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1. Introduction

Let G and H be two finite groups, p a prime number. Let O be a complete
discrete valuation ring with residue field & of characteristic p and with field
of fractions K of characteristic 0, “big enough” for G and H. Let A and B
be two blocks of G and H over O.

Let M be a (A ® B°)-module, projective as A-module and as B°-module,
where B° denotes the opposite algebra of B. We denote by M* the (B® A°)-
module Homo (M, O).

We say that M induces a stable equivalence between A and B if

M ®@p M* ~ A @ projectives as (A ® A°) — modules and
M* ®4 M ~ B @ projectives as (B ® B°) — modules.

Let C be a complex of (A ® B°)-modules, all of which are projective as
A-modules and as B°-modules.

Denoting by C* the O-dual of C, we say that C induces a Rickard equiva-
lence between A and B if C ®p C* is homotopy equivalent to A as complexes
of (A® A°)-modules and C* ®4 C is homotopy equivalent to B as complexes
of (B ® B°)-modules.

By [Ri4, 5.5], from a complex C inducing a Rickard equivalence between A
and B, one can construct a module M inducing a stable equivalence between
A and B as follows : In the derived bounded category of A® B°, the complex
C is isomorphic to a complex with only one term which is not projective as
(A® B°)-module, V in degree —n and then the n-th Heller translate (syzygy)
M = Q"(V) induces a stable equivalence between A and B.

The main result of this note is a partial converse under very special assump-
tions (Theorem 6). Since there are well-known situations where a module M
induces a stable equivalence between two blocks (Remark 9), for example
when the Sylow p-subgroups of G are TI, H is the normalizer of a Sylow
p-subgroup of G and A, B are principal blocks, it is tempting to try to con-
struct a complex with two terms, M in degree 0 and a projective module in
degree —1, inducing a Rickard equivalence between A and B. Using Theorem
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6, we prove that it is indeed possible when the Sylow p-subgroups of G are
cyclic or when G = Ajs or SLy(8) and p = 2.

2. A criterion for derived equivalences between blocks

2.1. Some lemmas

Let A’ be an O-free O-algebra, finitely generated as an @-module.

If V is an A-module, let Py be an A’-module which is a projective cover
of V. We will denote by Rad(V) the radical of V and by hd(V) the head
V/Rad(V) of V, i.e., its largest semi-simple quotient.

If M and N are two A-modules, we say that M and N are disjoint if
they have no non-zero isomorphic direct sunmands. If M and N are projec-
tive, they are disjoint if and only if Homg/(M,hd(N)) = 0 or equivalently,
HOInAl(N, hd(M)) =0.

If X is an O-module, we define X = X @ k.

Lemmal. Let P, Q and R be three projective A'-modules and ¢ : P®Q
R a surjective morphism. Assume that () and R are disjoint. Then, the
restriction @|p of ¢ to P is surjective. _

Let U,V and W be three injective A'-modules and ¢ : W — U DV an
injective morphism. Assume that V and W are disjoint. Then, denoting by
pu the projection of U @ V onto U, the map puy is injective.

PROOF. Let h : R — hd(R) be the canonical projection. Since hy : P &
Q@ — hd(R) is surjective and Homy4/(Q,hd(R)) = 0 by assumption, hpp is
surjective. Hence, ¢o(P) + Rad(R) = R and by Nakayama’s lemma, ¢(P) =
R. The second assertion follows immediately by duality since V and W are
disjoint implies that V* and W* are disjoint. 0

Lemma 2. Let M be an (A ® B°)-module, projective as A-module and as
B°-module. A projective cover of M is

@PM®BW®P;V
w

where W runs over a complete set of representatives of isomorphism classes
of simple B-modules. This module is isomorphic to

@PV@P]:!'®AV
|4

where V runs over a complete set of representatives of isomorphism classes
of simple A-modules.
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PROOF. Let V be an A-module and W a B-module. We have
Homp.(M,V @ W*) ~ Homp.(M,V @ W*) ~ M* ®5. (V @ W*)
since M is projective as B°-module. Hence,
Hompe(M,VQ W*)~ (M Q5 W) ® V ~ Homy(M @5 W, V)
and finally
Homjgg.(M,V @ W*) ~ Homz(M @5 W, V).
Now, we have

hd(M)

14

@ dim Homags:(M,V & W*)(V @ W*)
V,W

1

@ (@dimHomA(M ®s VV,V)V) QW
v

w

where V (resp. W) runs over the simple A-modules (resp. B-modules) up to
isomorphism, hence

hd(M) ~ Dhd(M @5 W) @ W*,
w

so a projective cover of M is @w Pugysw @ Fyy.

