
FROM STABLE EQUIVALENCES TO
RICKARD EQUIVALENCES FOR BLOCKS
WITH CYCLIC DEFECT

RAPHAEL ROUQUIER

DMI-ENS (CNRS UA 762), 45 Rue d'Ulm, 75005 Paris, France
E-mail: Raphael.Rouquier@ens.fr

1. Introduction

Let G and H be two finite groups, p a prime number. Let 0 be a complete
discrete valuation ring with residue field k of characteristic p and with field
of fractions K of characteristic 0, "big enough" for G and H. Let A and B
be two blocks of G and H over 0.

Let M be a (A ® B°)-module, projective as A-module and as B°-module,
where B° denotes the opposite algebra of B. We denote by M* the (B ® A°)-
module Homo(M, 0).

We say that M induces a stable equivalence between A and B if

M ®B M* A ® projectives as (A ® A°) - modules and
M* ®A M B ® projectives as (B 0 B°) - modules.

Let C be a complex of (A ® B°)-modules, all of which are projective as
A-modules and as B°-modules.

Denoting by C* the 0-dual of C, we say that C induces a Rickard equiva-
lence between A and B if C ®B C* is homotopy equivalent to A as complexes
of (A ® A°)-modules and C* ®A C is homotopy equivalent to B as complexes
of (B ® B°)-modules.

By [Ri4, 5.51, from a complex C inducing a Rickard equivalence between A
and B, one can construct a module M inducing a stable equivalence between
A and B as follows : In the derived bounded category of A ® B°, the complex
C is isomorphic to a complex with only one term which is not projective as
(A ® B°)-module, V in degree -n and then the n-th Heller translate (syzygy)
M = Q'2(V) induces a stable equivalence between A and B.

The main result of this note is a partial converse under very special assump-
tions (Theorem 6). Since there are well-known situations where a module M
induces a stable equivalence between two blocks (Remark 9), for example
when the Sylow p-subgroups of G are TI, H is the normalizer of a Sylow
p-subgroup of G and A, B are principal blocks, it is tempting to try to con-
struct a complex with two terms, M in degree 0 and a projective module in
degree -1, inducing a Rickard equivalence between A and B. Using Theorem
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6, we prove that it is indeed possible when the Sylow p-subgroups of G are
cyclic or when G = As or SL2(8) and p = 2.

2. A criterion for derived equivalences between blocks

2.1. Some lemmas

Let A' be an 0-free 0-algebra, finitely generated as an 0-module.
If V is an A'-module, let Pv be an A'-module which is a projective cover

of V. We will denote by Rad(V) the radical of V and by hd(V) the head
V/Rad(V) of V, i.e., its largest semi-simple quotient.

If M and N are two A'-modules, we say that M and N are disjoint if
they have no non-zero isomorphic direct summands. If M and N are projec-
tive, they are disjoint if and only if HomA,(M, hd(N)) = 0 or equivalently,
HomA'(N, hd(M)) = 0.

If X is an 0-module, we define X = X ® k.

Lemma 1. Let P, Q and R be three projective A'-modules and <p : P®Q -»
R a surjective morphism. Assume that Q and R are disjoint: Then, the
restriction cop of cp to P is surjective.

Let U,V and W be three injective A'-modules and cp : W -+ U ® V an
injective morphism. Assume that V and W are disjoint. Then, denoting by
pu the projection of U ® V onto U, the map puco is injective.

PROOF. Let h : R --+ hd(R) be the canonical projection. Since hip : P
Q -» hd(R) is surjective and HomAI(Q, hd(R)) = 0 by assumption, hco1p is
surjective. Hence, cp(P) + Rad(R) = R and by Nakayama's lemma, V(P) =
R. The second assertion follows immediately by duality since V and W are
disjoint implies that V* and W* are disjoint.

Lemma 2. Let M be an (A ® B°)-module, projective as A-module and as
B°-module. A projective cover of M is

® PMOBW ®Pw
w

where W runs over a complete set of representatives of isomorphism classes
of simple B-modules. This module is isomorphic to

®Pv®PM.OAV
V

where V runs over a complete set of representatives of isomorphism classes
of simple A-modules.
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PROOF. Let V be an A-module and W a B-module. We have

HomB.(M,V ®W*) ^ HomB.(M,V ®W*) M* ®B. (V ®W*)

since M is projective as B°-module. Hence,

Hom$o(M, V ®W*) - (M ®$ W)* ®V ^' Homk(M ®$ W, V)

and finally

HomA®B.(M, V ® W*) HomA(M ®B W, V).

