open problem. Restricting to unipotent
representations, the crucial missing fact is the disjunction of the cohomology groups. We state
here a conjecture of [BrouMi2] for the case where L = T is a torus.

Conjecture 5.8. Let w ∈ W such that (λ(w)ϕ)m = πϕm for some m ≥ 1. Given i ̸= j, we
have HomQ̄ℓG(H

i
c(X(w), Q̄ℓ), H

j
c (X(w), Q̄ℓ)) = 0.

Craven [Cr] has defined a function Cm : IrrQ̄ℓ
(G, 1) → Z depending only on the generic degree

of the representation and on m and has conjectured that when ρ occurs in H i
c(X(w), Q̄ℓ), it

occurs in degree i = Cm(ρ).

Conjecture 5.8 (together with Craven’s conjecture) is known to hold when w is a Coxeter
element [Lu1] and for groups of rank 2 [DigMiRou]. For GLn, it is known in general (cf [DigMi1]
for m = n− 1 and [Du2, Corollary 3.2] and [BoDuRou, Theorem 4.3] in general).
This conjecture is implied by the refined version of Conjecture 5.7 discussed in §5.4.2. In

the case where w = w0, Conjecture 5.8 is older and due to Lusztig [Lu2, p.25, line 13]. Also,
Conjecture 5.8 was proven earlier by Lusztig when w is a Coxeter element of minimal length
in its class [Lu1].

Conjecture 5.8 can be extended to X(b), where b ∈ B+
W is such that (bF )m = πrFm for some

m, r ≥ 1. The particular case where b = π is known to hold [BoDuRou].

Conjecture 5.8 can be extended to the case of Deligne-Lusztig varieties associated to Levi
subgroups [DigMi2].

More recently, Lusztig [Lu4, §7] has conjectured that the disjunction property of Conjecture
5.8 should hold (in the split case) for elements w ∈ W of minimal length in their conjugacy
class and such that the trace of the endomorphism of the Hecke algebra given by h 7→ TwhTw−1

is in Z≥0[x].

6. Degeneration and genericity

We consider here the setting of §3.2.2.

6.1. Classifying spaces and character sheaves.

6.1.1. Completed classifying spaces. Consider the ring of Witt vectors R = W (F̄p). Let GR

be a reductive algebraic group over R with a maximal torus TR and with an isomorphism
GR ×R F̄p

∼→ G restricting to TR ×R F̄p
∼→ T0. We fix an embedding of R into C and we

denote by G(C) = GR(C) the associated complex Lie group. We also put T(C) = TR(C).

Specialization provides an isomorphism Aut(TR)
∼→ Aut(T0) and we denote by φ the auto-

morphism of TR lifting F .
We denote by φ the automorphism of T(C) induced by F . The corresponding automorphism

Bφ of the ℓ-completed classifying space (BT(C))∧ℓ extends uniquely to an automorphism ψ of
(BG(C))∧ℓ ([Fr1, Theorem 1.6] and [JaMcOl, Theorem 2.5]).
Furthermore, a theorem of Friedlander [Fr2, Theorem 12.2] (cf also [BrotMoOl, Theorem

3.1]) shows there is an isomorphism

(BG)∧ℓ
∼→

(
(BG(C))∧ℓ

)hψ
where hψ denotes taking homotopy fixed points by the group Z acting as powers of ψ.
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6.1.2. Dependence on q. Consider the group Out((BG(C))∧ℓ ) of homotopy classes of homotopy
automorphisms of (BG(C))∧ℓ . There is an isomorphism [AnGro, Theorem 1.2]

Out((BG(C))∧ℓ )
∼→ NGL(Y (T0)⊗Zℓ)(W, {Zℓβ}β∈Φ∨)/W.

Given α ∈ Out((BG(C))∧ℓ ), the space (BG(C))∧ℓ )
hα depends only on the closed subgroup

⟨α⟩ of Out((BG(C))∧ℓ ) [BrotMoOl, Corollary 2.5], where we use the ℓ-adic topology.

When (G, F ) is split, then φ is the automorphism x 7→ xq and ψ is the unstable Adams
operation ψq. Note that the unstable Adams operation ψq is defined more generally for q ∈ Z×

ℓ .
In general, when G is simple and F is a Frobenius endomorphism, then the element of

NGL(Y (T0)⊗Zℓ)(W, {Zℓβ}β∈Φ∨)/W induced by ψ is of the form σ · (q id) where σ has finite order
and ψ = σψq (up to homotopy). In types 2An,

2D2n+1 and 2E6, one has also ψ = ψ−q.
The description ψ = σ · (q id) still works for types 2B2 and 2F 4 (resp. 2G2) when 2 (resp. 3)

is a square modulo ℓ.

