GLUING p-PERMUTATION MODULES

RAPHAEL ROUQUIER

1. INTRODUCTION

We give a “local” construction of the stable category of p-permutation modules : a p-
permutation kG-module gives rise, via the Brauer functor, to a family of p-permutation modules
for kNg(Q)/Q, where @ runs over the non-trivial p-subgroups of G, together with certain iso-
morphisms. Conversely, the data of a compatible family of £Ng(Q)/@Q-modules comes from a
p-permutation kG-module, unique up to a unique isomorphism in the stable category.

This should be the first half of a paper with a second part devoted to complexes of p-
permutation modules.

2. THE BRAUER FUNCTOR

Let G be a finite group and k a field of characteristic p > 0.

Let @ be a p-subgroup of G. We denote by Brg the Brauer functor Brg : kG — mod —
ENg(Q) — mod.

For V' be a kG-module,

Bro(V) =V?/ (Z Tr¥ VP) .
P<Q
We write also V(Q) for Brg(V). For basic results about p-permutation modules and the
Brauer functor, see [Br] and [Th, §27].
Restriction induces a fully faithful functor kNg(Q)/Q — mod — kNg(Q) — mod and we will
identify kNg(Q)/Q — mod with the full subcategory of kNg(Q) — mod of the modules with a
trivial action of Q.

We denote by kG —perm the full subcategory of kG —mod of p-permutation modules. This is
the smallest full additive subcategory of kG—mod closed under direct summands and containing
the permutation modules.

From now on, we will always consider the restriction of the Brauer functor Brg : kG —perm —

kNg(Q) — perm.
Let Q be a G-set. The composition v = 13 : kQ? — (k)@ — (kQ)(Q) is an isomorphism.

It induces an isomorphism of functors v : k(—)? = Brgk(—), i.e., there is a diagram of
functors, commutative up to isomorphism :

k(—
G — sets =) kG — perm

()Ql lBrQ
Ng(Q) — sets O kNg(Q) — perm

The following easy result describes the effect of the Brauer construction on a permutation
module. Let H and L be two subgroups of G. We put T¢(L,H) = {g € G|L < H}.
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Lemma 2.1. We have

(G/H)" = U Ne(L)/ (Ne(L) N H?)
9E\TG(L,H)/No (L)

as Ng(L)-sets.

2.1. Tensor product and duality. Let us describe the effect of the functor Brg on tensor
products and duality.

Let V and W be two p-permutation kG-modules. The inclusion V@ @ W — (V @ W)?
induces a map ayy : V(Q) @ W(Q) — (V@ W)(Q).

Restriction (V*)¢ = Homyg(V, k) — (V9)* = Homy(V?, k) induces a map By : V*(Q) —
V(Q)".

We put AG = {(z,2)|]z € G} C G x G.

Lemma 2.2. The maps oy and By are isomorphisms and induce isomorphisms of functors
from kG — perm X kG — perm to kNg(Q) — perm

a: Resng(GQ()QX)NG(Q) Broxg — Brg Res§x¢

and from kG — perm to kNg(Q) — perm
ﬁ . BI‘Q(—)* :> (—)* BI‘Q.

Proof. In order to prove that oy and By are isomorphisms, it is enough to consider permu-
tation modules. So, let V' = kQ and W = kW, where 2 and ¥ are G-sets.

We have an isomorphism tg g : kQ @ kU = k(Q x ¥) given by w ® 1) — (w X 9) for w € Q
and ¢ € V.

There is a commutative diagram :

~

//\

(Q9) @ (kU9)— (kQ)? ® (k¥)? —= (F2)(Q) © (kV)(Q)

QX T)RC—— (k(Q x 1))@ k(Q x 0)(Q)

\//

~

Hence, ay is an isomorphism.
We have an isomorphism dg : kQ = (kQ)* given by w — (3 cqtww’ — ay,) for w € Q.
The composition
kQ? = (k)2 2 (k") — (kQ)(Q)

is an isomorphism. Since the following diagram is commutative

(k2)? —" (kQ)")Q —= (kQ)*(Q)

e

B9 — o (HO9)" <= (BQ)(Q)"

QR

2
jok3

we deduce that [y is an isomorphism.