Now, we have

hd(M) c ® dim HomA®B.(M, V ® W*)(V ® W*)
v,w

(dimHomA(M®B
l

ED W, V)V I ® W*

where V (resp. W) runs over the simple A-modules (resp. B-modules) up to
isomorphism, hence

hd(M) ^ ®hd(M ®B W) ® W*,
w

so a projective cover of M is @W PM®BW ® Pa,.
To get the second description, replace A by B° and B by A° in the first

description : a projective cover of M as B°®(A°)°-module is ®VPM®A,v®PV.
where V runs over the simple A°-modules. This module is isomorphic to
®vPM®A. v. ® Pv where V runs over the simple A-modules, hence a projective
cover of M as (A ® B°)-module is ®vP® ® Pv.®AM where V runs over the
simple A-modules.

Lemma 3. (Linckelmann, [Li2, 6.8]) Let M be an (A(& B°)-module inducing
a stable equivalence between A and B. Then, M has a unique non-projective
direct summand, up to isomorphism.

PROOF. Let M = Ml ® M2. Since M* ®A M B ® projectives, we have
M* ®A Ml ® M* ®A M2 B ® projectives as (B ® B°)-modules. As B
is indecomposable as (B ® B°)-module, there exists i E {1, 2} such that
M* ®A M; is projective as (B ® B°)-module, so M ®B M* ®A M; is projective
as (A®B°)-module. Now, (M®BM*)®AM2 cJ M1® projectives as (A(D B°)-
modules, hence M; is projective as (A ® B°)-module.

Remark 4. A similar proof shows that a complex of (A ® B°)-modules C
inducing a Rickard equivalence between A and B has a unique non-homotopy
equivalent to zero direct summand, up to isomorphism.
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Lemma 5. (Linckelmann, [Li2, 6.3]) Let M be an indecomposable
(A ® B°)-module inducing a stable equivalence between A and B. For any
simple B-module V, the A-module M ®B V is indecomposable.

PROOF. (Linckelmann) Denote by soc(A) the largest semi-simple A-submo-
dule of A. Recall that an A-module V has no projective direct summand
if and only if soc(A)V = 0. We have soc(A ® B°) = soc(A) 0 soc(B°).
Since M has no projective direct summand, soc(A ® B°)M = 0, hence
soc(A)(M ®B soc(B)) = 0, which means that MOB soc(B) has no projective
direct summand. But, if V is a simple B-module, it is a direct summand
of soc(B), so M ®B V has no projective direct summand : as M induces
a stable equivalence, M ®B V has a unique indecomposable non projective
direct summand and the lemma follows. 0

2.2. The criterion

We denote by RK(A) (resp. RK(B)) the group of characters of KA = K ® A
(resp. KB).

Let us now state the main result:

Theorem 6. Let M be an (A 0 B°)-module, projective as A-module and
as B°-module. Let b: P' -» M be a projective cover of M. Let P be a direct
summand of P', 6 = SAP and C = (0 -> P -, M -> 0) (M is in degree
0). Assume

(al) M* ®A M B T Q where Q is a projective (B ® B°)-module,
(a2) M ®B M* A ® R where R is a projective (A 0 A°)-module,
(b1) ResB®B°P and ResB®B°P'/P are disjoint,
(b2) ResA®B°P and ResA®B°P'/P are disjoint,
(c) KC induces an isometry between RK(A) and RK(B).

Then, C induces a Rickard equivalence between A and B.

