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COXETER ORBITS AND BRAUER TREES III

OLIVIER DUDAS AND RAPHAËL ROUQUIER

Introduction

This article is the final one in a series of articles on certain blocks of modular
representations of finite groups of Lie type and the associated geometry. This series
gives the first instance of use of the mod-� cohomology of Deligne–Lusztig varieties
to determine new decomposition matrices of principal blocks for finite groups of
Lie type.

In the first two articles [19,20], the first author studied the integral �-adic coho-
mology of Deligne–Lusztig varieties associated with Coxeter elements. For suitable
primes �, Broué [5] has conjectured that the complex of cohomology provides a so-
lution to his abelian defect group conjecture for the principal block. On the other
hand, Hiß, Lübeck, and Malle have conjectured that the Brauer tree of the block
can be recovered from the rational �-adic cohomology, endowed with the action of
the Frobenius [30]. In [19, 20], the relation between these conjectures was studied,
and Broué’s conjecture was shown to hold for Coxeter elements, with the possible
exceptions of types E7 and E8. These are also the cases for which the conjecture
of Hiß, Lübeck, and Malle was still open. We give here a general proof of that
conjecture and, as a consequence of [19, 20], of Broué’s conjecture. The new ingre-
dient is the study of the complex of cohomology, and the corresponding functor,
in suitable stable categories, via the consideration of fixed-point subvarieties. This
requires proving first some finiteness properties for the complex, when viewed as a
complex of �-permutation modules with an action of the Frobenius endomorphism.
A key input from [19,20] is the property of the mod-� cohomology associated with
certain “minimal” eigenvalues of Frobenius to be concentrated in one degree. As a
consequence, we determine the Brauer trees for the finite reductive groups of type
E7 and E8, for primes dividing the cyclotomic polynomial associated with the Cox-
eter number. We also obtain the previously unknown planar embeddings for the
trees associated with the groups of type 2F4 and F4. From [19,20], we deduce that
Broué’s conjecture holds in the case of Coxeter elements. Note that David Craven
has recently proposed a conjecture for the Brauer trees of all unipotent blocks of
finite groups of Lie type, together with a conjecture for the perversity function
associated with the equivalences predicted by Broué [11,12]. Since this article was
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written, the techniques that we develop here have been successfully applied to the
determination of these missing trees. This is part of a joint work with Craven [13].

Let us introduce our setting of geometric representation theory, following Deligne
and Lusztig (cf [40, §2.4] for more details on the discussion below). We consider
a connected reductive algebraic group G endowed with an endomorphism F a
power of which is a Frobenius endomorphism. We are interested in the mod-�
representations of the finite Chevalley group G = GF , where � is a prime distinct
from the defining characteristic of G. Let P be a parabolic subgroup of G with
an F -stable Levi complement L. The Deligne–Lusztig variety associated to (P,L)
is YG(U) = {g ∈ G|g−1F (g) ∈ F (U)}/(U ∩ F (U). It has an action of G by left
multiplication and a (right) action of L = LF by right multiplication. In particular,
the complex RΓc(YG(U)) of mod-� cohomology with compact support of YG(U) is
a complex of kH-modules, where H = G× Lopp and k = F�.

Let D be a Sylow �-subgroup of G. Assume D is abelian and L = CG(D).
Broué conjectures that there is a monoid Υ+ containing H as a normal subgroup
and acting on YG(U) (extending the action of H) with the following properties:

• the quotient of the completion Υ of Υ+ by H is the braid group of the
complex reflection group NG(D)/L;

• the complex RΓc(YG(U)) is isomorphic, in Db(kΥ), to a complex C of
(kG, kNG(D))-bimodules; and

• C induces a derived equivalence between the principal blocks of kG and
kNG(D).

Let us pause to recall that Broué conjectures the existence of such equivalences
for any finite group with abelian Sylow �-subgroups, but there is no known con-
struction of a complex C as above outside Lie type. This general conjecture is
actually compatible with the �-local structure of the group as we explain now.

Given Q an �-subgroup of a finite group R, there is a functor BrQ from the
category of kR-modules isomorphic to direct summands of permutation modules to
the category of kNR(Q)-modules, with the property that BrQ(kΩ) = k(ΩQ) given
any R-set Ω.

Broué conjectures that C can be taken to be a bounded complex whose terms
are direct summands of sums of modules of the form k(G × NG(D))/ΔQ, where
Q is a subgroup of D and ΔQ is the diagonal embedding of Q in G × NG(D)opp.
Furthermore, given Q any subgroup of D, then BrΔQ(C) should induce a derived
equivalence between the principal blocks of kCG(Q) and kCNG(D)(Q). An impor-
tant point is that the complexes BrΔQ(C), for Q �= 1, determine the image of C in
the stable category of (kG, kNG(D))-bimodules (quotient of the bounded derived
category by perfect complexes).

Let us come back to our Lie-theoretic setting. The classical constructions de-
fine RΓc(YG(U)) in the derived category of bounded complexes of kH-modules.
Rickard has showed how to produce an invariant in the homotopy category of
bounded complexes of finitely generated kH-modules, with terms direct summands
of permutation modules, and he has shown that applying BrQ to that complex
produces a complex of k(CG(Q), CL(Q))-bimodules homotopy equivalent to the
one associated with YG(U)ΔQ � YCG(Q)

(UQ). The second author showed, using
Godement resolutions, that this construction can be made compatible with the ac-
tion of the monoid Υ+, but the resulting complex does not have finite-dimensional
terms anymore, and the functoriality of the construction is not as strong as desired.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

COXETER ORBITS AND BRAUER TREES III 1119

This prevented the full transfer of local information in inductive approaches to the
conjecture.

We solve this problem in our setting, and this enables us to determine the
image in the stable category of kG-modules of generalized Frobenius eigenspaces
on RΓc(YG(U))⊗kL k (Theorem 2.6).

Let us now describe in detail the structure of this article. In the first sec-
tion, we start with an analysis of good algebras, i.e., algebras for which every
bounded complex with finite-dimensional cohomology is quasi-isomorphic to a com-
plex with finite-dimensional components. Given a group, its group algebra is good
over arbitrary finite fields if and only if the group is good, i.e., the cohomology
of the group and its profinite completion agree for any finite module. Consider a
group Υ with a finite normal subgroup H such that Υ/H is good and let k be a
finite field. We show that a complex of kΥ-modules whose restrictions to kH is
perfect is quasi-isomorphic to a bounded complex of kΥ-modules whose restrictions
to kH are finitely generated and projective (Proposition 1.12). We apply this to
the complex of cohomology of an algebraic variety X acted on by a monoid Υ+

acting by invertible transformations of the étale site, where Υ is the group associ-
ated with Υ+. Let � be a prime invertible on X. We show in Theorem 1.14 that
the complex of mod-� cohomology of X can be represented by a bounded com-
plex of finite Υ-modules which are direct summands of permutation modules for
H (building on [38, 39]). This solves the problem mentioned earlier, in connection
with Broué’s conjectures for finite groups of Lie type. The results apply as the
corresponding braid group is good, at least when the complex reflection group does
not have exceptional irreducible components of dimension ≥ 3.