Let us now check that ayy and By induce natural transformations of functors.
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Let Vi, Vo, Wi and W3 be p-permutation kG-modules and f; € Hom(V;, W;). The following
diagram is commutative :

f1(Q)®f2(Q)
Vi(Q) ® V2(Q) Wi(Q) ® Wa(Q)

QAvy,Va l,\ J AWy, Wy

(‘/1 ®Vv2)Q f1®f2 (W1 ®W2)Q
/ (f12£2)(Q) \

(Vi @ 15)(Q) — (W @ W2)(Q)
Hence, oy, induces a morphism of functors : Resgjcv(f(g)NG(Q) Broxg — BrgRes{%°.
The commutativity of the diagram :

* @ .
wr(@Q) V(@)
\ ) | /
(W) (Vi)

Bw, l l Bvy
(W) (Vi)

W(Q)* @ \1@)*

shows finally that £y induces a morphism of functors : Brg(—)* = (—)* Brg.

Proposition 2.3. There is a commutative diagram

Hom(V, W) = Hom(V @ W*, k)
Bro Hom((V ® W*)(Q), k)
zlﬁal
Hom(V(Q), W(Q)) —— Hom(V(Q) @ W(Q)", k)

where the horizontal maps are isomorphisms provided by the adjoint pairs (— @ W*, — @ W)
and (= @ W(Q)*, — @ W(Q)).

Proof. More explicitely, the first horizontal map is the composition

Hom(V, W) 2% Hom(V @ W*, W @ W*) """ Hom(V @ W*, k)

where tr(W) : W @ W* — k is the trace map.
Thanks to Lemma 2.2, we have a commutative diagram
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Hom(V, W) — Hom(V @ W*, W @ W*)
Brg
Hom((V @ W*)(Q), (W @ W*)(Q))
Brg el

Hom(V(Q) ® W*(Q), W(Q) © W*(Q))

y s

Hom(V(Q), W(Q)) g Hom(V(Q) @ W(Q)", W(Q) & W(Q))

We will be done if we prove that the image of tr(W) : W ® W* — k under the morphism

Hom(W @ W*, k) 2 Hom(W(Q) © W(Q)*, k)

is tr(W(Q)). It is enough to prove this for W a permutation module.
Let W = EkQ, Q a G-set. The claim follows from the commutativity of the diagram

(kQ ® kQ)? —— 2 (kQ ® (kQ)*)?
kQQ ® kQQ (kQ® (kQ2)")(Q)
Ya® (151"

EQC @ (kQQ)*

kQ(Q) ® kQ(Q)*
O

2.2. Compatibilities. Let us define a category 7. Its objects are the non-trivial p-subgroups
of G. Let P and ) be two non-trivial p-subgroups of G. Then, the set of maps between
P and Q in 7¢ is {pgglg € Tc(P,Q)}. The composition of maps is the product in G :
(¢hr) - (pgq) = p(hg)r. We put ¢ = g for ¢ = pgo and ¢(P) = IP.

We call a map ¢ = pgg in Homy, (P, Q) normal if 9P is normal in (). Every normal map can
be expressed uniquely as the composition of an isomorphism with a normal inclusion ¢ = ¢ 4¢~
where ¢ = pgop and ¢4 = splg.

An important property of the normal maps is that they generate the category 74, i.e., every
map in 7g is a composition of normal maps.

For g € G and H a subgroup of GG, we denote by
gy : kH —mod = k9H — mod

the isomorphism of categories induced by the group isomorphism H = 9H, z + 9z. We also
denote by
gy H —sets = 9H — sets
the isomorphism of categories induced by this group isomorphism. We have the obvious com-
patiblity with the previous isomorphism of categories.
Let V be a p-permutation kH-module and ¢ € Homy, (P, Q) invertible. Then, the isomor-
phism of Noy(Q)-modules ¢.(VF) = (¢,V)9, v — v, induces an isomorphism

(@) 1 0.(V(P)) = (6:V)(Q).
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If H = G, then we have an isomorphism of kG-modules
tgy Ve 0.V, vi— v
and an isomorphism of kNg(Q)-modules
(d)v = Bro(izy) - (A)V : (V(P)) = V(Q).