PROOF. 1 Remark first that (b1) implies that

(b') ResB®A°P* and ResB®A° (P'/P)* are disjoint.
We have

C* ®A C
id®b

(5*®id,id(96) * -6* idP ®AP®M ®AM -+ P ®AM-->0).
'Using an unpublished result of J. Rickard, one can actually prove the theorem without

the assumptions (a2) and (b2).
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Since KC induces an isometry between RK(A) and RK(B), the character of
K(C* ®A C) as (B ®:B°)-module is equal to the character of B. Hence,

K(M* ®A P ® P. ®A M) ^' K(P* ®A P (D Q)

We know that P is' a projective (A ® B°)-module and ResB®A°M* is pro-
jective, so M* ®A P is projective as (B 0 B°)-module. Similarly, P®®A M,
P®®A P and Q are projective (B 0 B°)-modules. Hence

M*®AP®P*®AM,P*®AP®Q, and

Let Q = Ql ® Q2 where
(1)

ResB®B°Q2 and ResB®B°P are disjoint, (2)
ResB®B°Ql and ResB®B°P'/P are disjoint. (3)

(Since the map pQ(id ®b') : M* ®A P' -> Q is surjective, every indecom-
posable direct summand of ResB®B°Q is isomorphic to a direct summand of
ResB®B°P', so Ql and Q2 are unique up to isomorphism).

The map pQ, (id 0 b') : M* ®A P' --> Ql is surjective and using (3),

ResB®B°Ql and ResB®B° (M* ®A P') / (M* ®A P) are disjoint,

hence Ql and (M* ®A P') / (M* ®A P) are disjoint,

and it follows from Lemma 1 that the map

pQ1(id®S): M*®AP-+Q1

is surjective.
From (1), Q is isomorphic to a direct summand of M* ®A P ® P* ®A M,

hence Q2 is isomorphic to a direct summand of P* ®A M using (2). By (b'),

ResB®B° (P* ® M) and ResB®B° (P'* ® M/P* ® M) are disjoint,

hence ResB®B°Q2 and ResB®B° (P'* ®M/P* ®M) are disjoint.

Now, since (S'* ® id)IQ2 : Q2 -+ P'* ®A M is injective, Lemma 1 implies
that

(S* ® id)IQ2 : Q2 -> P®®A M

is injective.

Let R2 be a submodule of P*®AM such that P*®AM = R2®Im(S*(Did)IQ2
We introduce

f2=pR2(id®6):P* OAP--+R2

and f2' = pR2 (id 0 S') : P* ®A P' --+ R2
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We have P* ®A M Q2 ® R2, so, by (1), as Ql is isomorphic to a direct
summand of M* ®A P, the module Rl is a direct summand of P* ®A P, hence,
by (bi),

ResB®B°R2 and ResB®B` ((P* ®A P')/(P®®A P)) are disjoint.

Since f2 is surjective, Lemma 1 implies that f2 is surjective.
It follows that the map id ®S- S* ®id is surjective. By Nakayama's lemma,

the map id ® 6 - S* ® id is also surjective and hence splits. By duality, the
map b* ® id + id 0 6 is injective and splits. Hence, the complex C* ®A C is
homotopy equivalent to B.

Similarly, the complex C ®B C* is homotopy equivalent to A. Hence, the
complex C induces a Rickard equivalence between A and B.

2.3. An application

Let M be an indecomposable (A 0 B)°-module inducing a stable equivalence
between A and B.

Assume that for every simple A-module V, the head of M* ®AV is simple.

Theorem 7. If there exists a direct summand P of

® Pv (D Pjy*®AV _ ® PM®BW ®PPV
V W

(V runs over the simple A-modules and W over the simple B-modules) such
that 0 -> P °) M --+ 0 induces an isometry between RK(KA) and RK(KB),
then there is a complex C = 0 --+ P --> M -+ 0 inducing a Rickard equivalence
between A and B.

PROOF. The modules P and M being projective as A-modules and as B°-
modules, the isometry induced by 0 -+ P -° > M -+ 0 is perfect [Br3, 1.2] and
it follows that the algebras A and B have the same number s of isomorphism
classes of simple modules [Br3, 1.5].

If V is a simple A-module, the modules Pv and PM*®Av are indecompos-
able. Hence, a projective cover of M is a sum of s indecomposable (A 0 B°)-
modules, which are mutually non-isomorphic when restricted to A or when
restricted to B°. Hence, if P is a direct summand of P' then ResB®B°P
and ResA®B°P'/P are disjoint and ResA®B°P and ResA®B`P'/P are disjoint.
Now, Theorem 6 gives the conclusion.