Assume ℓ is odd. The space (BG)∧ℓ depends only on the order d of q in F×
ℓ and on νℓ(q

d− 1)
[BrotMoOl, §3 and Proposition 3.2].
Also, B(2An(q))

∧
ℓ ≃ B(An(q

′))∧ℓ , B(2D2n+1(q))
∧
ℓ ≃ B(D2n+1(q

′))∧ℓ andB(2E6(q))
∧
ℓ ≃ B(E6(q

′))∧ℓ
if q and −q′ have the same order d in F×

ℓ and νℓ(q
d−1) = νℓ((−q′)d−1) [BrotMoOl, Proposition

3.3].
Note that (BG)∧ℓ determines the thick subcategory of Db(FℓG) generated by the trivial

module, so this triangulated category has the same genericity properties.

6.1.3. Classifying spaces of loop groups. We assume (G, F ) is split and put ε = 1 or (G, F ) has
type 2An,

2D2n+1 or 2E6 and put ε = −1. We assume ℓ|εq − 1.

We have a family of spaces (BG(C)∧ℓ )
hψ1+ℓh̄ over Zℓ, constant over Z

×
ℓ -orbits:

(BG(C)∧ℓ )
hψ1+ℓh̄

��
Zℓ = {h̄} //

νℓ ((QQ
QQQ

QQQ
QQQ

QQ
Zℓ/Z

×
ℓ

∼
��

Z≥0 ∪ {∞}

One could attempt to make sense of this as a continuous family, and then make sense of the
limit of those spaces as h̄→ 0 to obtain

” lim
h̄→0

”(BG(C)∧ℓ )
hψ1+ℓh̄ ≃ (BG(C)∧ℓ )

hid = L(BG(C))∧ℓ ≃ B(LG(C))∧ℓ ,

where L(X) = Maps(S1, X) is the free loop space and in particular LG(C) is the loop group
associated to G(C). So, from the point of view of ℓ-completed classifying spaces, the loop
group LG(C) appears as G(F1).

In other terms,

” lim
νl(εq−1)→∞

”BG(Fq)
∧
ℓ ≃ B(LG(C))∧ℓ .
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So the space B(LG(C))∧ℓ appears as a degeneration of the family of spaces BG(Fq)
∧
ℓ for

varying q. Here, we use the abusive notation G(Fq) to denote a possibly twisted group in a
family.

As a consequence, we have also a description of the limit (”generic version”) of the thick
subcategory of Db(FℓG) generated by the trivial module as νℓ(εq − 1) → ∞: it is the homo-
topy category of perfect A∞-modules over the A∞-algebra H∗(BLG(C),Fℓ), since the thick
subcategory of Db(FℓG) generated by the trivial module is equivalent to perfect A∞-modules
over Ext∗FℓG

(Fℓ,Fℓ).
Note that while the family of algebras H∗(G,Fℓ) stabilizes [KiKo, Theorem 18], the stabi-

lization does not hold when the A∞-algebra structure is taken into account (cf Remark 6.1
below).

Remark 6.1. When G = Gm, we have BLG(C) = BLC× ≃ S1×CP∞, a space whose mod-ℓ
cohomology is formal as an algebra. The A∞-structure on H∗(BF×

q ,Fℓ) can be chosen so that
there is a single higher multiplication mℓr , where r = νℓ(q − 1) [Mad, Appendix B, Example
2.2]. This higher multiplication disappears in the limit r → ∞.

Remark 6.2. The relation between the cohomology of the finite group and that of the loop
group becomes much more subtle for small ℓ (and r). An approach using the string topology
is given in [GroLa].

Remark 6.3. Considering the usual topology instead of the ℓ-adic one, we obtain limBG(Fq)
∧
ℓ =

BG(F̄q)
∧
ℓ ≃ BG(C)∧ℓ [FrMi, Theorem 1.4].

6.1.4. Rigidification and character sheaves. In the previous section, we explained how to obtain,
under some assumptions, a generic version of the modular representation theory of G, in the
neighborhood of the trivial representation.

To move away from the neighborhood of the trivial representation, we consider a more rigid

version of B(LG(C))∧ℓ . There is a homotopy equivalence B(LG(C)) ≃ G(C)
hG(C)

, the homotopy

adjoint quotient.