Let now P < Q and ¢ = plg. The canonical map V? — V¥ — V(P) factors through the
inclusion V(P)? — V(P) to give a map V¢ — V(P)?. Composing with the canonical map
V(P)? — V(P)(Q), we get a map V¢ — V(P)(Q) which factors through the canonical map
V% — V(Q). The induced map V(Q) — V(P)(Q) is an isomorphism and we denote the inverse
isomorphism by (¢)y

(d)v - V(P)Q) = V(Q)

Let us summarize the construction by the following commutative diagram :

Ve V(P)
| J
V@ o -V (P)?

| |

V(Q) Se=V(P)(Q)

For ¢ € Homy, (P, Q) a normal map with P < H, @ < SH and V a p-permutation kH-
module, we put

~

(@) = (dadg.v  Bro((d-)V) : (0.(V(P))) (Q) = (6.V)(Q)-

If V is a p-permutation kG-module, we put
(@)v = (da)v - Bro({d~)v) : (6:(V(P))) (@) = V(Q).
This gives an isomorphism of functors from kH — perm to kNsy(¢(P), Q) — perm

< ~ Ng . (Q) "
(9)" : Bro & Brp = Resy " () ) Bro .
and an isomorphism of functors from kG — perm to kNg(¢(P), Q) — perm

_ ~ N,
(¢) : Brg ¢ Brp — ReSNggg()P),Q) Brq.

When V' = k€2, Q a G-set, we have a commutative diagram

ﬂ/kgqﬁmw) Bt (5. () (P))(Q)
k(&*QP)Q (P)v
k{¢)a N
e : (h)(Q)

where
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Note that this justifies the claim that (¢)y is an isomorphism for V' a permutation module
and consequently for V' an arbitrary p-permutation module.

We will now check a transitivity property of the isomorphisms constructed above.

Lemma 2.4. Let ¢ € Homy, (P, Q) and ¢ € Homy,(Q, R) such that ¢, ¢ and ¢ are normal
maps and let V' be a p-permutation kG-module. Then, the following diagram is commutative

Brg ¢« (¢)v -

. ((6.V(P))(@) (R) (2.(V(Q)(R)
w&wmw lww
($6).(V(P)))(R) e

Proof. Indeed, it is enough to check commutativity for V' = k) a permutation module. It
follows from the commutativity of the following diagram

b ((6u(QP))@) — (.(29))
w»—wl B w.—w&—lw
(06).(QP))F e - QR

U
The difference between (@) and (¢)° is is given by the following lemma :

Lemma 2.5. Lety € Homz,(Q, R) be a normal map with v =1,q9€ G andV ap-permutation
kG-module. Then, the following diagram is commutative

(V(Q))(R) — 2 V(R)
Brg BrQ(ng/)T TBTR(LQ}/)
((9:V)Q)(B) ——— (g.V)(R)

In particular, if ¢ € Homy, (P, Q) is any normal map, then (¢)y = BI‘Q(L(;}/) )Y,

Proof. Again, it is enough to deal with V = kQ a permutation module. Then, the lemma
reduces to the commutativity of

(QQ)R ww OF
w»—»g_le Tng_lw

(99— (9. )"

For the second part of the lemma, we take 1) = ¢ and g = ¢ in the commutative diagram. O

3. A CATEGORY OF SHEAVES ON pP-SUBGROUPS COMPLEXES

3.1. Definition. Let F be a subcategory of 75. We define a category Sz of “sheaves” on F.

Its objects are families {V, [¢]}¢,» Where @) runs over the objects of F and ¢ over the normal
maps of F. Here, Vg is a p-permutation kN (Q)/@Q-module and for ¢ € Homz(P, ()) normal,
[¢] is an isomorphism of kNg(4(P), Q)-modules

0] (8:V2)(Q) = Resi (Gl o) Ve
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We require the following two conditions to be satisfied :
For ¢ € Homz#(Q, @), we have

[0 =15y, (1)

Let ¢ € Homz(P, Q) and ¢ € Homz(Q, R) such that ¢, ¢ and ¥¢ are normal maps. Then,
the following diagram should be commutative

- Brg ¢«[¢]

. ((3.VP)(Q)) (R) (0.Vo)(R) (2)
<w>3*vpl W
(($6).Vp)(R) “”‘” Vi

For V = {Vq,[¢]} and V' = {V{), [¢]'} two objects of Sz, Homs,(V,V’) is the set of families
A = {A\q}q, where @ runs over the objects of F. Here, Ag € Homyn,(q)(Va, V{). Furthermore,
A should have the following property : for every normal map ¢ € Homz(P, @), the following
diagram is commutative