Let us denote by CF(G, K) the space of class functions G --> K, by
CF(A,K) the subspace generated by RK(A). We denote by CFp(G, K)
(resp. CFp,(G, K)) the subspace of CF(G, K) consisting of class functions
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which vanish on p-regular (resp. p-singular) elements and CFp(A, K) (resp.
CFp,(A, K)) the intersection CFp(G, K) fl CF(A, K) (resp. CFp,(G, K) fl
CF(A, K)).

As the next lemma shows, in the situation of Theorem 7, if the map induced
by 0 -+ P M --+ 0 is an isometry on a subspace of CF(A, K) which
contains a complement of CFp(A, K), then it is an isometry:

Lemma 8. Let P1, P2 be two projective (A ® B°)-modules and C = 0 -
Pi -° M®P2 --+ 0. Let I be the map between RK(A) and RK(B) induced by
C. Let X be a subspace of CF(A, K) such that CF(A, K) = X + CFp(A, K).

If the restriction of I to X is an isometry, then I is an isometry.

PROOF. Let f, g E CF(A, K). We decompose f and g as f = fp + fp, and
g = gp + gp, where fp, gp E CFp(A, K) and fp', gp, E CFp,(A, K). Since I is
perfect [Br3, 1.2], I(fp), I(9p) E CFp(B, K) and I(fp,), I(gp,) E CFp,(B, K).
Hence, the scalar product of I(f) and I(g) is <1(f), I(g)>=<I(fp), I(gp)>
+ <I(ff'), I (9P')>.

Furthemore, the restriction of I to CFp(A, K) is an isometry because M in-
duces a stable equivalence between A and B and as Pi and P2 are projective,
the map induced by M between RK(A) and RK(B) is equal to I on CFp(A, K)
[Br2, 5.3]. It follows that <I(fp), I(gp)>=<fp, gp> and we have now to prove
that < I(fp,), I(gp,) >_< fp,, gp, >. But, as CF(A, K) = X + CFp(A, K),
we can decompose fp, and gp' as fp' = fi + f2 and gp' = 91 + 92 where
fi,91 E X and f2,92 E CFp(A,K). Now, < fi,91 >=< fp',gp' > - <
f2,92> and <I(fl),I(9i)>=<I(fp'),I(gp')> - <I(.f2),I(92)>. Finally,
we know that <I(fi),I(gi)>=<f1,gi> and <I(f2),I(92)>=<f2,92>, hence
<I (ff'), I (9P')>=<fP') 9P'>.

Remark 9. Stable equivalences induced by bimodules arise for example in
the following situation [Br2, 6.4]:

Assume that H is a subgroup of G with index prime to p and e, f are the
units of A and B. Following Broue, let us assume that for every non trivial
p-subgroup P of H, we have NG(P) = NH(P)Op,CG(P). Then, the (A®B°)-
module eOGf induces a stable equivalence between A and B. Let M be an
indecomposable non-projective direct summand of eOGf ; by Lemma 3, such
a module is unique up to isomorphism ; we have eOGf = M® projectives,
so M induces a stable equivalence between A and B.

Example 1. Let G= SL2(4) = A5 and H= A4 = 22 i 3 a Borel subgroup,
p = 2. The principal block ekG of G has three simple modules : k, Si and S2
of dimension 2. The module ResH(Si) is a non-split extension of V2 by Vi,
where Vi and V2 are the two non-trivial non-isomorphic simple kH-modules
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and ResH(S2) is a non-split extension of V1 by V2. An immediate character
calculation shows that

0-->Ps,®P,®Ps2®Pj2-0 >eOG-30

induces an isometry between RK(eKG) and RK(KH). Hence, by Remark 9
and Theorem 7, there exists a complex 0 -+ Ps, 0 Pv, ® P52 ® Pv2 - eOG -> 0
inducing a Rickard equivalence between the principal blocks of G and H, a
result due to J. Rickard [Ri3].