In the second section, we consider a reductive connected algebraic group G en-
dowed with an endomorphism F a power of which is a Frobenius endomorphism.
We study the complex of cohomology of the Deligne-Lusztig variety associated with
a parabolic subgroup with an F -stable Levi complement L. Under the assumption
that the Sylow �-subgroups of GF are cyclic, and that L is the connected centraliser
of one of them, we study the generalized eigenspaces of the Frobenius on the com-
plex of cohomology (in the derived equivalence situation, they correspond to the
images of the simple modules for NG(D)). We determine their class in the stable
category of GF (Theorem 2.9 and Corollary 2.11).

The third section is devoted to mod-� representations of GF = G(Fq), where G
is simple and the multiplicative order of q modulo � is the Coxeter number of (G, F )
(with a suitable modification for Ree and Suzuki groups). We show in §3.2.2 that
the knowledge of the stable equivalence induced by the Coxeter Deligne–Lusztig
variety, together with the vanishing results of [20], determine Green’s walk around
the Brauer tree of the principal block, as predicted by Hiß–Lübeck–Malle [30]. We
also show how to determine the Brauer trees of the non-principal blocks. Finally,
we draw the new Brauer trees for the types 2F 4, F4, E7, and E8.

1. Finiteness of chain complexes

1.1. Good algebras.

1.1.1. Locally finite modules. Let k be a field. Given B a k-algebra, we denote
by B-Mod the category of left B-modules, by B-mod the category of B-modules
that are finite-dimensional over k and by B-locfin the category of locally finite B-
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modules, i.e., B-modules which are unions of B-submodules in B-mod. These are
Serre subcategories of B-Mod. We denote by B-Proj (resp. B-proj) the category
of projective (resp. finitely generated projective) B-modules.

Given C an additive category, we denote by Comp(C) its category of complexes

and by Compb(C) its subcategory of bounded complexes. We denote by Ho(C) the
homotopy category of complexes of C.

Assume now C is an abelian category. Let C ∈ Comp(C) and let n ∈ Z. We put

and

τ≤nC = · · · −→ Cn−2 −→ Cn−1 −→ ker dn −→ 0

τ≥nC = 0 −→ cokerdn−1 −→ Cn+1 −→ Cn+1 −→ · · · .

The derived category of C will be denoted by D(C). Given I a subcategory of C,
we denote by DI(C) the full subcategory of D(C) of complexes with cohomology in
I. We put Ho(B) = Ho(B-Mod) and D(B) = D(B-Mod). Recall that an object

of D(B) is perfect if it is isomorphic to an object of Compb(B-proj). We refer to
[31, §8.1] for basic definitions and properties of unbounded derived categories.

Lemma 1.1. The category D(B-locfin) is a triangulated category closed under
direct sums and it is generated by B-mod as such.

Proof. The category B-locfin is closed under direct sums, hence Comp(B-locfin) is
closed under direct sums. It follows that D(B-locfin) is closed under direct sums
and the canonical functor Comp(B-locfin) −→ D(B-locfin) commutes with direct
sums [1, Lemma 1.5]. Let C ∈ Comp(B-locfin). We have hocolimn→∞τ≤n(C) � C,
i.e., there is a distinguished triangle⊕

τ≤n(C) −→
⊕

τ≤n(C) −→ C � .

If C is right bounded, then hocolimn→−∞σ≥nC � C, where σ≥nC = 0 −→ Cn →
Cn+1 −→ · · · is the subcomplex of C obtained by stupid truncation. It follows
that B-locfin generates D(B-locfin) as a triangulated category closed under direct
sums.

Now let M ∈ B-locfin and let C0 = ⊕m∈MBm where Bm is the B-submodule of
M generated by m. We have a canonical surjective map C0 −→ M , with kernel in
B-locfin. By induction, we construct a complex C = · · · −→ C0 −→ 0 whose terms
are direct sums of B-modules that are finite-dimensional over k and such that C is
quasi-isomorphic to M . Since hocolimn→−∞σ≥nC � C � M , we deduce that M
is in the smallest triangulated subcategory of D(B-locfin) closed under direct sums
and containing B-mod, and the lemma follows. �

Lemma 1.2. The canonical functor Db(B-mod) −→ Db
B-mod(B-locfin) is an equiv-

alence.

Proof. Let C ∈ Compb(B-locfin) with Ci = 0 for i > 0, Hi(C) = 0 for i �= 0 and
H0(C) ∈ B-mod. Since C0 is locally finite, we deduce there is a B-submodule D0

of C0 which is finite-dimensional over k and such that D0 + d−1(C−1) = C0. We
define now D−i ⊂ C−i by induction on i for i ≥ 1. We let D−i be a B-submodule of
C−i that is finite-dimensional over k and such that d−i(D−i) = d−i(C−i)∩D−i+1.
This defines a subcomplex D of C such that D ↪→ C is a quasi-isomorphism.
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We deduce that given M ∈ B-mod and N ∈ Db(B-mod), the canonical map
HomDb(B-mod)(M,N) −→ HomDb(B-locfin)(M,N) is an isomorphism. Since

Db(B-mod) is generated by B-mod as a triangulated category, we deduce that
the functor of the lemma is fully faithful. It is then an equivalence, since B-mod
also generates the triangulated category Db

B-mod(B-locfin). �

Lemma 1.3. The following assertions are equivalent:

(1) the canonical functor Db(B-mod) −→ Db
B-mod(B-Mod) is an equivalence;

(2) the canonical functor Db(B-mod) −→ Db
B-mod(B-Mod) is essentially sur-

jective;
(3) given M,N ∈ B-mod and given n ≥ 1, the canonical map

ExtnB-mod(M,N) −→ ExtnB-Mod(M,N) is bijective; and
(4) given M,N ∈ B-mod and given n ≥ 2, the canonical map

ExtnB-mod(M,N) −→ ExtnB-Mod(M,N) is surjective.

Proof. The implication (3) ⇒ (1) follows from the fact thatDb(B-mod) is generated
by B-mod as a triangulated category.

The implication (4) ⇒ (3) is proven as in [41, Exercice 1(a) p. 13] by induction
on n (the case n = 1 holds with no assumption). Let f ∈ Extn+1

B-mod(M,N): it is
represented by a long exact sequence

0 −→ N −→ N1 −→ · · · −→ Nn+1 −→ M −→ 0

of objects of B-mod. We have a commutative diagram with exact rows

ExtnB-mod(M,N1) ��

∼

��

ExtnB-mod(M,N1/N) ��

∼

��

Extn+1
B-mod(M,N) ��

��

Extn+1
B-mod(M,N1)

��
ExtnB-Mod(M,N1) �� ExtnB-Mod(M,N1/N) �� Extn+1

B-Mod(M,N) �� Extn+1
B-Mod(M,N1)

The image of f in Extn+1
B-mod(M,N1) vanishes. We deduce that f is the image of a

map g ∈ ExtnB-mod(M,N1/N). If f �= 0, then g �= 0 and, by induction, the image
of g in ExtnB-Mod(M,N1/N) is not zero. By chasing on the commutative diagram
above, we deduce that the image of f in Extn+1

B-Mod(M,N) is not zero.
Let us assume now (2). Let n ≥ 2, let f ∈ HomDb(B-Mod)(M,N [n]) and let C

be the cone of f . It is the image of an object D of Db(B-mod) and there is a
distinguished triangle H−n(D)[n] −→ D −→ H−1(D)[1] �. This triangle defines a
map M = H−1(D) −→ N [n] = H−n(D)[n] lifting f . This shows (4). Note finally
that (1)⇒(2) is trivial. �

We say that B is good if it satisfies any of the equivalent assertions of Lemma 1.3.

