Algebraic Geometry

On the irreducibility of Deligne–Lusztig varieties

Cédric Bonnafé a, Raphaël Rouquier b,1

a Laboratoire de mathématiques de Besançon (CNRS-UMR 6623), université de Franche-Comté, 16, route de Gray, 25030 Besançon cedex, France

b Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK

Received 23 February 2006; accepted after revision 18 April 2006

Available online 5 June 2006

Presented by Pierre Deligne

Abstract

Let \(G \) be a connected reductive group defined over an algebraic closure of a finite field and let \(F: G \to G \) be an endomorphism such that some power of \(F \) is a Frobenius endomorphism. Let \(P \) be a parabolic subgroup of \(G \). We prove that the Deligne–Lusztig variety \(\{ gP \mid g^{-1}F(g) \in P \cdot F(P) \} \) is irreducible if and only if \(P \) is not contained in a proper \(F \)-stable parabolic subgroup of \(G \). To cite this article: C. Bonnafé, R. Rouquier, C. R. Acad. Sci. Paris, Ser. I 343 (2006).

Résumé

Sur l’irréductibilité des variétés de Deligne–Lusztig. Soit \(G \) un groupe réductif connexe défini sur une clôture algébrique d’un corps fini et soit \(F: G \to G \) un endomorphisme dont une puissance est un endomorphisme de Frobenius. Soit \(P \) un sous-groupe parabolique de \(G \). Nous montrons que la variété de Deligne–Lusztig \(\{ gP \mid g^{-1}F(g) \in P \cdot F(P) \} \) est irréductible si et seulement si \(P \) n’est pas contenu dans un sous-groupe parabolique \(F \)-stable propre de \(G \). Pour citer cet article : C. Bonnafé, R. Rouquier, C. R. Acad. Sci. Paris, Ser. I 343 (2006).

Let \(G \) be a connected reductive group over an algebraic closure of a finite field and let \(F: G \to G \) be an endomorphism such that some power of \(F \) is a Frobenius endomorphism. Let \(\mathcal{L}: G \to G \), \(g \mapsto g^{-1}F(g) \) be the Lang map. It is surjective and étale. If \(P \) is a parabolic subgroup of \(G \), we set

\[
X_P = \{ gP \in G/P \mid \mathcal{L}(g) \in P \cdot F(P) \}.
\]

This is the Deligne–Lusztig variety associated to \(P \). The aim of this Note is to prove the following result:

Theorem 1. Let \(P \) be a parabolic subgroup of \(G \). Then \(X_P \) is irreducible if and only if \(P \) is not contained in a proper \(F \)-stable parabolic subgroup of \(G \).
Note that this result has been obtained independently by Lusztig (unpublished) and Digne and Michel [2, Proposition 8.4] in the case where P is a Borel subgroup: both proofs are obtained by counting rational points. We present here a geometric proof (inspired by an argument of Deligne [3, proof of Proposition 4.8]) which reduces the problem to the irreducibility of the Deligne–Lusztig variety associated to a Coxeter element: this case has been treated by Deligne and Lusztig [3, Proposition 4.8].

Before starting the proof of this theorem, we first describe an equivalent statement. Let B be an F-stable Borel subgroup of G, let T be an F-stable maximal torus of B, let W be the Weyl group of G relative to T and let S be the set of simple reflections of W with respect to B. We denote again by F the automorphism of W induced by F. Given $I \subseteq S$, let W_I denote the standard parabolic subgroup of W generated by I and let $P_I = BW_I B$. We denote by \mathcal{P}_I the variety of parabolic subgroups of G of type I (i.e. conjugate to P_I) and by B the variety of Borel subgroups of G (i.e. $B = \mathcal{P}_G$). For $w \in W$, we denote by $O_I(w)$ the G-orbit of $(P_I, wP_F(I))$ in $\mathcal{P}_I \times \mathcal{P}_F(I)$. Note that $O_I(w)$ depends only on the double coset $W_I w W_F(I)$. We define now

$$X_I(w) = \{ P \in \mathcal{P}_I \mid (P, F(P)) \in O_I(w) \}.$$

The group G^F acts on $X_I(w)$ by conjugation. We set $O(w) = O_G(w)$ and $X(w) = X_G(w)$.

Theorem 2. Let $I \subseteq S$ and let $w \in W$. Then $X_I(w)$ is irreducible if and only if $W_I w$ is not contained in a proper F-stable standard parabolic subgroup of W.

Remark 1. Let us explain why Theorems 1 and 2 are equivalent. Let P_0 be a parabolic subgroup of G. Let I be its type and let $g_0 \in G$ be such that $P_0 = g_0 P_I$. Let $w_0 \in W$ be such that $L(g_0) \in P_I w_P F(I)$. The pair $(I, w_0 w P_F(I))$ is uniquely determined by P_0. Then, the map $X_{P_0} \to X_I(w_0), gP_0 \mapsto g g_0^{-1} P_I$ is an isomorphism of varieties (indeed, it is straightforward that $L(g) \in P_0 \cdot F(P_0)$ if and only if $L(g g_0^{-1}) \in P_I w P_F(I)$).

Let Q be a parabolic subgroup of G containing P. Let J be its type. Then $I \subseteq J$, $Q = g_0 P_J$ and $L(g_0) \in P_J w P_F(J)$. Now, Q is F-stable if and only if $F(J) = J$ and $w \in W_J$. Given $I \subseteq S$ and $w \in W$, we have $L^{-1}(P_I w P_F(I)) \neq \emptyset$ and this shows the equivalence of the two theorems.