_ Brg P« Ap _
(6:VP)(Q) (2. Vp)(Q) (3)
[¢]l lkﬁ]'
Vo - V)

Thanks to the results of §2.2, we have a functor
Br: kG —perm — S, V= {V(Q),(d)v}

where § = S7,.
We can now state our main result :

Theorem 3.1. The functor Br induces an equivalence of categories
kG — perm /kG — proj — S.
3.2. Some properties of Sr. Let us give a special case of the commutative diagram (2).

Lemma 3.2. Let ¢ € Homz(P,Q) and ¢ € Homz(Q, R) be two normal maps with ) €
Na(o(P)). Then, the following diagram is commutative

b, ((B.Vp)(Q)) (R) ——2mtel? (6.Vo)(R)
<w>¢*vpl lm
(6.Vp)(R) e Vi

Proof. Let ¢/ = ¢ and ¢' = p(¢~ ' d)p. We have ¢ = 1'¢/. By (1), we have [¢] = L(;,IVP.
We have also @*(/E*Ldf),fvp = Ly g.vp- The commutativity of the diagram (2) applied to ¢" and ¢’
gives the commutative diagram

Brrigg.vp

Vg
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and we obtain the commutativity of the diagram of the lemma since (¢)3. v, = BrR(LEd? VP)
<¢)%*VP by Lemma 2.5. O

The diagram (3) need be checked only on a generating set :

Lemma 3.3. Let E be a set of normal maps in F such that every normal map of F is a product
of elements of E and of inverses of invertible elements of E.

Then, the commutativity of the diagram (3) for ¢ € E implies the commutativity for every
normal map ¢ of F

Proof. Let ¢ € Homz(P, Q) and ¢» € Hom#(Q, R) such that ¢ and 1¢ are normal maps. Then,
¢ is a normal map and the following diagram is commutative

(49).Ve) (R) —— v Vi
0. (B.V)(@Q)) (R) — 22012 (8. Vo)(R)
Brr(¢¥¢)«Ap Brg ¢« Brg q_ﬁ*)\pl lBrR Yo AR
. ((6.V1)(Q)) (R) —222 (G V) (R)
Ws.vy )
(66).VH)(R) v Vi
The lemma follows. ]

We now define a restriction functor from G to Ng(P)/P.

Let P be an object in F. We assume plg € Homg(P, Q) for every @ in F with P < Q.
Let F(P) be the subcategory of Ty, p)/p whose objects are the @)/P where @ is in F and
P <@, P# @ and where Homz(p)(Q/P, R/P) is given by the image in T, p),r(Q/P, R/P)
of Homz(Q, R).

Let ¥V = {Vg, [¢]} be an object of Sz. Let V), p = Vo. For ¢/ € Homp(p)(Q/P, R/P), we
put [¢'] = [¢] where ¢ € Homz#(Q, R) has image ¢’ in Homzp)(Q/P, R/P). It follows from (1)
(and from the diagram (2)) that this is independent of the choice of ¢.

The restriction functor is

Res;(P) :Sr = Sripy, Vg, 9]} — {Vc/g/p> [¢]}.
We denote by Ep : T — kNg(P)/P — perm the functor sending V on Vp.

The commutative diagram in Lemma 3.2 says that objects can be “glued locally” :

Lemma 3.4. ForV in Sz, we have an isomorphism {[plgl}g : Br Ep(V) = Resjfr(P) V. This

induces an isomorphism of functors Br Ep = Resf_-( p)- 90, we have a diagram, commutative
up to isomorphism :

ResZ
F(P)
Sr Sr(p)
T Br
Ep

kNg(P)/P — perm
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Proof. Let V = {Vg,[¢]} in S and V' = Resj;(P) V. We have Br(Vp) = {Wgp, (¥)v, } with
Wasp = Vp(Q).

Let )\Q/p = [P]_Q} : WQ/p = Vé/P and A = {)\Q/p}.

Let ¢ = plg in F and ¢ € Homz#(Q, R) be two normal maps with ¢ € Ng(P).