We can now consider the derived category of D-modules on the stack G(C)
G(C)

, or constructible

sheaves with k-coefficients. This is the G(C)-equivariant derived category of G(C), for the ad-
joint action, and it has a thick subcategory of unipotent objects, also called the derived unipo-
tent character sheaves, providing a non semi-simple enrichment of Lusztig’s theory [BeZNa,
Definition 6.8]. It is conjectured that the principal series part of this triangulated category
(i.e., its principal block) is equivalent, for ℓ not too small, to the derived category of differential
graded modules over k[h × h∗] ⋊W , where h is the Lie algebra of T0 over k. A similar result
is known for the adjoint quotient LieG

G
[Rid].

For G = GLn, all unipotent character sheaves are in the principal series, so the description
coincides with our degeneration approach in §6.2 below.

An important problem is to find a conjecture for an algebraic description of the derived
unipotent character sheaves, beyond the principal series, starting with the case G = Sp4. This
is related to the problem of finding a canonical generic description of the category of unipotent
representations in characteristic zero, cf [Lu3].

Note that the category breaks down according to Harish-Chandra series, but it would be
desirable to find a description that does not use cuspidal objects.
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6.1.5. General d. The first constructions of §6.1.3 can be performed without the assumption
that ℓ|εq− 1. Denote by d the order of εq in F×

ℓ . Let ζ be a primitive d-th root of unity in Zℓ.
One can consider the family of spaces (BG(C)∧ℓ )

hψζ+ℓh̄ over Zℓ = {h̄} and

” lim
νl(Φd(εq))→∞

”BG(Fq)
∧
ℓ ≃ ” lim

h̄→0
”(BG(C)∧ℓ )

hψζ+ℓh̄ ≃ L(BG(C)∧ℓ )
hµd .

Here µd is the cyclic group of order d acting on BG(C)∧ℓ by ψx, x ∈ µd(Zℓ).

The space (BG(C)∧ℓ )
hµd is an ℓ-compact group [Gro]. Its ”Weyl group” is a complex (or

rather ℓ-adic) reflection group, not a Coxeter group in general. To proceed as in §6.1.4 we
would need an appropriately rigidified version of the space L(BG(C)∧ℓ )

hµd .

Remark 6.4. In [KeMalSe], Kessar, Malle and Semeraro explain how to understand Alperin’s
conjecture in the setting of ℓ-completed classifying spaces. One can expect there is a framework
which encompasses both the cohomological aspects, which was our starting point, and the
character counts, which they study.

6.2. Degeneration.

6.2.1. Degeneration of group algebras of abelian ℓ-groups. Let P be an abelian ℓ-group isomor-
phic to (Z/ℓr)n. Let V = J(FℓP )/J(FℓP )

2. This is an n-dimensional vector space over Fℓ.
Fix a morphism of Fℓ-modules σ : V → J(FℓP ) that is a right inverse to the quotient map
J(FℓP ) → V . The map σ extends uniquely to a morphism of Fℓ-algebras S(V ) → FℓP . That
morphism induces an isomorphism

(2) S(V )/(vℓ
r

)v∈V
∼→ FℓP.

Consider now a finite ℓ′-group E acting on P . The vector space V is an FℓE-module.
Since J(FℓP ) is a semi-simple FℓE-module, there exists a σ as above that is a morphism of
FℓE-modules. The isomorphism (2) is equivariant for the action of E, hence it extends to an
isomorphism of Fℓ-algebras (

S(V )/(vℓ
r

)v∈V
)
⋊ E

∼→ Fℓ(P ⋊ E).

Consider now a general finite abelian ℓ-group P acted on by a finite ℓ′-group E. There exists
an E-stable decomposition P = P1 × · · · ×Pm such that Pi ≃ (Z/ℓri)ni for some ri and ni. Put
Vi = J(FℓPi)/J(FℓPi)

2. The construction above provides an isomorphism of Fℓ-algebras(
S(V )/(

⋃
i

{vℓri}v∈Vi)
)
⋊ E

∼→ Fℓ(P ⋊ E).

Consider the graded Fℓ[t]-algebra A = Fℓ[t] ⊗ Λ(V ) ⊗ S(V ), where Fℓ[t] ⊗ Fℓ ⊗ S(V ) is in
degree 0 and Fℓ ⊗ V ⊗ Fℓ is in degree −1.