To get the second description, replace A by B° and B by A° in the first
description : a projective cover of M as B°®(A°)°-module is v Py . vQ Py-
where V' runs over the simple A°-modules. This module is isomorphic to
®v Pume o v+® Py where V runs over the simple A-modules, hence a projective
cover of M as (A ® B°)-module is ®v Py ® Pysg,m where V runs over the
simple A-modules. a

Lemma 3. (Linckelmann, [Li2,6.8]) Let M be an (AQ B°)-module inducing
a stable equivalence between A and B. Then, M has a unique non-projective
direct summand, up to isomorphism.

PROOF. Let M = M, & M,. Since M* ®4 M ~ B @ projectives, we have
M* Q@4 M & M*®4 M, ~ B @& projectives as (B ® B°)-modules. As B
is indecomposable as (B ® B°)-module, there exists ¢ € {1,2} such that
M*®4 M; is projective as (B ® B°)-module, so M ®p M* ® 4 M; is projective
as (A® B°)-module. Now, (M Qp M*)®4 M; ~ M;® projectives as (AQ B°)-
modules, hence M; is projective as (A ® B°)-module. ]

Remark 4. A similar proof shows that a complex of (A ® B°)-modules C
inducing a Rickard equivalence between A and B has a unique non-homotopy
equivalent to zero direct summand, up to isomorphism.
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Lemma 5. (Linckelmann, [Li2, 6.3]) Let M be an indecomposable
(A ® B°)-module inducing a stable equivalence between A and B. For any
simple B-module V, the A-module M @p V is indecomposable.

PROOF. (Linckelmann) Denote by soc(A) the largest semi-simple A-submo-
dule of A. Recall that an A-module V has no projective direct summand
if and only if soc(A)V = 0. We have soc(A ® B°) = soc(A) ® soc(B°).
Since M has no projective direct summand, soc(A ® B°)M = 0, hence
soc(A)(M ®psoc(B)) = 0, which means that M ®p soc(B) has no projective
direct summand. But, if V is a simple B-module, it is a direct summand
of soc(B), so M ®p V has no projective direct summand : as M induces
a stable equivalence, M ®p V has a unique indecomposable non projective
direct summand and the lemma follows. o

2.2. The criterion

We denote by Rk (A) (resp. Rx(B)) the group of characters of KA =K ® A
(resp. K B).
Let us now state the main result:

Theorem 6. Let M be an (A ® B°)-module, projective as A-module and
as B°-module. Let §' : P' -+ M be a projective cover of M. Let P be a direct
summand of P!, é = §jp and C = (0 — P M- 0) (M is in degree
0). Assume

(a1) M*®@4 M ~ B® Q where Q is a projective (B ® B°)-module,

(a2) M ®B M* ~ A® R where R is a projective (A @ A°)-module,

(b1) Resfi®B°P and Resi®E° P[P are disjoint,

(b2) Res4®B°P and Res4®F° P'/P are disjoint,

(c) KC induces an isometry between Ri(A) and Rk (B).

Then, C induces a Rickard equivalence between A and B.

PROOF. ! Remark first that (b;) implies that
(b) ResZ®4° P* and ResB®4" (P'/P)" are disjoint.
We have

C*®aC

id®8
*Qid,i §*QRsd
= (0 —» M~ @4 P “%E®) pe o p g M* ®AM( —E»)P*@)AM—»O)

1 Using an unpublished result of J. Rickard, one can actually prove the theorem without
the assumptions (as) and (b2).
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Since KC induces an isometry between Rx(A) and Rk (B), the character of
K(C*®4 C) as (B ®.B°)-module is equal to the character of B. Hence,

KM @4P®P @, M)~ K(P*®4P & Q).

