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ABSTRACT. We consider a generic Iwahori-Hecke algebra He associ-
ated with a finite Weyl group, defined over a suitable discrete valuation
ring O. We define filtrations on Hp-modules in terms of Lusztig’s a-
function. For a projective module, we show that the quotients of this
filtration are direct sums of irreducible lattices. As an application, we
prove refinements of the results on decomposition numbers obtained by
the first named author in [4].

1. INTRODUCTION

Let H be the generic Iwahori-Hecke algebra associated with a finite Weyl
group W, defined over the ring A = Z[v,v~!] where v is an indeterminate
(see, for example, [1, §68]). Let K be the field of fractions of A and O C K
be a discrete valuation ring with residue field k£ such that A C O and the
image of v in k has finite order. We have a corresponding decomposition
map dj/ between the Grothendieck groups of Hx and Hy, (see (2.1) below).
One of the main problems in the representation theory of Iwahori-Hecke
algebras is the determination of such decomposition maps. For a survey of
known results and their applications to the representation theory of finite
reductive groups, see [3].

This paper is a continuation of the work begun in [4]. We assume that
the characteristic of k is either 0 or a good prime for W. Using Lusztig’s
a-function, it is possible to attach a-values to the simple modules of Hg and
Hj,. Then it is shown in [4] that dZ is compatible with these a-values, in the
following sense. Let Irr(Hg ) and Irr(Hy) be complete sets of representatives
of the isomorphism classes of simple modules for Hx and Hy, respectively.
Then, in the Grothendieck group of finite-dimensional Hy-modules, we have
equations

di(V)= 3 dvuIM]  where V € I(Hg).
MeIrr(Hy,)

The compatibility result mentioned above can now be stated as follows, see
[4, Theorem 3.3]. For any V € Irr(Hg) and M € Irr(Hj) we have

(1.1) dvv #0 = apm <ay.
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Moreover, there exists a subset B C Irr(Hg) and a bijection B <> Irr(Hy),
V < V, such that the following holds (see (2.5) below).

(1.2) dyy=1 and ay =ay forallV € B.

The above two conditions together imply that the decomposition matrix of
dkH has a lower triangular shape, with 1 along the diagonal. There is in fact
an explicit construction of the subset B C Irr(Hg) which in turn is based
on a construction due to Lusztig, in terms of the “asymptotic” algebra J.

The aim of this paper is to prove a number of refinements of the above re-
sults, which are announced in [4, Remark 3.7]. These refinements essentially
assert that certain decomposition numbers dy,3s must be 0. For example,
we show in Corollary 4.3 that for any V € Irr(Hg) and M € Irr(Hy) we
have the following implication:

(1.3) dvyM#O and ay =ayy = V €B and M=V.

Combining this with (1.1) shows that there is a unique subset B C Irr(Hg)
and a unique bijection B <> Irr(H}) such that (1.2) holds.

These results follow from the study of certain filtrations of Hp-modules
defined in terms of the a-function; see Definition 3.2. For a projective mod-
ule, we obtain strong assertions about the quotients of such a filtration in
Theorems 3.4 and 4.2. This is partly based on the results in [4], which
will be recalled in Section 2. The applications, especially to decomposition
numbers, are discussed in Section 4.

2. DECOMPOSITION MAPS AND THE ASYMPTOTIC ALGEBRA

Throughout this paper, W is a finite Weyl group with set of simple re-
flections S. Let A = Z[v,v~!] be the ring of Laurent polynomials in an
indeterminate v over Z. Let H be the corresponding generic Iwahori-Hecke
algebra over A with parameter v2. Then H has a free A-basis {Ty }wew
with the well-known multiplication rules, i.e., we have (T —v?)(Ts +1) = 0
for s € Sand T, = T, --+T,,, whenever w = s1-+s,, with s; € S is a
reduced expression.