We define a structure of differential (Fℓ[t]⊗Fℓ⊗S(V ))-algebra on A by setting d(1⊗v⊗1) =
t⊗ 1⊗ vℓ

ri for v ∈ Vi.
We have H i(Fℓ(t)⊗Fℓ[t] A) = 0 for m ̸= 0 and

H0(Fℓ(t)⊗Fℓ[t] A) = (Fℓ(t)⊗ S(V ))/(
⋃
i

{tvℓri}v∈Vi ≃ Fℓ(t)⊗ S(V )/(
⋃
i

{vℓri}v∈Vi).
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So, the algebra Fℓ(P ⋊E) is, up to quasi-isomorphism, a deformation of the graded algebra(
Λ(V )⊗S(V )

)
⋊E. The derived category of Fℓ(P⋊E)-modules is a deformation of the derived

category of dg modules over the graded algebra (with zero differential)
(
Λ(V )⊗ S(V )

)
⋊ E.

Koszul duality provides an equivalence from the derived category of finitely generated differ-
ential graded modules over the graded algebra (with zero differential)

(
Λ(V ) ⊗ S(V )

)
⋊ E to

the derived category of finitely generated differential graded modules over the graded algebra
S(V ∗ ⊕ V )⋊ E (here V is in degree 0 and V ∗ in degree 2).

To summarize, Db(Fℓ(P ⋊ E)) degenerates into the derived category of differential graded
coherent sheaves on the orbifold [(V × V ∗)/E].

6.2.2. Genericity of perverse equivalences. The discussion here is based on joint work with
David Craven [CrRou2]. We consider the setting of §5.4.1 and we assume to simplify that b is
the principal block. So D is a Sylow ℓ-subgroup of G and there is an isomorphism of algebras
kNG(D)bD ≃ kD ⋊ E where E = NG(D)/CG(D).

It is conjectured that there is a perverse equivalence between kD⋊E and kGb, with a specific
perversity function π : IrrC(E)

∼→ Irrk(E) → Z. That function depends only on the type of the
group G and on d, not on q or ℓ.

As explained in §3.4.2, the group E is a reflection group. We denote by KE the field of
definition of its reflection representation V and by OE the ring of integers of KE. Let R =
OE[|W |−1] and let VR be an RE-module, finitely generated and projective over R, such that
V ≃ K ⊗R VR.

We conjecture that the function π defines a t-structure on the derived category of differential
graded modules over the graded algebra (Λ(VR) ⊗ S(VR)) ⋊ E, where (R ⊗ S(VR)) ⋊ E is in
degree 0 and VR⊗R in degree −1. The heart A of that t-structure would be a “generic version”
of kGb, i.e., a limit as νℓ(Φd(εq)) → ∞. A ridigity property of perverse simple objects would
show that the classes of the indecomposable projective objects of A⊗RKE expressed in terms
of the classes of the simple KEE-modules would give the transpose of the square unipotent
part of the decomposition matrix of the principal ℓ-block of G for ℓ large enough. Note that
the presence of a double grading on (Λ(V )⊗ S(V ))⋊E leads to a two-variable deformation of
the matrix.

Remark 6.5. The discussion generalizes to the case of non-principal blocks. The block of
the normalizer is isomorphic to a twist of the group algebra of the semi-direct product by a
2-cocycle but that cocycle is expected to be always trivial.

Remark 6.6. We expect the algebra S(V ⊕V ∗)⋊E to control generic aspects of the modular
representation theory of G. This algebra admits deformations as rational Cherednik algebras
and the ”t = 0” case is expected to relate to unipotent representations [BoRou4, Bo].

6.2.3. Hilbert schemes. We discuss here joint work with Olivier Dudas [DuRou].
Assume that G = GLn. Let m = ⌊n

d
⌋. We have V ≃ Km

E and W ≃ (Z/d)m ⋊Sm. Let Xd

be the minimal resolution of A2
KE
/(Z/d), where Z/d is embedded in SL2(KE).

Let Hilbm(Xd) be the Hilbert scheme of m points on Xd and π : Hilbn(Xd) → Sm(Xd) be
the Hilbert-Chow map. Let f : A2m → Sm(Xd) be the quotient map by (Z/d)m ⋊Sm.
Combining Koszul duality with the derived McKay equivalence, we obtain an equivalence

between the derived category of differential graded (Λ(V )⊗S(V ))⋊E-modules and the derived
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category of dg coherent sheaves on Hilbm(Xd), where we consider the Gm-action on Xd coming
from its action on A2 with weights 0 and −2. The conjecture in §6.2.2 implies the existence of
a particular t-structure on that derived category.