Lemma 1.4. Let A be a subalgebra of a k-algebra B making B into a finitely
generated projective A-module. Then A is good if and only if B is good.

Proof. Under the assumption of the lemma, the pair (F,G) = (IndBA ,Res
B
A) is an

adjoint pair of functors which are exact and preserve finite-dimensionality. Fur-
thermore, the canonical map FG −→ Id is onto.
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Let M ∈ B-mod. There is a surjective map f : FG(M) −→ M . The kernel of
f is a quotient of FG(ker f). Iterating this construction, we obtain a complex of
B-modules C = · · · −→ C−1 −→ C0 −→ 0 with a morphism C −→ M that is a
quasi-isomorphism and such that Ci is in F (A-mod). From Lemma 1.1 we deduce
that F (A-mod) generatesD(B-locfin) as a triangulated category closed under direct
sums.

Given i ≥ 0 and V ∈ A-mod, we have a commutative square

ExtiB-mod(F (V ),M)
∼ ��

��

ExtiA-mod(V,G(M))

��
ExtiB-Mod(F (V ),M)

∼ �� ExtiA-Mod(V,G(M))

and we deduce that B is good whenever A is. The other implication is proven
in the same way, by exchanging the role of A and B and by taking (F,G) =

(ResBA ,CoInd
B
A). �

Lemma 1.5. Assume k is perfect and let A,B be k-algebras. If A and B are good,
then A⊗k B is good.

Proof. The lemma follows from the Künneth Formula and the fact that Db((A⊗k

B)-mod) is generated by A-mod ⊗ B-mod as a triangulated category, as finite
dimensional simple (A⊗k B)-modules are of the form V ⊗k W , where V (resp. W )
is a finite dimensional A-module (resp. B-module). �

1.1.2. Relative homotopy categories. Let A be a subalgebra of a k-algebra B. We
denote by Ho(B,A) the quotient of the triangulated category Ho(B) by the thick
subcategory of complexes C such that ResA C = 0 in Ho(A). We have quotient
functors Ho(B) −→ Ho(B,A) −→ D(B). Taking for example A = B or k gives
Ho(B,B) = Ho(B) and Ho(B, k) = D(B) (cf. [32] for a discussion when A is
commutative).

Recall that a complex C of A-modules is homotopically projective if
HomHo(A)(C,D) = 0 given D any acyclic complex of A-modules. The following
lemma is classical when A = k [31, Theorem 8.1.1].

Lemma 1.6. Assume B is a projective A-module. Let T be the full subcategory
of Ho(B,A) of complexes C such that ResA C is homotopically projective. The

quotient functor induces an equivalence T ∼→ D(B), whose inverse is a left adjoint
to the quotient functor Ho(B,A) −→ D(B).

Proof. Let C be a homotopically projective complex of B-modules and D be an
acyclic complex of A-modules. Since B is projective as an A-module, the complex
CoIndBA D = HomA(B,D) is acyclic. Consequently, wehaveHomHo(A)(Res

B
AC,D) �

HomHo(B)(C,CoInd
B
AD) = 0. It follows that ResBAC is homotopically projective.

Let now C ∈ T . Consider a homotopically projective resolution of C, i.e.,
a morphism of complexes f : C ′ −→ C where C ′ is a homotopically projective
complex and f is a quasi-isomorphism. Since ResAC ′ and ResA C are homotopically
projective, we deduce that ResA f is an isomorphism in Ho(A). Note that an arrow
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g of Ho(B,A) is invertible if and only if ResA g is invertible in Ho(A). It follows that
f is an isomorphism in Ho(B,A). Now, given D ∈ Comp(B), we have canonical
isomorphisms

HomHo(B)(C
′, D)

∼→ HomHo(B,A)(C
′, D)

∼→ HomD(B)(C
′, D)

and the lemma follows. �

We denote by RD : D(B) −→ D(A) and RHo : Ho(B,A) −→ Ho(A) the triangu-

lated functors induced by the restriction ResBA . Given E : C −→ C′ a functor and
I ⊂ C′, we denote by E−1(I) the full subcategory of C of objects C such that E(C)
is isomorphic to an object of I.

Lemma 1.7. Let A be a finite-dimensional subalgebra of a k-algebra B. As-
sume that there exists a subalgebra B′ of B such that B is a finitely gener-
ated projective (A,B′)-bimodule. Then the quotient functor induces an equivalence

R−1
Ho(Compb(A-Proj))

∼→ R−1
D (Compb(A-Proj)).

Furthermore, if B is good, this restricts to an equivalence
R−1

Ho(Compb(A-proj))
∼→ R−1

D (Compb(A-proj)).

Proof. The fully faithfulness is given by Lemma 1.6.
We construct by induction a complex of (B,B)-bimodules X = · · · −→ X−1 −→

X0 −→ 0. We put X0 = B ⊗B′ B. Let M be the kernel of the multiplication map
X0 −→ B. We put X−1 = X0 ⊗B M and d−1 : X−1 −→ X0 is the composition

X0 ⊗B M
mult−−−→ M

can−−→ X0. Suppose X−i −→ · · · −→ X0 −→ 0 has been de-

fined for some i ≥ 1. We put X−i−1 = X0 ⊗B ker d−i and d−i−1 : X−i−1 mult−−−→
ker d−i can−−→ X−i. The multiplication map X −→ B is a quasi-isomorphism. Note
that X0 is a (B,B)-bimodule that is finitely generated and projective as an (A,B)-
bimodule and as a B-module. By induction, we deduce that X−i is finitely gen-
erated and projective as an (A,B)-bimodule and as a B-module, and ker d−i is a
direct summand of X−i as a left and as a right B-module.

Let C be an object of R−1
D (Compb(A-Proj)). It is a bounded complex of B-

modules such that ResA C is quasi-isomorphic to a bounded complex of projective
modules C ′. Let n ∈ Z be such that the terms of C ′ are zero in degrees < n. Let
us consider the complex D = X ⊗B C. The canonical map D −→ C is a quasi-
isomorphism and ResA D is a right bounded complex of projective modules that is
quasi-isomorphic to C ′. Consequently, ResA D is homotopy equivalent to C ′, and
so is ResA(τ≥nD) since τ≥nC

′ = C ′. We deduce that τ≥nD is a bounded complex
of B-modules whose restriction to A are projective. This shows the first part of the
lemma. Note that if the terms of C are finite-dimensional, then the terms of τ≥nD
are finite-dimensional as well.