If A - R is any homomorphism into a commutative ring R and Y is
any A-module, we regard R as an A-module and set Y := R®,4 Y. This
applies in particular to H itself. If R is a field we denote by Ro(Hg) the
Grothendieck group of finite-dimensional Hz-modules. (All modules are left
modules, unless explicitly stated otherwise.)

(2.1) Decomposition maps are defined in the following setting (see [5] and
[3, §2]). Let K be the field of fractions of A. By extension of scalars, we
obtain a K-algebra Hg. Let p C A be a non-zero prime ideal. We consider
the corresponding localized ring Ay, and denote its residue field by k,. We
assume that the image of v in ky, has finite order. Then, by [4, Corollary 3.6],
the algebra Hy, is split.

There exists a discrete valuation ring @ C K with maximal ideal J(O)
such that A C O and J(O) N A = p. (This follows from the fact that A is
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a regular ring, cf. [3, §2]). Let k be the residue field of O; we may regard
k as an extension of ky. Since Hy, is split, the scalar extension from k, to
k defines an isomorphism Ro(Hy,) = Ro(Hy) which preserves the classes of
simple modules. We will henceforth identify

Ro(Hy,) = Ro(Hy).
Then we have a corresponding decomposition map
di - Ro(Hk) — Ro(Hy),

defined in the usual way by choosing O-forms for the simple H g-modules
and reducing them modulo the maximal ideal of O (see [2, Section I1.17]).
Note that dkH only depends on p but not on the choice of O, since A is
integrally closed in K and Hjy, is split (see [3, Proposition 2.3]).

(2.2) It is shown in [4] that the decomposition map dff has an alternative
interpretation, as follows. Let J be Lusztig’s “asymptotic” algebra and
¢: H — J4 be the corresponding A-algebra homomorphism; see [7]. (By
definition, J is a free abelian group with a basis labelled by the elements
of W, and we set J4 = AQ®y J.) If A — R is any homomorphism into
a commutative ring R, we obtain a corresponding homomorphism of R-
algebras ¢r: Hp — Jp.

Consider the k-algebra homomorphism ¢y : Hy — Ji, which in turn de-
termines a group homomorphism

(¢k)+: Ro(Jk) = Ro(Hg).
Assume from now on that the characteristic of k is either 0 or a good prime
for W. Then it is shown in [4, Remark 2.5] that Ry(Jx) and Ro(Hg) can be
naturally identified and that, under this identification, (¢x). coincides with
dfI. The identification of Ry(Jy) and Ro(Hx) is based on the following two
facts.

(1) The K-algebra homomorphism ¢x: Hxg — Jg is an isomorphism; see
[7, Theorem 2.8].

(2) The decomposition map dj : Ro(Jx) — Ro(Ji) (defined in a similar
way as d,? above) is an isomorphism preserving the classes of simple
modules; see [4, Remark 2.5].

Thus, the map (¢x )« o (df)': Ro(Jx) — Ro(Hg) is also an isomorphism
which preserves the classes of simple modules. Given a simple Ji-module
E, we denote by E, a simple Hg-module corresponding to E under that
map. With this notation, we have the following identity in Ro(H}), see [4,
Theorem 3.3]:

d2([E.]) = (éx)«([E]) for all simple Jy-modules E.

This means that the problem of determining d,’:l is equivalent to that of
determining (¢ ).

(2.3) It is possible to attach non-negative integers ( “a-values”) to the simple
modules of Hy, Ji, and Hg, as follows.
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First, let {Cy }wew be the Kazhdan-Lusztig basis of H and a: W — Ny
be Lusztig’s a-function. Then, following [8, Lemma 1.9], to any simple Hy-
module M we attach a non-negative integer ajs by the requirement that

CyM =0 for all w € W with a(w) > ap,
CywM #0 for some w € W with a(w) = ap.

Next, let {t, }wew be the natural basis of J. To any simple Jg-module, we
can also attach a non-negative integer ap by the requirement that ¢, F # 0
for some w € W with a(w) = ag. This is well-defined since J; = @, J; is
a decomposition into 2-sided ideals, where J,i is the subspace generated by
all t,, with a(w) =1 (see [8, (1.3)(d)]).