Remark 2. The condition “$W_I w$ is not contained in a proper F-stable standard parabolic subgroup of W” is equivalent to “$W_I w W_F(I)$ is not contained in a proper F-stable standard parabolic subgroup of W”.

The rest of this Note is devoted to the proof of Theorem 2. We fix a subset I of S and an element w of W. We first recall two elementary facts. If $I \subseteq J$, let $\tau_{I,J} : \mathcal{P}_I \to \mathcal{P}_J$ be the morphism of varieties that sends $P \in \mathcal{P}_I$ to the unique parabolic subgroup of type J containing P. It is surjective. Moreover,

$$\tau_{I,J} (X_I(w)) \subseteq X_J(w)$$ \hspace{1cm} (1)

and

$$\tau_{I,J}^{-1}(X_J(w)) = \bigcup_{W_{I,J} w P_F(I) \subseteq W_J w P_F(J)} X_I(w).$$ \hspace{1cm} (2)

First step: the “only if” part. Assume that there exists a proper F-stable subset J of S such that $W_I w \subseteq W_J$. Then, by 1, we have $\tau_{I,J}(X_I(w)) \subseteq X_J(1) = \mathcal{P}_J^F$. Since G^F acts transitively on \mathcal{P}_J^F, we get $\tau_{I,J}(X_I(w)) = X_J(1)$. This shows that $X_I(w)$ is not irreducible.

Second step: reduction to Borel subgroups. By the previous step, we can concentrate on the “if” part. So, from now on, we assume that $W_I w$ is not contained in a proper F-stable parabolic subgroup of W. Then, by 2, we have

$$\tau_{G,I}^{-1}(X_I(w)) = \bigcup_{x \in W_I w W_F(I)} X(x).$$

Let v denote the longest element of $W_I w W_F(I)$. Then every element x of the double coset $W_I w W_F(I)$ satisfies $x \leq v$ (here, \leq denotes the Bruhat order on W): this follows for instance from the fact that $P_I w P_F(I)$ is irreducible and is equal to $\bigcup_{x \in W_I w W_F(I)} B x B$. In particular, v is not contained in a proper F-stable parabolic subgroup of W.
Now, let $X' = \bigcup_{x \in W \cdot w \cdot W_{F}(t)} X(x)$. Note that $B \cdot v \cdot B = \bigcup_{x \leq v} B \cdot x \cdot B$, hence $L^{-1}(B \cdot v \cdot B) = \bigcup_{x \leq v} L^{-1}(B \cdot x \cdot B)$ since L is open. So, $\overline{X(v)} = \bigcup_{x \leq v} \overline{X(x)}$ and we deduce that

$$X(v) \subset X' \subset \overline{X(v)}.$$

So, since $\tau_{\emptyset I}(X') = X_I(w)$, it is enough to show that $X(v)$ is irreducible. In other words, we may, and we will, assume that $I = \emptyset$.

Third step: smooth compactification. Let (s_1, \ldots, s_n) be a finite sequence of elements of S. Let

$$\widehat{X}(s_1, \ldots, s_n) = \{ (B_1, \ldots, B_n) \in B^n \mid (B_n, F(B_1)) \in \overline{O}(s_n) \text{ and } (B_i, B_{i+1}) \in \overline{O}(s_i) \text{ for } 1 \leq i \leq n-1 \}.$$

If $\ell(s_1 \cdots s_n) = n$, then $\widehat{X}(s_1, \ldots, s_n)$ is a smooth compactification of $X(s_1 \cdots s_n)$ (see [1, Lemma 9.11]): in this case, $X(s_1 \cdots s_n)$ is irreducible if and only if $\widehat{X}(s_1, \ldots, s_n)$ is irreducible. \hfill(3)

Note that $(B_1, \ldots, B_n) \in \widehat{X}(s_1, \ldots, s_n)$. We denote by $\widehat{X}(s_1, \ldots, s_n)$ the connected (i.e. irreducible) component of $\widehat{X}(s_1, \ldots, s_n)$ containing (B_1, \ldots, B_n). Let $H(s_1, \ldots, s_n) \subset G^F$ be the stabilizer of $\widehat{X}(s_1, \ldots, s_n)$. Let us now prove the following fact:

$$\text{if } 1 \leq i_1 < \cdots < i_r \leq n, \text{ then } H(s_{i_1}, \ldots, s_{i_r}) \subset H(s_1, \ldots, s_n).$$

Proof of (4). The map $f : \widehat{X}(s_{i_1}, \ldots, s_{i_r}) \to \widehat{X}(s_1, \ldots, s_n)$ defined by

$$f(B_1, \ldots, B_1, B_2, \ldots, B_{i_r-1}, B_r, \ldots, B_n, F(B_1), \ldots, F(B_1))$$

is a G^F-equivariant morphism of varieties. Moreover,

$$f(B_1, \ldots, B_1, B_2, \ldots, B_n)$$

is contained in $\widehat{X}(s_1, \ldots, s_n)$. This proves the expected inclusion between stabilizers.

Last step: twisted Coxeter element. The quotient variety $G^F \backslash L^{-1}(B \cdot v \cdot B) \simeq B \cdot v \cdot B$ is irreducible, hence $G^F \backslash X(w)$ is irreducible as well. So,

$$G^F \text{ permutes transitively the irreducible components of } X(w).$$

Acknowledgement

We thank F. Digne and J. Michel for fruitful discussions on these questions. We thank P. Deligne for the clarification of the scope of validity of the theorem.

References