We consider finally a bounded complex M of B-modules whose restriction to A
is perfect. Since A is finite-dimensional, we deduce that M has finite-dimensional
total cohomology; hence, it is quasi-isomorphic to an object C of Db(B-mod),
as B is good. The construction above gives a quasi-isomorphic bounded com-
plex τ≥nD of B-modules whose restrictions to A are finitely generated and
projective. �
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If B is a projective A-module we have the following picture:

Ho(B,A) �� �� D(B)

R−1
Ho(A-hoProj)

∼ ��
��

��

R−1
D (A-hoProj)

∼

��

R−1
Ho(Compb(A-Proj)) � � ��

��

��

R−1
D (Compb(A-Proj))

��

��

R−1
Ho(Compb(A-proj)) � � ��

��

��

R−1
D (Compb(A-proj))

��

��

Remark 1.8. All results in §1.1.1–1.1.2 except Lemma 1.5 generalize immediately
to the case where the field k is replaced by any commutative noetherian ring.

1.1.3. Good groups. We relate in this section the property for a group to be good
as defined in [41, §2.6, exercise 2], to the property of its group algebra to be good.
We refer to [27, §3] for a discussion of goodness of groups.

Let Υ be a group and Υ̂ its profinite completion. We consider only continuous
representations of Υ̂, i.e., representations such that the orbit of any vector is finite.
In particular, we have a fully faithful embedding kΥ̂-Mod −→ kΥ-locfin, and this
embedding is an equivalence if k is a finite field. As a consequence, we have the
following result.

Lemma 1.9. Assume k is a finite field. The algebra kΥ is good if and only if
given M a finite-dimensional kΥ-module and given n ≥ 0, the canonical map
Hn(Υ̂,M) −→ Hn(Υ,M) is bijective.

Following Serre [41, §2.6, exercise 2], a group Υ is said to be good if for any finite

Υ̂-module M , the canonical map Hn(Υ̂,M) −→ Hn(Υ,M) is an isomorphism for all
n (note that it is already bijective for n = 0, 1). It is equivalent to the requirement
that FpΥ is good for all primes p.

Let V be a finite-dimensional complex vector space and letW be a finite subgroup
of GL(V ). Assume it is a complex reflection group, i.e., it is generated by elements
fixing a hyperplane. Let Vreg = {v ∈ V | StabW (v) = 1} and let x0 ∈ Vreg/W . The
braid group of W is π1(Vreg/W, x0). We refer to [6] for basic properties of complex
reflection groups and braid groups.

Recall that two groups are commensurable if they contain isomorphic subgroups
of finite index. Lemma 1.4 shows that given Υ0 a group commensurable with Υ,
then kΥ is good if and only if kΥ0 is good.

The following result of Marin [35, §2.3, Proposition 1] generalizes [41, §2.6, ex-
ercise 2(d,e)].

Proposition 1.10. If Υ is commensurable with a free group or the braid group of
a complex reflection group with no exceptional irreducible component of dimension
≥ 3, then Υ is good.

Proof. If Υ is an iterative extension of free groups, then Υ is good by [41, §2.6,
exercise 2(d)].
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Assume Υ is the braid group of a complex reflection group of type G(d, e, n).
Then Υ is commensurable with an iterated extension of free groups (cf. [36] or
[6, Remark p.152, Proposition 3.5, Lemma 3.9 and Corollary 3.32]). Consequently,
Υ is good.

Finally, if Υ is the pure braid group of an irreducible 2-dimensional complex
reflection group, then Z(Υ) is cyclic and Υ/Z(Υ) is a free group [6, p. 146], hence
Υ is good.

The case of the braid group of a non-irreducible complex reflection group follows
from Lemma 1.5. �
Remark 1.11. It is expected that the braid group of any finite complex reflection
group is good [35, §2.3, Conjecture 1].

Let H be a finite normal subgroup of Υ. It follows from [41, §2.6, exercise 2]
that Υ/H is good if and only if Υ is good and there is a finite index subgroup of Υ
intersecting H trivially. The following proposition follows from Lemma 1.7.

Proposition 1.12. Let k be a finite field. If Υ/H is good, then the quotient map
induces an equivalence from the full subcategory of Ho(kΥ, kH) of complexes C such

that ResH C ∈ Compb(kH-proj) to the full subcategory of D(kΥ) of complexes D
such that ResH D is perfect.

1.2. Chain complexes with compact support. Let k be a finite field of charac-
teristic �. By variety, we will mean a quasi-projective scheme over an algebraically
closed field of characteristic p �= �. We will consider étale sheaves of k-vector spaces.
Let us recall the construction of good representatives, up to homotopy, of the chain
complex of a variety. For finite group actions, the existence of such complexes is due
to Rickard [38]. We need here to use [39, §2], which provides a direct construction
compatible with the action of infinite monoids.

Let X by a variety acted on by a monoid Υ+ acting by equivalences of the étale
site. Let H be a finite normal subgroup of Υ+ and Υ be the group completion
of Υ+.

We consider the complex of cohomology with compact support of X with value
in k, constructed using the Godement resolution and we denote by GΓc(X) its

τ≤2 dimX -truncation. It is viewed as an object of Hob(kΥ, kH). It is independent
of the choice of the compactification, up to a unique isomorphism. Most functorial
properties in Db(kΥ) lift to Hob(kΥ, kH), in particular the triangle associated with
an open-closed decomposition: given Z a Υ+-stable closed subvariety of X and U
the open complement, there is a distinguished triangle in Hob(kΥ, kH):

GΓc(U) −→ GΓc(X) −→ GΓc(Z) � .

Lemma 1.13. Assume the stabilisers of points in X under H are �′-groups. Then
ResH GΓc(X) is a bounded complex of projective modules and it is perfect.

Furthermore, if Υ/H is good, then GΓc(X) is isomorphic in Hob(kΥ, kH) to a

complex R̃Γc(X) such that ResHR̃Γc(X) ∈ Compb(kH-proj).

Proof. It follows from [39, §2.5] that ResH GΓc(X) is a bounded complex of pro-
jective kH-modules and from [14, Proposition 3.5] that it is perfect. When Υ/H is
good, we obtain the second part of the lemma from Proposition 1.12. �

We explain now how to describe this finer invariant GΓc from the classical derived
category invariant RΓc in general, by filtrating X. We define a filtration of X by
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open Υ+-stable subvarieties X≤i = {x ∈ X | |StabH(x)| ≤ i}. Each variety X≤i−1

is open in X≤i and the complement is a locally closed subvariety of X which we
will denote by Xi. Given Q ⊂ H, we put XQ = {x ∈ X | StabH(x) = Q}. Given
C an Υ-conjugacy class of subgroups of H, we put XC =

∐
Q∈C XQ. We have a

decomposition into open and closed subvarieties Xi =
∐

C XC , where C runs over
the set of Υ-conjugacy classes of subgroups of H of order i. Given Q ∈ C, the map
(γ, x) −→ γxγ−1 induces an isomorphism IndΥNΥ(Q)XQ

∼→ XC . As a consequence,

we have a distinguished triangle in Hob(kΥ, kH)

GΓc(X≤i−1) −→ GΓc(X≤i) −→
⊕
Q

IndΥNΥ(Q)GΓc(XQ) �,

where Q runs over representatives of Υ-conjugacy classes of subgroups of order i
of H.