We know that P is'a projective (A ® B°)-module and Res5®4° M* is pro-
jective, so M* ®4 P is projective as (B ® B°)-module. Similarly, P* @4 M,
P* ®,4 P and Q are projective (B ® B°)-modules. Hence

M* QPP QuM~P*QR,PBQ, and

M*R,4POP @, M~P o.PaQ. 1)

Let Q = Q. ® Q; where
Res5®2°Q, and ResiA®E° P are disjoint, (2)
Res52°Q, and Resa®2’ P'/ P are disjoint. 3)

(Since the map pg(id ® &') : M* ® 4 P' — Q is surjective, every indecom-
posable direct summand of Res5®°(Q is isomorphic to a direct summand of
ResB®E° P/, s0 @y and Q2 are unique up to isomorphism).

The map pg,(2d ® §') : M* ®4 P' — Q, is surjective and using (3),
ResB Q1 and ResB®B (M* R4 P’) / (1\7["‘ R4 13) are disjoint,
hence @Q; and (M‘ ®4 P’) / (M* ®4 P) are disjoint,

and it follows from Lemma 1 that the map
le(id® 3) M* @4 P — @y

is surjective.
From (1), Q is isomorphic to a direct summand of M* @4 P & P* ®4 M,
hence Q, is isomorphic to a direct summand of P* ® 4 M using (2). By (b’),

ResB®5° (P"‘ ® M) and ResB®5° (P’* QM/P*® M) are disjoint,
hence Res5®5°Q, and Res5®F" (P’* QM/P*® 1\7[) are disjoint.
Now, since (§” ®id)g, : @2 = P™ ®4 M is injective, Lemma 1 implies
that _ B B B
(0*®id)g, : Q2 — P"®@a M
is injective. B _ _ o B
Let R, be a submodule of P*®4 M such that P*®4 M = R, ®Im(6*®1d)q,.
We introduce
=pr,(td®8): P*®4 P > R,
and f) = pg,(id®8'): P*®4 P' - R,
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We have P*_ ®a 1\7!_ ~ Q;® R, so, by (1), as Q1 is isomorphic to a direct
summand of M*®,4 P, the module R, is a direct summand of P*®4 P, hence,
by (bl))

Res2®B°R; and Res5®B° ((13* R4 P)/(P*®a 13)) are disjoint.

Since f} is surjective, Lemma 1 implies that f; is surjective.

It follows that the map id® 6 — 6* ®id is surjective. By Nakayama’s lemma,
the map id ® § — 6* @ id is also surjective and hence splits. By duality, the
map §* ® id + id @ § is injective and splits. Hence, the complex C* @4 C is
homotopy equivalent to B.

Similarly, the complex C ®p C* is homotopy equivalent to A. Hence, the
complex C induces a Rickard equivalence between A and B. a

2.3. An application

Let M be an indecomposable (A ® B)°-module inducing a stable equivalence
between A and B.
Assume that for every simple A-module V, the head of M* ®,V is simple.

Theorem 7. If there erists a direct summand P of
@PV ® PX4‘®AV ~ @PM®BW ® P;V
v w

(V runs over the simple A-modules and W over the simple B-modules) such
that 0 — P — M — 0 induces an isometry between Rx(KA) and Rx(KB),
then there is a complez C = 0 — P — M — 0 inducing a Rickard equivalence
between A and B.

PROOF. The modules P and M being projective as A-modules and as B°-
modules, the isometry induced by 0 — P 2, M 0is perfect [Br3, 1.2] and
it follows that the algebras A and B have the same number s of isomorphism
classes of simple modules [Br3, 1.5].

If V is a simple A-module, the modules Py and Pj.g,y are indecompos-
able. Hence, a projective cover of M is a sum of s indecomposable (A ® B°)-
modules, which are mutually non-isomorphic when restricted to A or when
restricted to B°. Hence, if P is a direct summand of P’ then Resf®Z° P
and RespA®5° P/ P are disjoint and ResA®5° P and Res4®5° P'/ P are disjoint.
Now, Theorem 6 gives the conclusion. a

Let us denote by CF(G, K) the space of class functions G — K, by

CF(A, K) the subspace generated by Rk(A). We denote by CF,(G,K)
(resp. CFp(G,K)) the subspace of CF(G, K) consisting of class functions
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which vanish on p-regular (resp. p-singular) elements and CF,(A, K) (resp.
CF,(A, K)) the intersection CF,(G,K) N CF(A, K) (resp. CFn(G,K) N
CF(A,K)).