When d = 1 and ε = −1, the combinatorics of Macdonald polynomials can be used to
obtain a conjectural combinatorial formula for the two-parameter deformed decomposition ma-
trix of Un(q). That conjecture has been checked for n ≤ 11, using the determination of the
decomposition matrices in [DuMal1].

7. Appendix

7.1. Representations.

7.1.1. Categories. Let A be an algebra over a commutative regular local noetherian ring R and
assume A is a free R-module of finite rank. By module, we mean left module. We identify right
A-modules with left modules for the opposite algebra Aopp.
Given M an A-module, we put M∗ = HomR(M,R), a right A-module.
We denote by Irr(A) the set of isomorphism classes of simple A-modules.

We denote by A-mod the abelian category of finitely generated A-modules. We denote by
G0(A) the Grothendieck group of A-mod.

We denote by Db(A) (resp. Hob(A)) the derived (resp. homotopy) category of bounded
complexes of finitely generated A-modules. We denote by A-perf the full subcategory of Db(A)
of complexes quasi-isomorphic to bounded complexes of finitely generated projectiveA-modules.

Let A-stab be the triangulated category quotient Db(A)/A-perf. When A is symmetric as
an R-algebra, the inclusion A-mod ↪→ Db(A) induces an equivalence of categories from the
additive category quotient of A-mod by its subcategory of A-modules of the form A ⊗R V
where V ∈ R-mod, to A-stab.

7.1.2. Equivalences. Let A and B be two finite-dimensional algebras over a commutative noe-
therian ring R.

Let C be a bounded complex of (A,B)-bimodules, all of whose terms are finitely gener-
ated and projective as left A-modules and as right B-modules. Assume there is a complex L
(resp. M) of (A,A)-bimodules (resp. (B,B)-bimodules) such that there are isomorphisms of
complexes of (A,A)-bimodules and (B,B)-bimodules

C ⊗B C
∗ ≃ A⊕ L and C∗ ⊗A C ≃ B ⊕M.

We say that M induces a

• Morita equivalence if Ci = 0 for i ̸= 0 and L =M = 0
• Rickard equivalence if L and M are homotopy equivalent to 0
• derived equivalence if L and M are acyclic
• stable equivalence if L and M are perfect.

These conditions ensure that C ⊗B − induces an equivalence

• (Morita) B-mod
∼→ A-mod

• (Rickard) Hob(B)
∼→ Hob(A)

• (derived) Db(B)
∼→ Db(A)

• (stable) B-stab
∼→ A-stab
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7.1.3. Finite groups. Let G be a finite group. We put IrrR(G) = Irr(RG). Consider a prime p
and a finite field extension K of Qp. Let O be its ring of integers and k the residue field. We
assume that K contains all |G|-th roots of unity. This ensures that KG is a product of matrix
algebras over K and that all simple kG modules are absolutely simple.

Let M be a finitely generated KG-module. There exists an OG-module M ′ that is free over
O and such that M ′ ⊗O K ≃M . Let M ′′ =M ′ ⊗O k. The class [M ′′] in G0(kG) depends only
on [M ] ∈ G0(KG) and we put dec([M ]) = [M ′′]. This defines a morphism of abelian groups,
the decomposition map, dec : G0(KG) → G0(kG). The decomposition matrix is the matrix of
dec in the bases Irrk(G) (columns) and IrrK(G) (rows).

7.2. Braid groups and Hecke algebras.

7.2.1. Braid groups. Let V be a finite dimensional complex vector space. A reflection s of V is
a finite order automorphism of V such that ker(s− 1) is a hyperplane.

Let W be a finite subgroup of GL(V ) generated by reflections (a complex reflection group).
LetR be the set of reflections inW and A = {ker(s−1)}s∈R be the set of reflecting hyperplanes.
We put V reg = V \

⋃
H∈AH. The group W acts freely on V reg, i.e., the quotient map

q : V reg → V reg/W is unramified.
Let x0 ∈ V reg. The braid group ofW is BW = π1(V

reg/W, q(x0)). The map q gives a bijection
from (homotopy classes of) paths in V reg starting at x0 and ending in W (x0) to (homotopy
classes of) loops in V reg/W based at q(x0), and we will identify those two types of objects.
There is a surjective morphism BW → W : it sends w to the homotopy class of a path in V reg

from x0 to w(x0). We denote by π ∈ BW the homotopy class of the path t 7→ exp(2iπt)x0. This
is a central element of BW .