Finally, we can also attach a-values to the simple modules of Hg, in terms
of the generic degrees associated to these modules (see [9, (3.4)]). With the
notation in (2.2), we have

ap, = ap for every simple Jy-module F.

The basic relation between the a-values for the modules of H; and Jj, is as
follows.

Theorem 2.4 ([8, Lemma 1.9]). For any simple Hy-module M, there exists
a Jy-module M such that, in Ro(Hy), we have (¢r)«([My)] = [M]+sum of
terms [M'] where M' are simple Hy-modules with app < apr. Moreover, for
all composition factors E of My, we have ag = ajr.

(Lusztig gives an explicit construction for My; we will come back to this
point in Proposition 4.5 below.)
(2.5) We can now describe the subset B C Irr(Hg) and the bijection B <>
Irr(Hy), V < V, satisfying condition (1.2). Let M € Irr(H;) and M be
as in Theorem 2.4. Then M; has a unique composition factor E(M) such
that [M] occurs in the decomposition of (¢)«([E(M)]). In Ry(Hy), we have
(¢r)«([E(M)] = [M]+sum of terms [M'] where M’ are simple Hy-modules
with app < apr. Tt is easily seen that non-isomorphic modules M, M’ yield
non-isomorphic modules E(M), E(M'). So we can set

B={E(M), | M € Irr(Hy)}
and define a bijection B < Irr(Hy) by E(M), <> M. Note that we have
Ap(M), = (M) = QM-

For details (zf the proof, see [4, Sgction 3]. In Proposition 4.5 below, we will
show that M is simple and so M; = E(M).

3. FILTRATIONS ON MODULES

Let O C K be a discrete valuation ring as in (2.1). Then (K, O, k) is a
“modular system” for the O-algebra Hp, as in the usual setting for modular
representation theory (e.g., in [2, Section 1.17]). We will only be dealing with
Hp-modules which are finitely generated and free over O (such modules will
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be called lattices). Recall that all modules are left modules, unless explicitly
stated otherwise.

Note that, since H is split semisimple (see [6]), a result of Heller shows
that the Krull-Schmidt-Azuyama Theorem holds for Hp-lattices (see [1,
Theorem 30.18]). Moreover, idempotents can be lifted from Hy to Hp (see
[1, Ex. 6.16]). Thus, the results in [2, Section 1.17] are valid without passing
to the completion of O.

For any lattice V', we shall write Vxk = K Qo V and Vy, = k Qo V.

(3.1) For the following constructions, see [8, Section 1]. For any ¢ > 0, let
H?'" = A-submodule of H generated by all Cy, with a(w) > i.

Note that H>° = H and H?" = {0} where N is the length of the longest
element of W (see [7, Proposition 1.2]). We obtain a filtration

(1) Oy —H>N CH*N-'C..CcH* CH®_mH,

where each term H>* is a 2-sided ideal of H which is finitely generated and
free over A. Let H' := HZ'/H>"*!; this is an (H, H)-bimodule which is
finitely generated and free over A. (A basis is given by the images of the
Cy with a(w) = 4.) There is also a natural (J4, J4)-bimodule structure on
H® which is compatible with the action of H itself; denoting the action of
Ja by o, we have for f € H', h € H and j € Ja:
(2) hf=d@¢h)of, jol(fh)=(iof)h, (hf)oj=nh(foj]),
where ¢: H — J4 is Lusztig’s homomorphism.

If A - R is any homomorphism into a commutative ring R, we can
apply extension of scalars and obtain 2-sided ideals H? in Hr with similar
properties as above. In particular, each quotient H}'2 admits left and right

actions by elements of Hg and of Jg, and these satisfy similar compatibility
properties as above, i.e., we have for f € H,, h € Hg and j € Jg:

2)  hf=¢r(h)of, jo(fh)=(iof)h, (hf)oj=h(foj).