As the next lemma shows, in the situation of Theorem 7, if the map induced
by 0 » P -2 M — 0 is an isometry on a subspace of CF(A, K) which
contains a complement of CF,(A, K), then it is an isometry:

Lemma 8. Let P, P; be two projective (A @ B°)-modules and C = 0 —
P, M®P, = 0. Let I be the map between Rk (A) and Rk (B) induced by
C. Let X be a subspace of CF(A, K) such that CF(A,K) = X + CF,(A, K).

If the restriction of I to X is an isometry, then I is an isometry.

PRrOOF. Let f,g € CF(A, K). We decompose f and g as f = f, + f and
g = gp + g where f,, g, € CF,(A,K) and fy,gy € CFp(A, K). Since [ is
perfect [Br3, 1.2], I(f,),I(gp) € CF,(B, K) and I(fy),I(g9,) € CF(B, K).
Hence, the scalar product of I(f) and I(g) is <I(f), I(g)>=<I(fp),I(gy)>
+ <I(fpr), I(gp)>-

Furthemore, the restriction of I to CF,(A4, K) is an isometry because M in-
duces a stable equivalence between A and B and as P; and P, are projective,
the map induced by M between Rk (A) and Rk (B) is equal to I on CF,(A4, K)
[Br2, 5.3]. It follows that <I(f,), I(g,)>=<fp, 9> and we have now to prove
that < I(fp), I(9p) >=< fpr, g >. But, as CF(4,K) = X + CF,(A4, K),
we can decompose f and gy as fy = fi + fz and gy = g1 + g2 where
fi,g € X and fr,92 € CFy(A,K). Now, < fi,q1 >=< fp,9p > — <
f2,92> and <I(f1),I1(g1) >=<I(fp),I(9p) > — <I(f2),I(g2)>. Finally,
we know that <I(f1),I(g1)>=<f1,1> and <I(f2), I(g2)>=<f2, 92>, hence
<I(fp), I(gp)>=<fp, 9p>. =

Remark 9. Stable equivalences induced by bimodules arise for example in
the following situation [Br2, 6.4]:

Assume that H is a subgroup of G with index prime to p and e, f are the
units of A and B. Following Broué, let us assume that for every non trivial
p-subgroup P of H, we have Ng(P) = Ny(P)O,Cq(P). Then, the (AQ® B°)-
module eOGf induces a stable equivalence between A and B. Let M be an
indecomposable non-projective direct summand of eOGf ; by Lemma 3, such
a module is unique up to isomorphism ; we have eOGf = M® projectives,
so M induces a stable equivalence between A and B.

Example 1. Let G = SL;(4) = As and H = A4 = 2% 13 a Borel subgroup,
p = 2. The principal block ekG of G has three simple modules : k, S; and S,
of dimension 2. The module Res$(S1) is a non-split extension of V; by W,
where V; and V; are the two non-trivial non-isomorphic simple kH-modules
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and Res$(S;) is a non-split extension of V; by V;. An immediate character
calculation shows that

0— Ps, ® Py, & Ps, ® Py, — eOG — 0

induces an isometry between Ry (e KG) and Ry (K H). Hence, by Remark 9
and Theorem 7, there exists a complex 0 — Ps, ® Py, ® Ps, ® Py, = eOG — 0
inducing a Rickard equivalence between the principal blocks of G' and H, a
result due to J. Rickard [Ri3].