The action of NH(Q) on XQ factors through a free action of NH(Q)/Q. Lem-
mas 1.13 and 1.7 show that GΓc(XQ) is up to isomorphism the unique object

of Hob(kNΥ(Q), kNH(Q)) isomorphic in Db(kNΥ(Q)) to RΓc(X) and whose re-
striction to kNH(Q) is homotopy equivalent to a bounded complex of projective
(kNH(Q)/Q)-modules.

Recall that a kH-module is an �-permutation module if it is a direct summand of
a permutation module. The filtration of GΓc(X) above shows that it is isomorphic

in Hob(kΥ, kH) to a bounded complex of kΥ-modules whose restrictions to H are �-
permutation modules. The second part of Lemma 1.13 shows the following stronger
finiteness statement.

Theorem 1.14. Assume that Υ/H is good (cf. §1.1.3). Then the complex GΓc(X)

is isomorphic in Hob(kΥ, kH) to a bounded complex R̃Γc(X) of kΥ-modules whose
restrictions to H are finitely generated �-permutation modules.

In the setting of Broué’s abelian defect conjecture, we have Υ = H � B, where
B is the braid group of a complex reflection group, so that Theorem 1.14 applies
when the reflection group has no exceptional component of dimension ≥ 3, and
conjecturally in general (cf. Proposition 1.10).

Let P be an �-subgroup of H. Given V an �-permutation kH-module, BrP (V ) is
defined as the image of the invariants V P in the coinvariants VP = V ⊗kP k. This
construction extends to complexes of �-permutation modules. The description of
GΓc(X) above shows that the injection XP ↪→ X induces an isomorphism

BrP (GΓc(X))
∼→ GΓc(X

P )

in Hob(kNΥ(P ), kNH(P )/P ) (cf. also [39, Theorem 2.29] and [38, Theorem 4.2]).

Remark 1.15. The complex ResH GΓc(X1) is homotopy equivalent to a bounded
complex of finitely generated projective modules since by definition H acts freely
on X1. As a consequence, the canonical map GΓc(X) −→ GΓc(X � X1) is an

isomorphism in Hob(kH-Mod)/Hob(kH-proj) (compare with Theorem 2.6).

Remark 1.16. Note that a finiteness property can be obtained more directly for
Galois actions. Let Č(X, k) be the Čech complex of X, limit of the Čech complexes
Č(F , k) over the category of étale coverings F of X. The action of Υ on that
category induces an action on Č(X, k).

Assume now X is endowed with a Frobenius endomorphism F defining a rational
structure over a finite field. Let α ∈ Č(X, k). There is a covering F such that α is in
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the image of Č(F , k). The covering F is isomorphic to a covering F ′ whose elements
are stable under the action of Fn and such that Fn acts trivially on Č(F ′, k), for
some n ≥ 1. It follows that Fn(α) = α. So, Č(X, k) is locally finite for the action
of F .

2. Deligne–Lusztig varieties

Let G be a (not necessarily connected) reductive algebraic group, together with
an isogeny F , some power of which is a Frobenius endomorphism. In other words,
there exists a positive integer n such that Fn defines a split Fqn -structure on G
for a certain power qn of the characteristic p, where q ∈ R>0. Given an F -stable
algebraic subgroup H of G, we will denote by H the finite group of fixed points HF .

Let P = LU be a parabolic subgroup of G with unipotent radical U and an
F -stable Levi complement L. We define the parabolic Deligne–Lusztig varieties

YG(U) =
{
g ∈ G

∣∣ g−1F (g) ∈ F (U)
}
/(U ∩ F (U))

XG(P) =
{
g ∈ G

∣∣ g−1F (g) ∈ F (P)
}
/(P ∩ F (P)),

πL /L

where πL denotes the restriction to YG(U) of the canonical projection G/(U ∩
F (U)) −→ G/(P ∩ F (P)). The varieties YG(U) and XG(P) are quasi-projective
varieties and endowed with a left action of G by left multiplication. Furthermore,
L acts on the right on YG(U) by right multiplication and πL is isomorphic to the
corresponding quotient map, so that it induces a G-equivariant isomorphism of
varieties YG(U)/L

∼→ XG(P).

2.1. Fixed points and endomorphisms.

2.1.1. Description of fixed points. The claim in [39, Lemma 4.1] can be extended
to parabolic Deligne-Lusztig varieties (cf. [14, Proposition 4.7] and [17, proof of
Lemma 12.3] for a related result).

Lemma 2.1. Let S be a finite solvable subgroup of Aut(G) of order prime to p.
Assume S commutes with the action of F and stabilises U. Then the inclusion
GS ↪→ G induces an isomorphism

YGS (US)
∼→ YG(U)S.

Proof. Denote by LG : G → G, g �−→ g−1F (g) the Lang map. We have a commu-
tative diagram

L−1
GS (F (US))

∼ ��

��

L−1
G (F (U))S

��

� � �� L−1
G (F (U))

α

��
YGS (US) �

� �� YG(U)S � � �� YG(U)

where α is induced by the quotient map G −→ G/(U ∩ F (U)). Assume S is an
�-group for some prime �. Let y ∈ YG(U)S and V = α−1(y), an affine space.
The stratification of V by stabilizers as in §1.2 shows that � |

∑
i(−1)i dimHi

c(V �
V S ,F�). We deduce that H∗

c(V
S ,F�) �= 0, hence V S �=∅. This proves the lemma

when S is an �-group.
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We prove now the lemma by induction on |S|. There is a non-trivial normal
�-subgroup S1 of S for some prime �. The canonical map YGS1 (U

S1) −→ YG(U)S1

is an isomorphism. By induction, the lemma holds for GS1 with the action of S/S1,
and we deduce that the lemma holds for (G, S). �

Let Σ+ be a monoid acting by automorphisms on L and acting on the right by
equivalences of the étale site on the Deligne–Lusztig variety YG(U). We assume
the action is compatible with the action of L and commutes with the action of G,
so that the monoid Υ+ = G × (L � Σ+)opp acts on YG(U). We denote by Σ the
group completion of Σ+ and we put Υ = G× (L� Σ)opp.

Given H a group, we denote by ΔH = {(x, x−1) |x ∈ H} the corresponding
diagonal subgroup of H ×Hopp.

Lemma 2.2. Assume there exists a Σ+-stable p′-subgroup Z of L such that L =
CG(Z)◦. Then we have ⋃

h∈G

h
(
YG(U)ΔZ

)
= G/G ∩U

where G acts by left multiplication and L� Σ by right multiplication preceded by a
morphism L� Σ −→ NG(L,G ∩U) that extends the identity on L.