Example 2. Let G = SL2(8) and H = 23 >4 7 a Borel subgroup, p = 2.
Then, Theorem 7 applies also to construct a complex inducing a Rickard
equivalence between the principal blocks of G and H : The (A®B°)-bimodule
eOG is indecomposable. We leave to the reader to check that a projective
cover of this module is :

Pl®Qi®P2,®Qi,®P22®Qa2®P23®Q23®P4,®Q4,®P42®Q42®P4,®Q4,

(where Pl (resp. Ql) is a projective cover of the trivial A-module (resp. B-
module), P211 P22 and P23 (resp. P411 P42 and P43) are projective covers of the
three non-isomorphic 2-dimensional (resp. 4-dimensional) simple A-modules
and Q2 Q22, Q23,Q4 Q42, Q43 are projective covers of the six non-isomorphic
non-trivial simple B-modules) and that the complex

0-®P4, ®Q4, ED P42®Q42®P4,®Q43 0-*e0G-*0

induces an isometry between RK(A) and RK(B), so that by Remark 9 and
Theorem 7, there exists a complex 0 -p ®P41 0 Q4, ®P42 ® Q42 ®P43 0 Q43
eOG --> 0 inducing a Rickard equivalence between the principal blocks of G
and H.

3. Application to principal blocks with cyclic defect

Let G be a finite group with a cyclic Sylow p-subgroup P and let H = NG(P).
As before, A = OGe and B = OHf are the principal blocks of G and H,
where e and f are primitive idempotents of the centers of OG and OH.

The functor erm IndH induces a stable equivalence between A and B with
inverse functor f ResH (Remark 9).

As conjectured by J. Rickard (cf [Ri2]), a slight modification of these func-
tors leads to a derived equivalence, and this proves in particular the conjecture
of Broue and Rickard on abelian defect, for principal blocks with cyclic defect
(cf [Brl]) :
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Theorem 10. There exists a projective (A ® B°)-module Y and a map
0: Y -+ eOGf such.. that, if C = 0 --i Y eOGf - 0, then C induces
a Rickard equivalence between A and B. In particular, C is a Rickard tilting
complex of p-permutation modules.

Note that the fact that A and B are derived-equivalent was already known
by the work of Rickard and Linckelman (cf [Ril] and [Lil]).

3.1. Construction of C

Let us quote some classical results about A (cf [Gr]).
The set of irreducible characters of KA is Irr(A) = {X1, ... , Xe} U {Xa}AEA

where Xi,... , Xe are the non-exceptional characters and the XA, A E A, are the
exceptional characters. (In the case there is only one exceptional character,
one can choose it different from the character 1G.)

Define Xe+1 = Xa and I' = {X1, ... , Xe+i }.
The Brauer tree TA is then defined as follows :

the set of its vertices is IF,
two vertices v and v' are incident if and only if v + v' is the character
of a projective indecomposable A-module. We denote by {v, v'} the
corresponding edge.

The vertex Xe+1 is called the exceptional vertex of TA. Every character of a
projective indecomposable A-module is an edge of TA and we have a bijection
beween the set of edges of TA and the set of characters of projective indecom-
posable A-modules. If v and v' are two vertices of TA, we denote by d(v, v')
the distance between v and v'.

There is a "walk" on TA starting from 1G, the trivial character of G, i.e.,
a sequence vo = 1G, V1, ... , v2e of vertices of TA such that vi is incident with
vi+1 for 0 < i < 2e - 1, with the following properties :

Each edge is traversed twice, i.e., denoting by li the edge {vi,vi+1},
then for every edge I of TA, there exists i and j two distinct integers,
0<i,j<2e-1, such that l=li=1;;
denote by Pi a projective indecomposable module with character li.
Then, we have a minimal projective resolution of the A-module 0,
periodic of period 2e :

...->PO ->P2e_1--p ...-+PI --PO --p0-.0. (4)

We have v2e = vo. Given three vertices v, v', v" of TA, we have d(v, v') +
d(v', v") _- d(v, v") (mod 2), hence d(vi, vo) = i (mod 2). Suppose li = l;.
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Since TA is a tree, we have vi = vj+l and vj = vi+1, hence i = j + 1 (mod 2).
It follows that {12i}o<i<e-1 is the set of all edges of TA.

If X is an A-module (resp. a B-module) and i an integer, we define 1ZA(X)
(resp. 1ZB(X)) to be the i-th Heller translate of X.