We have a commutative diagram (Lemma 3.2)

(BVr(@Q)(R) 22 (5 vo)(R)
<¢>Vpl l[lﬂ]
Ve () Wad] Vi

This shows that A defines a map Br(Vp) — V'. This induces an isomorphism between Br-FEp
and Resf( p)- O]

3.3. Proof of Theorem 3.1. Let us first note that Br(V) = 0 if V' is projective, hence Br
induces indeed a functor Br : kG — perm /kG — proj — S.

Lemma 3.5. The functor Br is fully faithful.
Proof. We have to prove that Br induces an isomorphism
Hom(V, W) = Hom(Br V, Br W)

for V and W any p-permutation kG-modules.
Thanks to Proposition 2.3, we have a commutative diagram :

Hom(V, W) - Hom(V @ W* k)

Brl lBr

Hom(Br V, Br W) = Hom(Br(V ® W*),Brk)

So, it is enough to consider the case W = k.

Since the modules k£(G/Q), @ a p-subgroup of G, generate kG —perm as an additive category
closed under taking direct summands, we may assume V = k(G/Q). We may take @) # 1 since
otherwise V' is projective.

Now, Hom(kG/Q, k) ~ Hom(kG/Q, k) is a one-dimensional vector space, generated by the
unique map f between the G-sets G/Q and G/G.

The map Brg(f) : V(Q) = k(G/Q)? — k is induced by the unique map between the sets
Ne(Q)/Q and Ng(Q)/Ne(Q). In particular, it is non-zero, hence Br(f) # 0.

Let A € Hom(BrkG/Q,Brk). Since Hom(V(Q),k) is one-dimensional, we have \g =
aBrg(f) for some a € k. So, A — aBr(f) vanishes on V(Q).

We assume now Ao = 0. We will prove that A\p = 0 for all P. This is clear if P is not
conjugate to a subgroup of @, since then V(P) = 0. We will now prove the result for P < @
by induction on [@ : PJ.

Let P < @ and g € Tg(P,Q). Let R be a p-subgroup of G such that P < R < @Y,
P # R. Then, (Ng(P)/Ng(P) N Q%) # 0. Now, A\p and A\ have the same restriction to
(Ng(P)/Na(P)NQ@9)%. Consequently, Ap is zero on (Ng(P)/Na(P)NQ7)", by induction. By
Lemma 2.1, we deduce that A\p = 0. 0]

The first part of following lemma is essentially due to Bouc [Boul, Bou2| (cf also [Li, Lemma

5.4]).
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Lemma 3.6. (i) Let f: V — W be a morphism between two p-permutation kG-modules such
that Brg(f) is injective for all QQ # 1. Then, there is a morphism o : W — V such that
of is a stable automorphism of V. In particular, if V' has no projective direct summand,
then f is a split injection.

(ii) Let A : V — W be a morphism between two objects of S. Assume for all Q, there is a
projective direct summand L¢ of the kNg(Q)/Q-module Vi such that the restriction of Ag
to Lg is injective and Vo /Lg has no projective direct summand. Then, for all Q, Mg is a
split injection.

Proof. Let us prove part (i) of the lemma. We can assume V' has no projective direct summand.

Assume G is a p-group.

Let us first consider a morphism f : V = k(G/Q) — W = k(G/R) such that Brg(f) is
injective, where ) and R are non-trivial p-subgroups of G. The module V(Q) is a projective
indecomposable kNg(Q)/Q-module. Since W(Q) # 0, @ is contained in R, up to conjugacy.
Without changing W, we can assume @) < R.

Assume @ # R. Then, for any g € T¢(Q, R), there is S such that P <1 S < @9, P # S.
So, kNg(Q)/(Ng(Q) N RY) is not a projective kNg(Q)/Q-module. By Lemma 2.1, V(@) is not
isomorphic to a submodule of W () and we have reached a contradiction.

If @ = R, then f becomes invertible in the quotient Endin,)q(V(Q)) of the local ring
Endig(V), hence f is invertible.

Let now f : V — W be a morphism between two p-permutation modules such that Brg(f)
is injective for () non trivial. In order to prove that f is injective, we may assume V is
indecomposable, i.e., V = k(G/Q) for some subgroup @ of G. We can assume @) # 1, otherwise
V' is projective. Since V(Q) is indecomposable, there is an indecomposable direct summand

W' of W such that if f’ is the composition V' Tow oo W', then Brg(f’) is injective. Now,
the considerations above show that f’ is an isomorphism and we are done.