Proof. By assumption on Z, the closed subvariety R =
⋃

h∈G h
(
YG(U)ΔZ

)
of

YG(U) is stable by the action of Υ+. Let Q = UΔZ = U ∩ CG(Z). We have
L ⊂ NG(Q). Since U∩L = {1} it follows that Q is finite hence L ⊂ CG(Q). Since
U ∩ CG(L) = U ∩ CP(L) = {1} we deduce that Q = {1}. Now by Lemma 2.1
the variety YG(U)ΔZ is the image of L−1

CG(Z)(F (Q)) = CG(Z) by the projection

G −→ G/(U ∩ F (U) and therefore we obtain

R = G (U ∩ F (U))/(U ∩ F (U)) � G/G ∩U.

In particular the action of L�Σ+ on R induces a G-equivariant action on G/G∩U.

GivenH a subgroup ofG, there is a group isomorphismNG(H)/H
∼→ EndG(G/H)

constructed as follows: an element xH ∈ NG(H)/H defines a G-equivariant map
yH �−→ yxH. Conversely, the image of H by a G-equivariant map of G/H is in
NG(H)/H. Consequently the action of Υ+ on R yields a canonical group homomor-
phism L� Σ −→ NG(G ∩U)/G ∩U.

Let σ ∈ Σ and y(G ∩ U) be the image of σ by this morphism. Let Q =
{(σ(l), l−1) | l ∈ Z}. We claim that y(U ∩ F (U)) ∈ YG(U)Q. Indeed, y−1F (y) = 1
hence y(U ∩ F (U)) ∈ YG(U). Furthermore, by definition of y, we have yly−1 ∈
σ(l)(G ∩ U) and therefore σ(l)yl−1 ∈ y(G ∩ U) for all l ∈ L. We deduce from
Lemma 2.1 that y is the image of an element of L−1

GQ(F (UQ)), hence there ex-

ists x ∈ GQ and u ∈ U ∩ F (U) such that y = xu. By definition, an element
x ∈ GQ acts on Z as σ. Consequently, x−1F (x) acts by σ−1Fσ and, in particular,
it normalizes Z. Now F (y) = y and u, F (u) ∈ F (U) forces x−1F (x) ∈ F (U).
Since NG(Z) ⊂ NG(CG(Z)◦) = NG(L) we have F (U) ∩ NG(Z) = {1} and we
deduce that x ∈ NG(L) and u ∈ G ∩U. This proves that the image of L� Σ −→
NG(G ∩U)/G ∩U lies in NG(L,G ∩U)(G ∩U)/G ∩U, which is canonically iso-
morphic to NG(L,G ∩U) since U ∩NG(L) = U ∩NG(L) = {1}. �

Remark 2.3. (i) There is an obstruction for equivalences on the étale site of
YG(U) to exist: if σ ∈ Σ acts on L by conjugation by v̇ ∈ NG(L) then
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v̇ will necessarily normalize G ∩ U. This extends the case of an F -stable
unipotent radical U, for which YG(U) � G/U and NG(L,U) = L.

(ii) When G ∩ U is trivial, this gives no obstruction for an element of the
complex reflection group NG(L)/L to lift to an equivalence on the étale
site of YG(U). Such equivalences have already been constructed in [7, 18]
when U is associated with a minimal ζ-element. Note that G ∩ U = {1}
for a larger class of elements.

(iii) The following lemma shows that one can always find a Z satisfying the
assumptions in Lemma 2.2 providing that q is not too small. In the situation
of the next section, Z will be a cyclic Sylow �-subgroup of G.

The following lemma is a variation on a classical result (cf. [10, Lemma 13.17]).

Lemma 2.4. Assume G is connected. Let S be an F -stable torus of G and E a
set of good prime numbers for G, distinct from p, and prime to |(Z(G)/Z(G)◦)F |.
Let Z be the Hall E-subgroup of S.

If for every irreducible factor Φ of the polynomial order of S there is � ∈ E such
that � | Φ(q), then CG(Z)◦ = CG(S), and this is a Levi subgroup of G.

Proof. Note that CG(S) is a Levi subgroup by [17, Proposition 1.22].
Let M = CG(Z)◦. This is a Levi subgroup of G (cf. [10, Proposition 13.16.(ii)])

and |Z| is prime to |(Z(M)/Z(M)◦)F | (cf. [10, Proposition 13.12.(iv)]). Conse-
quently, Z ⊂ Z(M)◦. Let π : M → M/Z(M)◦ be the quotient map. By [10, Lemma
13.17.(i)], the order of Z is prime to [π(S)F : π(S)], hence π(S)F has order prime
to |Z|. On the other hand, the polynomial order of π(S) divides that of S, hence
π(S) = 1, so S ⊂ Z(M)◦ and we are done. �
2.1.2. Stable category and �-ramification. Let us consider the closed Υ-subvariety
YG(U)� of YG(U) defined by

YG(U)� =
{
y ∈ YG(U)

∣∣ � divides |StabG×Lopp(y)|
}
.

By construction, the stabilizers in G × Lopp of points in YG(U) � YG(U)� are
�′-groups and YG(U)� is the smallest variety such that this property holds.

Lemma 2.5. The variety YG(U)� decomposes as

YG(U)� =
⋃

s∈L�\{1}
h∈G

YG(U)(hs
−1h−1, s) =

⋃
s∈L�\{1}

h∈G

h
(
YG(U)

)(s−1, s)
.

Proof. Let y(U∩F (U)) ∈ YG(U) and (g, s) ∈ G×L be an �-element fixing y(U∩
F (U)). We use the same argument as in the proof of Lemma 2.1: y(U∩F (U)) ⊂ G
is an affine space on which the cyclic �-group generated by (g, s) acts. Therefore
it contains a fixed point and without loss of generality one can assume that it is
y. Then gys = y which we can write g−1 = ysy−1. With u = y−1F (y) we have
u−1su = u−1y−1g−1yu = F (y−1g−1y) = s. Consequently, u ∈ CG(s). From
[17, Proposition 2.5] we deduce that u ∈ F (U)∩CG(s)◦. By Lang’s theorem, there
exists x ∈ CG(s)◦ such that x−1F (x) = u = y−1F (y). With h = yx−1 ∈ G we
obtain hs−1h−1ys = yx−1s−1xs = y. �

Given A a self-injective algebra, we denote by A-stab the stable category of A:
it is the additive quotient A-stab = A-mod/A-proj. The canonical map A-stab −→
Db(A-mod)/A-perf, where the right-hand term is the quotient as triangulated cat-
egories, is an equivalence of categories (Keller-Vossieck [33], Rickard [37, Theorem
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2.1]). This provides A-stab with a structure of triangulated category with transla-
tion functor Ω−1.