Example 2. Let G = SL;(8) and H = 2* x 7 a Borel subgroup, p = 2.
Then, Theorem 7 applies also to construct a complex inducing a Rickard
equivalence between the principal blocks of G and H : The (A® B°)-bimodule
e¢OG is indecomposable. We leave to the reader to check that a projective
cover of this module is :

PRQI®P,RQ:,0P,R0Q,,0P,R0Q;,® P, Q; ®F, Q% 0P 1,004

(where Py (resp. @) is a projective cover of the trivial A-module (resp. B-
module), P, , P, and P,, (resp. Py, P4, and P, ) are projective covers of the
three non-isomorphic 2-dimensional (resp. 4-dimensional) simple A-modules
and Q3,,Q2,, @2,, @4, , @4y, @4, are projective covers of the six non-isomorphic
non-trivial simple B-modules) and that the complex

0— P, ®Q; & Py, ® Q}, & Piy ® QY — eOG — 0

induces an isometry between Rx(A) and Rg(B), so that by Remark 9 and
Theorem 7, there exists a complex 0 — &Py, ® Q% & Ps, ® Q%, ® Ps, @ Q, —
eOG — 0 inducing a Rickard equivalence between the principal blocks of G
and H.

3. Application to principal blocks with cyclic defect

Let G be a finite group with a cyclic Sylow p-subgroup P and let H = Ng(P).
As before, A = OGe and B = OH f are the principal blocks of G and H,
where e and f are primitive idempotents of the centers of OG and OH.

The functor erm Ind$ induces a stable equivalence between A and B with
inverse functor fRes$ (Remark 9).

As conjectured by J. Rickard (cf [Ri2]), a slight modification of these func-
tors leads to a derived equivalence, and this proves in particular the conjecture
of Broué and Rickard on abelian defect, for principal blocks with cyclic defect
(cf [Brl]) :
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Theorem 10.  There exists a projective (A ® B°)-module Y and a map
¢:Y — eOGS such.that, if C =0 — Y -5 eOGf — 0, then C induces
a Rickard equivalence between A and B. In particular, C is a Rickard tilting
complex of p-permutation modules.

Note that the fact that A and B are derived-equivalent was already known
by the work of Rickard and Linckelman (cf [Ril] and [Lil]).

3.1. Construction of C

Let us quote some classical results about A (cf [Gr]).

The set of irreducible characters of KA is Irr(A) = {x1,--.,Xe} U{X2}rer
where x1, .. ., Xe are the non-exceptional characters and the xy, A € A, are the
exceptional characters. (In the case there is only one exceptional character,
one can choose it different from the character 1g.)

Define xe41 = Taea xr and ' = {x1, ..., Xe+1}-

The Brauer tree 74 is then defined as follows :

e the set of its vertices is T,

e two vertices v and v’ are incident if and only if v 4+ v’ is the character
of a projective indecomposable A-module. We denote by {v,v'} the
corresponding edge.

The vertex xe+1 is called the exceptional vertex of 74. Every character of a
projective indecomposable A-module is an edge of 74 and we have a bijection
beween the set of edges of 74 and the set of characters of projective indecom-
posable A-modules. If v and v’ are two vertices of 74, we denote by d(v,v’)
the distance between v and v’.

There is a “walk” on 74 starting from 1lg, the trivial character of G, i.e.,
a sequence vy = lg,vy,. ..,z of vertices of T4 such that v; is incident with
v;41 for 0 <7 < 2e — 1, with the following properties :

o Each edge is traversed twice, i.e., denoting by I; the edge {v;,viy1},
then for every edge ! of T4, there exists ¢ and j two distinct integers,
0<i,3<L2—1,suchthati=10=1;;

e denote by P, a projective indecomposable module with character I;.
Then, we have a minimal projective resolution of the A-module O,
periodic of period 2e :

c=a PPy PL 5P -50—=0. (4)

We have ve. = vo. Given three vertices v,v’,v” of T4, we have d(v,v') +
d(v',v”) = d(v,v”) (mod 2), hence d(vi,v0) =¢ (mod 2). Suppose ; = I;.
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Since T4 is a tree, we have v; = vj41 and v; = vi41, hence ¢ = j + 1 (mod 2).
It follows that {l3;}o<i<e—1 is the set of all edges of 7.

If X is an A-module (resp. a B-module) and : an integer, we define O, (X)
(resp. N5(X)) to be the i-th Heller translate of X.

The character of Q40 is v;.