In particular, this means that H% is a (Jg, Hg)-bimodule.

Definition 3.2. Consider the filtration of Hp obtained by extending scalars
from A to O in (3.1)(1):

{0y =mzY cHZN ' C--. CHZ' C HE = Ho.

Recall that each term H (%Z is a 2-sided ideal in Hp; moreover, H, (,2)’ and H, }9
are finitely generated and free over O. Let V' be any Hp-module. Then we
have a filtration

{0} =vZNcvzN-lc...cv2' cVv>* =V, where V> := HZ'V.
We also set V? := V>*/VZ*! for any i.
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Note that, a priori, each V? is an Hp-module but it is not clear that it is
free over O, even if V is an Hp-lattice.
(3.3) Let P be a projective Ho-module which is of the form P = Hpe
where e € Hp is an idempotent. We consider the filtration of P as given by
Definition 3.2. Let 1 > 0. Then we have

P> =HZ'P=HZ'e and P>"*'=HZ"''P=HZ"e
Now consider the exact sequence
{0} = HZ'"' — HZ' — HS — {0}.
Multiplying with e yields a sequence
{0} » HZ""'e —» HZ'e » Hbe — {0},

which is also exact. (To see this, also work with the idempotent 1 —e.) It
follows that we have a canonical isomorphism of Hp-modules

P! =~ Hie.
Hence, P' is isomorphic to a direct summand of Hég This shows, in partic-
ular, that P* is an Hp-lattice.

Theorem 3.4. Recall that the characteristic of the residue field of O is
either 0 or a prime which is good for W. Let P be a projective Hp-module
as in (3.3) and i > 0 be such that P* # {0}. We consider a decomposition
pt = @D, Vi, where each term V) is an indecomposable Hop-lattice. Then
(Vi) i is simple for all X\ and the a-value of (Vy\)k is > i.

Proof. By (3.3), we can assume that P* = H}e. The crux of the proof
consists of using the compatible actions ofJ» and of Hn on Hé, see (3.1).
Since P’ is a submodule of Hfg obtained by right multiplication with some
element of Hp, it is clear that P’ is also a Jo-submodule of Hé,) Let us
now regard P’ as a Jp-module and write P! = @, Ex where each E) is
an indecomposable Jp-lattice. By Lemma 3.6 below, (E))x is a simple
Jr-module for all A.

Now we return to the Hp-module structure on P*. Formula (2°) in (3.1)
shows that the natural left action of H» on H, é actually factors through the
action of Jp, via Lusztig’s homomorphism ¢p. It follows that P* = \ B
is also a decomposition of P’ into Hp-lattices. Extending scalars from O to
K yields a decomposition Pl = @, (Ex)k, where the Hg-action on each
(E)) Kk is pulled back from the Jx-action via Lusztig’s homomorphism ¢g.
But ¢k is an isomorphism; see (2.2)(1). Hence, each (E))xk is also a simple
H g-module.

Thus, we have shown that P’ is direct sum of Hp-lattices which are
simple after tensoring with K. Then a similar statement holds for any
decomposition of P? as a direct sum of indecomposable Hp-lattices, since the
Krull-Schmidt—Azumaya Theorem holds (see the remarks at the beginning
of this section).
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It remains to prove the statement about the a-values. Since P* is a direct
summand of H{, and V) is a direct summand of P*, we have a surjective

Hp-module homomorphism H, (%Z — V). Then we also have a surjective ho-
momorphism of Hx-modules H k? * — (Vy)g- It follows that there exists some
w € W with a(w) = i such that Cy, acts non-trivially on some composition
factor M of (V))x. By definition and property (1.1), this implies that the

a-value of (V)\)g is > apr > i. O

Remark 3.5. The above proof shows that each Hp-lattice V) occurring in
the decomposition of P* also has a structure as Jp-module, in such a way
that the original Hp-action is pulled back from that of Jp» via Lusztig’s
homomorphism ¢p: Hp — Jo.