7.2.2. Hecke algebras. Given H ∈ A, let eH be the order of the fixator of H in W . Let
R = Z[{q±1

H,r}H∈A/W,0≤r<eH ].
We define the Hecke algebra H = H(W ) of W as the quotient of the group algebra RBW by

the ideal generated by
∏

0≤r<eH (σH − qH,r), where H runs over A and σH is a generator of the
monodromy around the image of H in V/W [BrouMalRou, Definition 4.21].

The specialization qH,r 7→ exp(2iπr/eH) of H is the group algebra ZW .

7.2.3. Regular elements. We recall some constructions and results of Springer [Sp].
Let σ be an element of finite order of NGL(V )(W ). Let w ∈ W and let v ∈ V reg be an

eigenvector of wσ with eigenvalue ζ. Let d be the order of ζ. The element wσ is said to be
ζ-regular, or d-regular. If w′ ∈ W and w′σ is ζ-regular, then w′σ is W -conjugate to wσ.

Let Vζ = ker(wσ − ζ). The group CW (wσ) acting on Vζ is a reflection group.

The inclusion Vζ ↪→ V induces an isomorphism ιζ : Vζ/CW (wσ)
∼→ (V/W )µd , where µd =

{ζn idV }n∈Z/d.
Assume ζ = exp(2iπ/d) and x0 = v. There exists wd ∈ BW such that (wdσ)

d = πσd

[BrouMi2, Proposition 6.5]. When σ = 1 we can take for wd ∈ BW the homotopy class of the
path t 7→ exp(2iπt/d)x0.
The map ιζ induces a morphismBCW (wσ) = π1(V

reg
ζ /CW (wσ), q(x0)) → BW = π1(V

reg/W, q(x0)).
Its image is contained in CBW

(wdσ).



30 RAPHAËL ROUQUIER

7.2.4. Real reflection groups. We assume now that V = VR ⊗R C and W is a subgroup of
GL(VR). All reflections of W have order 2.

Fix a connected component C of the space VR ∩ V reg and let C̄ be its closure. Let S be the
subset of R of reflections s such that ker(s− 1)∩ C̄ has codimension 1 in VR. Then (W,S) is a
Coxeter group. We denote by l : W → Z≥0 its length function: given w ∈ W , the integer l(w)
is the minimal m such that w = si1 · · · sim for some si1 , . . . , sim ∈ S.

Choose now x0 ∈ C. Given s ∈ S, let σs ∈ BW be the homotopy class of the path that is the
concatenation of t 7→ x0 + tix0, t 7→ (1− t)x0 + ts(x0) + ix0 and t 7→ s(x0) + (1− t)ix0.

There is an isomorphism

(3) ⟨(bs)s∈S | bsbtbs · · ·︸ ︷︷ ︸
mst terms

= btbsbt · · ·︸ ︷︷ ︸
mst terms

∀s, t ∈ S} ∼→ BW , bs 7→ σs

where mst is the order of st [Bri]. We identify BW with the group on the left side of (3) and
we denote by B+

W its submonoid generated by (bs)s∈S.
There is a map λ : W → BW given by λ(w) = bs1 · · · bsr if w = s1 · · · sr is any reduced

decomposition of w ∈ W with si ∈ S. Denote by w0 the longest element of W . We have
π = λ(w0)

2.

Let x be an indeterminate and let H(W ) be the ”usual” Hecke algebra ofW , i.e., the Z[x±1]-
algebra generated by (Ts)s∈S with relations

(Ts − x)(Ts + 1) = 0, TsTtTs · · ·︸ ︷︷ ︸
mst terms

= TtTsTt · · ·︸ ︷︷ ︸
mst terms

for s, t ∈ S.

The isomorphism (3) induces an isomorphism between H(W ) and the specialization of H(W )
at qH,0 7→ x, qH,1 7→ −1.
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[BoMi] C. Bonnafé and J. Michel, Computational proof of the Mackey formula for q > 2, J. Algebra

327 (2011), 506–526.
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[BrouMi2] M. Broué and J. Michel, Sur certains éléments réguliers des groupes de Weyl et les variétés de
Deligne-Lusztig associées, in “Finite reductive groups”, pp. 73–139, Birkhäuser, 1997.
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