Take now G an arbitrary finite group. Let U = ker f and let S be a Sylow p-subgroup of
G. We know that the inclusion Res§ U — Res$ V' is projective. So, the inclusion U — V is
projective, hence U = 0 since we assume V' has no projective direct summand. Finally, the
short exact sequence 0 — V' — W — W/V — 0 splits, since it splits by restriction to S.

Let us come to part (ii) of the lemma.

We prove the result by inverse induction on the order of (). When @ is a Sylow p-subgroup
of G, then Vo = L, so A\ is a split injection.

Assume now () is not a Sylow p-subgroup of G. Consider the restriction f : Mg — W of
Ag, where Vo = Lo ® Mg. By induction, Brg,o(f) is injective, for all p-subgroups R with
Q < R, QQ # R. By part (i) of the Lemma applied to Ng(Q)/Q, we deduce that f is a split

injection. Hence, A\ is a split injection. O

Lemma 3.7. Let G and H be two full subcategories of T closed under inverse inclusion with
G CH. Let V,V' € Sy. Then, the restriction map

Homs,, (V,V’) — Homg, (Res§ V, Resjf V')
1S surjective.

Proof. 1t is enough to prove the lemma when H has one more object, @), than G. Let A €
Homs, (Resd V, Resi V).

Assume first there is g € G such that Q9 € G and let ¢ = gggs € Homy (Q, Q7). Let Ny = Ag
for R # Q and \, = [¢""']'Ags[¢]. In order to prove that {\;} gives a map between V and V'’
(extending A), it is enough to check commutativity of the diagram (3) for the map v, thanks
to Lemma 3.3. This is immediate.
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Assume now Q7 ¢ G for all g € G. Let f : Br(Vp) — Br(Vf)) be the restriction of A to
Sn(q) (cf Lemma 3.4). By the fullness of Br applied to N¢(Q)/Q (Lemma 3.5), there is a map
Mg Vo — V{ such that Br(\y) = f. Let Ay = Ag for R € G. Since every map in ‘H starting
from @ is the composition of a map from @) to R, with () a strict normal subgroup of R and of
a map in G, Lemma 3.3 shows that {\} defines a map between V and V', extending A. O

We now complete the proof of Theorem 3.1 by showing the essential surjectivity of Br. Let
VY € S. We will prove by induction on the cardinality of {Q|Vy # 0} that V is in the image of
Br.

For Q € 7, let L be a projective direct summand of Vi, such that Vy/Lg has no projective
direct summand. We denote by aq : Vo — Lg the canonical surjection.

Let M = Ind%G(Q) Lg and M = Br M. We have M(Q) ~ Lg by Green’s correspondence.

Let ¢ : Vo e, Lo = M(Q). Let H = 75 and G be the full subcategory of 7 with objects
the p-subgroups containing @. Let ( = 0 for R € G, R # Q and (5 = ¢. Then, {(3} €
Homs, (Resd V, Resf M). By Lemma 3.7, there is x € Homgs(V, M) extending {y}.

Let now V' = @ger,/a IndgG(Q) Lo, V' =BrV'and A : V — V' be the sum of the morphisms
constructed for each @) above.

Then, for all @, the restriction of Ay to Lg is injective. By Lemma 3.6, (ii), we deduce that
Ag is a split injection for all Q). Let then W be the cokernel of A.

Take R with Vi = 0. Then, Vi = 0 whenever R is contained up to G-conjugation in (). So,
V' has no direct summand with vertex R, hence Wxr = 0. Let now () be maximal such that
Vo #0. Then, \g : Vo =Lg — (Ind%G(Q) LQ) (Q) is an isomorphism. So, Wg = 0. It follows
that {Q|Wq # 0} is strictly contained in {Q|Vg # 0}. By induction, there is a p-permutation
kG-module W (without projective direct summand) such that W = BrW. By fulness of Br
(Lemma 3.5), the canonical morphism V' — W comes from a morphism f : V' — W. By
Lemma 3.6, (i), dualized, f is a split surjection. Hence, ker f is a p-permutation kG-module
and we have an isomorphism V = Br(ker f). This finishes the proof of Theorem 3.1.
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