The following result, which is used in the proof of Theorem 3.4, shows
that Jo is a hereditary order in Jg (see [1, §26B]).

Lemma 3.6. Recall the assumptions on the residue field of O as in Theo-
rem 3.4. Let V be a Jo-lattice. Then V is projective. IfV is indecomposable,
then Vi is a simple Jg-module.

Proof. This easily follows from the fact that Jj is semisimple (see [4, Re-
mark 2.5]). For the convenience of the reader, we give the details here. Since
J, is semisimple, the module Vj, is semisimple and, hence, projective. By [1,
Theorem 30.11], this implies that V itself is projective. Now assume that V'
is such that Vi is not simple. We must show that then V is not indecom-
posable. By [1, Proposition 23.7], there exists a Jo-sublattice V' C V such
that {0} # V' #V and V/V' is also a Jp-lattice. Then, as we have already
seen, V/V' is projective and so the sequence {0} - V' -V — V/V' — {0}
splits. Thus, we have shown that V is not indecomposable, as desired. [J

4. APPLICATIONS

We now discuss some applications of Theorem 3.4. We keep the set-up
and the notation of Section 3.

(4.1) Let Irr(Hg) and Irr(Hy) be as in Section 1. Then, in Ry(Hy), we have
equations

(1) d(Vl)= > dym[M] for V €Tmr(Hg),
Melrr(Hy,)

where dy,p are the decomposition numbers. By property (1.1), we know
that the sum need only be extended over those M for which ays < ay.

The numbers dy,ps also have an alternative interpretation in terms of
projective modules, as follows. It is well-known (see [2, Chapter 1]) that
for each simple Hg-module M there exists a projective indecomposable H -
module P(M), unique up to isomorphism, such that P(M); has M as a
simple quotient. Then, by Brauer reciprocity (see [2, Theorem 1.17.8]) we
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have the following identity in Ry(Hg):

(2) [P(M)k]= > dyum[V] forall M € Irr(Hy).

Velrr(Hg)
Now let E(M). be as in (2.5). Using (1.1) and the equality ag), = am,
we can also write

(3) [P(M)g] =[E(M),] + > dya[V] for M € Trr(Hy).
Velrr(Hgk), ay >aum

The following result shows that, in equation (3), the sum need only be
extended over those V for which ay > aj;.

Theorem 4.2. Let M be a simple Hy-module and a = apr. Then Py is sim-
ple and isomorphic to E(M).. In Ry(Hg), we have [P(M)k]| = [Pg]+sum
of terms [V] where V are simple Hy-modules with ay > a.

Proof. Let P = P(M). We can assume that P = Hpe where e € Hp is a
primitive idempotent, so that we are in the set-up of (3.3).

Now let i > 0 be maximal such that P = P>*. Then we have a surjective
homomorphism of Hp-modules P — P!. Tensoring with & also yields a
surjective homomorphism of Hyg-modules P, — P,ﬁ. The fact that P, has a
unique simple quotient implies that in any decomposition of P* as a direct
sum of Hp-lattices, only one non-trivial summand can occur. Combining
this with Theorem 3.4 shows that P}'( is simple. Moreover, all composition
factors of Pk other than P have a-values > i+ 1. Thus, equation (4.1)(2)
takes the form

[Px] = [Pi] + Y. dvm[Vl
VEII‘I‘(HK), ay >1

Comparison with equation (4.1)(3) shows that i = a and P} = E(M),, as
desired. 0

The following result was announced in [4, Remark 3.7(1)].

Corollary 4.3. For each M € Irr(Hy) there ezists a unique V € Irr(Hp)
such that apr = ay and dypr # 0. Consequently, property (1.3) holds. We
necessarily have dy,p = 1.