From now on we assume that Σ+ is cyclic, generated by σ. Then the group Υ =

G×(L�Σ)opp is good and we have a complex R̃Γc(YG(U)) ∈ Hob(kΥ, k(G×Lopp))
whose terms are finitely generated �-permutation k(G× Lopp)-modules (cf. §1.2).

Given λ ∈ k× and given M a finite-dimensional right kΣ-module, we will denote

by Mλ the generalized λ-eigenspace of σ (this is the image of M ⊗kΣ k̂[σ](σ−λ) in

M). We put λM = Mλ−1 , the eigenspace of σ acting on M on the left by σ−1.

Theorem 2.6. Given λ ∈ k× we have an isomorphism

R̃Γc(XG(P), k)λ
∼→ R̃Γc(YG(U)�/L, k)λ

in kG-stab.

Proof. From Theorem 1.14 we deduce that the cone of the canonical map f :

R̃Γc(YG(U)) −→ R̃Γc(YG(U)�) is homotopy equivalent to a bounded complex
of projective k(G× Lopp)-modules. As a consequence, cone(f)⊗kL k is homotopy
equivalent to a bounded complex of projective kG-modules. The map f ⊗kL k is a
morphism of bounded complexes of finite-dimensional k(G×Σopp)-modules, hence
for any λ ∈ k it induces a morphism of complexes of �-permutation kG-modules

R̃Γc(XG(P))λ −→ R̃Γc(YG(U)�/L)λ

whose cone is homotopy equivalent to a bounded complex of finitely generated
projective kG-modules. �
2.2. The cyclic case.

2.2.1. Centralisers of cyclic Sylow �-subgroups. We start by describing the central-
izers of Sylow �-subgroups of G under the assumption that they are cyclic.

Lemma 2.7. Assume G is connected and G has a cyclic Sylow �-subgroup S�. Let
L = CG(S�)

◦. Then:

(i) L is an F -stable Levi subgroup of G and S� ⊂ Z(L)◦.
(ii) For any non-trivial element s ∈ S�, we have CG(s)◦ = L and CG(s) = L,

hence any two distinct Sylow �-subgroups of G have trivial intersection.
(iii) NG(S�) = NG(L) = NG(L).

Proof. Let us first consider the case where G is simple. Let Gsc be the universal
cover of G. We denote by OG,F (x) = xN

∏
e Φe(x)

a(e) the “very twisted” polyno-
mial order of G: we have |G| = OG,F (q

ε) where ε = 2 if G has type 2B2,
2F 4 or

2G2, and ε = 1 otherwise. Let d be the order of qε modulo �. With S� being cyclic,
we claim that:

• the multiplicity of Φd as a divisor of OG,F (x) is 1;
• � is odd; and
• � � |Z(Gsc)

F |. In particular, both Z(G)F and Z(G∗)F are �′-groups;
• Φd�r � OG,F (x) for r ≥ 1; and
• � is good for G.

We have ��= 2 by [25, Theorem 4.10.5(a)]. Assume now � is odd. If � divides
|Z(Gsc)

F |, then WF has non-cyclic Sylow �-subgroups (cf. [25, Table 2.2]), unless
G has type A: in that case, if T is a quasi-split torus of G, then NG(T) has
non-abelian Sylow �-subgroups. We deduce that the multiplicity of Φd as a divisor
of OG,F (x) is 1 [25, Theorems 4.10.2 and 4.10.3] and that Gsc has cyclic Sylow
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�-subgroups. The last two properties are easily checked by inspection. Note that
conversely, if the multiplicity of Φd as a divisor of OG,F (x) is 1, then G has cyclic
Sylow �-subgroups [25, Theorem 4.10.3]. Note also that by descents of scalars, the
result remains true if G � G1 × · · · ×Gr is a product of simple groups permuted
cyclically by F since in that case GF � GF r

1 .
Now any connected reductive group G is a product of its minimal F -stable

semisimple normal connected subgroups and its connected center. Moreover, the
intersection of any two such subgroups is finite and central, and the conditions on
� given above force S� to lie in only one component (since Z(H) is a quotient of
Z(Hsc) for any semisimple group H). We may therefore assume that (G, F ) is a
product of simple groups permuted cyclically by F .

Let L = CG(S�)
◦ and s ∈ S�. We fix a pair (G∗, F ∗) dual to (G, F ). By

[10, Proposition 13.16.(ii)], CG(s)◦ is a Levi subgroup, which proves (i). By [10,
Proposition 13.16.(i)], the group (CG(s)/CG(s)◦)F is trivial since it is both an
�-group and a subquotient of Z(G∗)F which is an �′-group (it is isomorphic to a
quotient of Z(Gsc)). This shows that (CG(s)◦)F = CG(s). In particular, CG(s)◦

contains s. By [10, Proposition 13.12.(ii)], its connected center Z(CG(s)◦)◦ also
contains s. The (usual) polynomial order of (G, F ) has a unique simple factor over
Z[x] (or Z[

√
p][x] for Ree and Suzuki groups) that vanishes modulo � at x = q.

Consequently, � � [G : (Z(CG(s)◦)◦)F ], hence S� ⊂ Z(CG(s)◦)◦ and therefore
CG(s)◦ = CG(S�)

◦.
The last part of (ii) follows from the inclusions NG(L) ⊂ NG(L) ⊂ NG(S�) ⊂

NG(Q) ⊂ NG(CG(Q)◦) = NG(L) given any non-trivial subgroup Q of S�. �

Remark 2.8. Note that CG(S�) is not always connected. For example, take G =
PGL� and assume F defines a split structure over Fq. Let d be the order of q in
F×
� . Assume d > 1 and �2 � Φd(q). Then, a Sylow �-subgroup S� of G has order �

and CG(S�)/CG(S�)
◦ has order �.

Let us assume now that G is a connected reductive group such that G has a
cyclic Sylow �-subgroup S�. We take L = CG(S�)

◦. It is an F -stable Levi subgroup
of G (cf. Lemma 2.7). Given s a non-trivial element of S�, we have CG(s) = L
by Lemma 2.7.(ii). We deduce from Lemmas 2.2 and 2.5 that there exists a group
homomorphism L� Σ −→ NG(L,G ∩U) such that

YG(U)� � Res
G×NG(L,G∩U)opp

G×(L�Σ)opp G/G ∩U.

Let NΣ be the subgroup of NG(L) generated by the image of L � Σ. Let e be
the order of the cyclic group NΣ/L. Given λ an e-th root of unity in k×, we denote
by kλ the one-dimensional representation of NΣ on which the image of σ acts by λ
and NΣ acts trivially.