The block B has a similar description which is a particular case of the
previous one :

The Brauer tree of B, T, is a star whose center is the exceptional vertex,
i.e., every edge of T is of the form {w, w'} where w’ is the exceptional vertex.
There is a walk wg = 1y, wy,..., w2 on T such that :

o Every edge is traversed twice ;

o denote by @; a projective indecomposable module with character w; +
w;i41. Then, we have a minimal projective resolution of the B-module
O, periodic of period 2e :

= Qo= Q-1 -2 Q1 = Qo — 0 —0.

Note that for any ¢, 0 < ¢ < e — 1, w4 is the exceptional vertex and
{wai}o<i<e-1 is the set of all non-exceptional characters of K B. The module
Q%0 remains irreducible modulo p and its character is ws;.

Since eOGf induces a stable equivalence between A and B, we have eOGf =
M ® U as (A ® B°)-modules, where M is indecomposable — and then M is
also indecomposable since M is a p-permutation module - and U is projective
(cf Lemma 3). We still have

M ®@p M* ~ A @ projectives and M* @4 M ~ B & projectives.

Since M induces a stable equivalence between A and B, tensoring by M
commutes with Heller translates, up to projectives, hence M ®p Q40 =~
Q% O@projectives. Since M is indecomposable and Q%k is simple, M Q@5 N%k
is indecomposable (cf Lemma 5), so that

M ®p Q450 ~ Q%0. (5)

Now, since a projective cover of Q4O is Py and a projective cover of Q40O
is @, it follows from Lemma 2 that a projective cover of M is :

D PioQy L M
0<i<e-1
For [ = {v',v”} an edge and v a vertex of Ty, define 6(I,v) = inf(d(v’, v),
d(v”,v)). Let z be an integer, 0 < = < 2e, such that v, is the exceptional
vertex of T4. Let
X = @ P2 @ Q3

8(l2¢,vz)=r  (mod 2)
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and ¢ be the restriction of 1 to X. We then define D to be 0 —s X -5
M — 0 (where M is-in degree 0).

3.2. Proof of Theorem 10
Let : and j be two integers, 0 < 4,5 < e — 1. We have Q3; ®s 0350 ~

Homjp (@2, RE0). Since @ is a projective cover of RO if and only if i = 5
we have
. 5., ) O ifi=j,
Q2; ®p 150 ~ { 0 otherwise.

Hence, we have

Py if §(lyi,v;) =z (mod 2),
0 otherwise.

X®BQgOz{

It follows from (5) that

5im ., 02050500  if §(Iz,v;) # 7 (mod 2),
D550 ~ 0— Py — Q%50 — 0 if §(Iz;,v;) = = (mod 2)

where in both cases, 24O is in degree 0. Let I be the map between the group
of characters of B, Rx(B), and the ring of characters of A, Rx(A), induced
by D. By (4), we have:

vg; if 8(l2i, vz) # = (mod 2),

I(‘wzi) = —vgiqy  if 5([2,.’1;1,) =z (mod 2).

Lemma 11. The restriction of the map I to the submodule of Ry (B) with
basis {wo, ws, ..., Wye-1)} is an isometry.

PROOF. We have §(lp;,v,) =2 (mod 2) if and only if (3, v,) = d(va,vs),
since d(v2i41,v:) =z + 1 (mod 2). Hence, §(l2;,v;) = = (mod 2) if and only
if d(v3i,vz) < d(v2i41,vz). So, I(wy;) is, up to sign, the furthest vertex of Iy
from v,. Since T4 is a tree, the vertices corresponding to I(ws) and I(ws;)
are equal if and only if wy; = wg;. Note furthermore that I(wy) is, up to
sign, an irreducible character. Hence, the lemma follows. o

Corollary 12. The map I is an isomelry.
PROOF. Indeed, we have CF(B, K) = K <wo,ws, . .., Wy(e-1)> DC Fp(B, K)

and the result is given by Lemma 8 and Lemma 11. o
The following is now a direct consequence of Theorem 7:

Theorem 13. The complex D induces a Rickard equivalence between A
and B.
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We obtain the exact formulation of Theorem 10 by replacing D by 0 —
XoU MoU — 0,.which is homotopy equivalent to D.
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