The character of 1ZA0 is vi.
The block B has a similar description which is a particular case of the

previous one
The Brauer tree of B, TL;, is a star whose center is the exceptional vertex,

i.e., every edge of T8 is of the form {w, w'} where w' is the exceptional vertex.
There is a walk wo = 1H, w1, ... , wee on T8 such that :

Every edge is traversed twice ;
denote by Qi a projective indecomposable module with character wi +
wi+1. Then, we have a minimal projective resolution of the B-module
0, periodic of period 2e :

...-QO"Q2e-1 ->...-1Q1 :Q0-+0-+0.

Note that for any i, 0 _< i < e - 1, w2i+1 is the exceptional vertex and
{w2i}0<i<e-1 is the set of all non-exceptional characters of KB. The module
Q0 remains irreducible modulo p and its character is w2i.

Since eOGf induces a stable equivalence between A and B, we have eOGf =
M ® U as (A ® B°)-modules, where M is indecomposable - and then M is
also indecomposable since f is a p-permutation module - and U is projective
(cf Lemma 3). We still have

M ®B M* A ® projectives and M* ®A M ^' B ® projectives.

Since M induces a stable equivalence between A and B, tensoring by M
commutes with Heller translates, up to projectives, hence M ®B SZB0
SZAO®projectives. Since M is indecomposable and Q2'k is simple, M®D fzBk
is indecomposable (cf Lemma 5), so that

M ®B SZBO - 92io. (5)

Now, since a projective cover of 1ZA0 is P2i and a projective cover of SZBO
is Q2i, it follows from Lemma 2 that a projective cover of M is

e P2i®Q2i
O<i<e-1

For I = {v', v" } an edge and v a vertex of TA, define b(l, v) = inf(d(v', v),
d(v", v)). Let x be an integer, 0 _< x _< 2e, such that V. is the exceptional
vertex of TA. Let

X= ® P2i®Q2i
6(12;,vz)=x (mod 2)
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and be the restriction of 0 to X. We then define D to be 0 --a X --
M -- 0 (where M is -in degree 0).

3.2. Proof of Theorem 10

Let i and j be two integers, 0 < i,j < e - 1. We have Qzj ®B f2BO
HomB(Q2ji 1BO). Since Q21 is a projective cover of S1BO if and only if i = j,
we have 0 ifi=j,

Q2j ®B nBO 0 otherwise.

Hence, we have

otherwise.
x (mod 2),

X ®B
OBO

0
P2i

It follows from (5) that

D ®B HBO ,
0 --> P2i _+ ft 0 o 0 if 8(12 vx) x

((mod 2),

where in both cases, fl o is in degree 0. Let I be the map between the group
of characters of B, RK(B), and the ring of characters of A, RK(A), induced
by D. By (4), we have:

I(W2i) =
v2i

-v2i+1
if S(12i, vx) x (mod 2),
if S(12,, vx) x (mod 2).

Lemma 11. The restriction of the map I to the submodule of RK(B) with
basis {Wo, w2, .... W2(,_1) } is an isometry.

PROOF. We have S(12i, vx) - x (mod 2) if and only if 8(121, vx) = d(v2i, vx),
since d(v2i+i, vx) - x + 1 (mod 2). Hence, 8(121, vx) - x (mod 2) if and only
if d(v2i, vx) < d(v24i, vx). So, I(W2i) is, up to sign, the furthest vertex of 12,
from vx. Since TA is a tree, the vertices corresponding to I(W2i) and I(w2j)
are equal if and only if w2i = w2j. Note furthermore that I(W2i) is, up to
sign, an irreducible character. Hence, the lemma follows.

Corollary 12. The map I is an isometry.

PROOF. Indeed, we have CF(B, K) = K < wo, w2, ... , W2(e-1) > ®CFp(B, K)
and the result is given by Lemma 8 and Lemma 11.

The following is now a direct consequence of Theorem 7:

Theorem 13. The complex D induces a Rickard equivalence between A
and B.
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We obtain the exact formulation of Theorem 10 by replacing D by 0 ->
X (DU b+-+M (DU -- 0,: which is homotopy equivalent to D.
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