Proof. Let M € Irr(Hg) and V € Irr(Hg) be such that ay = apr and
dv,m # 0. Then [V] occurs in the sum on the right hand side of equation
(4.1)(3). But, by Theorem 4.2, there is only one such term with a-value
equal to aps, and this is E(M),. It follows that V = E(M), and dyp = 1,
and the proof is complete. O

The above results have the following application to Brauer trees, as an-
nounced in [4, Remark 4.5].
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(4.4) Assume that k has characteristic 0, and consider a block of “defect 17
asin [4, (4.3)]. Assume that the block contains e+1 > 2 simple H g-modules

Vi,...,Vey1 such that the corresponding Brauer tree is given by
Wi Va Ve Vet
. ° s — o

where the labelling is such that ay; < ay,,,. We claim that then we must
have

ay; <ay, <= <ay,,,-

For the proof, let us fix some i € {1,...,e}. By [4, Theorem 4.4], we
already know that ay, < ay;,,. Hence it is enough to prove that ay;, #
ay;,,- Now the edge on the tree connecting V; and V;y1 corresponds to
a simple Hi-module M and, by Brauer reciprocity, we have [P(M)g] =
[Vi] + [Vig1]. Theorem 4.2 shows that V; and V;y; must have different a-
values, as required.

The following result was announced in [4, Remark 3.7(2)].

Proposition 4.5. Let M be a simple Hi-module and set a = apr. Consider
the (Ji, Hy)-bimodule H}} and let My := H} ®py, M. Then My is a simple
Jx-module isomorphic to E(M) (see (2.5)).

Proof. Note that the above definition of M is the one used in Theorem 2.4.
Hence, by definition, E(M) is a composition factor of M. So it remains to
show that M is a simple Ji-module. Again, as in the proof of Theorem 4.2,
we use the compatible left actions of J and Hy on H}.

Let e € Hp be a primitive idempotent such that P(M) = Hpe. As in
(3.3), we have P(M)® = H¢e. We claim that if we set

Q = H(ag ®Ho H(Qe,

then @y is simple when regarded as a (left) Jgx-module. This can be seen as
follows.

We consider the natural Hp-module structure on @) given by left multipli-
cation. Now observe that the canonical map ¢ — H{e given by multiplica-
tion is an isomorphism. (To see this, also work with the idempotent 1 — e.)
Hence we have in fact Q = P(M)*. Using Theorem 4.2, we conclude that
QK is a simple Hg-module. Now the left action of Hp on H{, (and, hence,
also on @), factors through the action of Jo, via Lusztig’s homomorphism
do (see (3.1)(2’)). Since @ is an isomorphism (see (2.2)(1)), we deduce
that Qg is also simple when regarded as a Jx-module. Using (2.2)(2), it
follows that i is a simple Ji-module, as claimed.

Now, by definition, P(M) is a projective indecomposable Hy-module
with M as a simple quotient, and we have

Qr = (HS ®up P(M))y = Hg @p, P(M)y.
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The quotient map P(M); — M induces a surjective homomorphism of J-
modules Q — Hp ®py, M = M. Since Q) is simple, this map must be an
isomorphism. So M is also simple. ]

(4.6) Finally, we remark that the above results also yield results about
projective modules and decomposition numbers of finite Weyl groups. For
this purpose, we have to consider a prime ideal p C A such that the image
of v in k is 1. Then Hy, is nothing but the group algebra k[W].

If k£ has characteristic p > 0, then dkH coincides with the usual p-modular
decomposition map for W; see [3, Example 3.2].

The results in Section 3 yield the following. Let P be a projective k[W]-
module. Then P has a filtration

{0y =PP¥CcP>NlC...C PP C P =P, where P> :=k[W]'P.

Theorem 4.2 shows that the quotients P* = P>*/P>"t! are direct sums of
k[W]-modules which are p-modular reductions of simple modules of W over
a field of characteristic 0.

The existence of such filtrations on projective modules seems to be a new
result, even in the case where W is of type A,, i.e., a symmetric group.
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