Theorem 2.9. Assume G is connected and G has a cyclic Sylow �-subgroup S�.
Let L = CG(S�)

◦. Given λ ∈ k×, we have

R̃Γc(XG(P), k)λ �
{
IndGNΣ

kλ if λe = 1;

0 otherwise

in kG-stab.
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Proof. By Theorem 2.6 and the description of YG(U)�, we have R̃Γc(XG(P), k)λ =
0 in kG-stab if λe �= 1. Otherwise, we have

R̃Γc(XG(P), k)λ � IndGNΣ�(G∩U) Res
NΣ

NΣ�(G∩U)kλ

in kG-stab. Now by Lemma 2.7.(iii) we have NG(S�) ∩ U = NG(L) ∩ U = {1},
hence S�∩u(S�) = {1} for any non-trivial u ∈ G∩U (cf. Lemma 2.7.(ii)). It follows

from the Mackey formula that Ind
NΣ�(G∩U)
NΣ

kλ � ResNΣ

NΣ�(G∩U)kλ in k(NΣ � (G∩
U))-stab. �

Remark 2.10. Note that this result holds if we replace the condition that S� is a
cyclic Sylow �-subgroup of G by the following: S� is a Sylow �-subgroup of L and
for all non-trivial �-element s ∈ L we have CG(s)◦ = L.

2.2.2. Endomorphism associated with F . We can construct a specific endomorphism
σ of YG(U) associated with the Frobenius. There exists ẇ ∈ NG(L) such that
ẇF (L,P) = (L,P). Let δ ≥ 1 be minimal such that ẇF induces a split structure
on L. Let us consider v̇ = ẇF (ẇ) · · ·F δ−1(ẇ) and define σ = v̇F δ = (ẇF )δ. We
can choose ẇ such that v̇ is fixed by F . We let σ act on YG(U) by σ(g) = F δ(g)v̇−1.
It is compatible with the action of G× Lopp, where σ acts on L by conjugation by
v̇−1.

Corollary 2.11. Assume there is a cyclic Sylow �-subgroup S� of G such that L =
CG(S�)

◦. Assume, furthermore, that v = wF (w) · · ·F δ−1(w) generates NG(L)/L.

Let m ∈ {0, . . . , e − 1}. If qmδ R̃Γc(XG(P), k) is quasi-isomorphic to a module
concentrated in degree d with no projective indecomposable summand, then there
exists an isomorphism of kG-modules

qmδHd
c(XG(P), k) � Ω2m−d k.

Proof. The endomorphism σ induces a split Fqδ -structure on the torus Z(L)◦, and

therefore v̇ acts on S� by raising any element to the power of q−δ. In particular,
since v has order e, the image of qδ in k is a primitive e-th root of unity. We deduce
that the one-dimensional representation of NG(L) on which v acts by qmδ satisfies
kqmδ � Ω−2mk in the category of kNG(L)-modules (see Example 3.2 below for more

details). We deduce from Theorem 2.9 that qmδ R̃Γc(XG(P)) � Ω2mIndGNG(L) k in
the stable category of kG-modules.

Since the distinct Sylow �-subgroups of G have trivial intersection (Lemma

2.7.(ii)), we have IndGNG(L) k = IndGNG(S�)
k � k in the stable category. The re-

sult follows then from the fact that two kG-modules that have no projective inde-
composable summand are isomorphic in the stable category if and only if they are
isomorphic as kG-modules. �

Remark 2.12. This corollary generalizes to the eigenspace of an operator Dv̇ (as
defined in [7, 18]) whenever NG(L) is generated by L and v̇.

3. Brauer trees

3.1. Walking around Brauer trees. Let � be a prime number, O be the ring of
integers of a finite extension K of Q� and let k be its residue field. We will assume
that K is large enough for all the finite groups encountered. Let H be a finite group
and bOH be a block of OH. If the defectD of the block is a non-trivial cyclic group,
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then the category of bOH-modules can be described by a combinatorial objet, the
Brauer tree Γ of the block [21, Chapter VII]:

• The set of vertices V of Γ consists of the ordinary non-exceptional char-
acters in the block and the sum χexc of the exceptional characters in the
block. The number of non-exceptional (resp. exceptional) characters will
be denoted by e (resp. m). The integer m will also be referred to as the
multiplicity of the exceptional vertex.

• There is an edge χ — χ′ in the Brauer tree if there exists a projective
indecomposable bOH-module with character χ+ χ′ for χ �= χ′ in V .

• There is a cyclic ordering of the edges containing any given vertex, defining
a planar embedding of the tree.

The planar embedded Brauer tree determines the category of bOH-modules up to
Morita equivalence.

Let us first describe the structure of the projective indecomposable modules in
the block. Let P be such a module, and assume that its character is the sum of
two non-exceptional characters χ and χ′ as in the following picture:

χi+1

χs

χ1

χi

η1

ηr

ηj+1

ηj

χ

P

χ′

Denote by Sj (resp. Ti) the simple kH-module whose projective cover has character

χ + ηj (resp. χ′ + χi) over K and let P = P ⊗O k. Assume χ, χ′ �= χexc. The

module radP/socP is the direct sum of two uniserial modules with composition
series S1, . . . , Sr and T1, . . . , Ts so that P has the following structure:

(3.1)

S
S1 T1

...
...

Sr Ts

S

In addition, the unique quotient U (resp. submodule V ) of P which has S, S1, . . . , Sr

(resp. T1, . . . , Ts, S) as a composition series can be lifted to an O-free OH-module
with character χ (resp. χ′). The structure of P = PU yields ΩU � V . Now V is in
turn a quotient of a projective cover of T1, so that ΩV = Ω2U is a uniserial module
with character χ1. By iterating this process, we obtain a sequence (ΩiU)i≥0 of unis-
erial modules, each of which lifts to an O-free OH-module yielding an irreducible
ordinary character (or the exceptional character) in the block. This sequence is
called the Green walk starting at U [26]. It is periodic of period 2e and can be
easily read off from the planar embedded tree.
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Remark 3.1. When χ = χexc, the structure of P described above is slightly different:
one should turn around the exceptional node as many times as the multiplicity of
the exceptional vertex. This amounts to repeating m times the composition series
S, S1, . . . , Sr in U .

Example 3.2. We close this section with the example of a star. Assume that
H = D � E where D is a cyclic �-group and E is an �′-subgroup of Aut(D).
Fix a generator x of E of order e. Then x acts on D by raising the elements
to some power d. By Hensel’s Lemma there exists a primitive e-th root of unity
ζ ∈ O congruent to d. Denote by χ1, . . . , χe the one-dimensional characters of
H over K such that χi(x) = ζi and denote by S1, . . . , Se = k the associated kH-
modules. The exceptional characters are the characters of H of dimension > 1. The
planar embedded Brauer tree of the principal �-block of H is given by the following
picture:

χ1

χ2

χe

χ3

χexc

χe−1

χ4

In this particular case, the syzygies of a module Sj satisfy Ω2iSj = Sj+i and Green’s
walk from Sj yields the sequence χj , χexc, χj+1, χexc, χj+2, . . . .

3.2. Brauer trees of the principal Φh-block . When d is the Coxeter number,
Hiß, Lübeck, and Malle have formulated in [30] a conjecture describing the Brauer
tree of the principal Φd-block. In this section we will combine the results of [20] and
§2 to obtain a general proof of the conjecture. This includes the determination of
the previously unknown planar embedded tree for groups of type 2F4, E7, and E8.
As a byproduct we obtain a proof of the geometric version of Broué’s conjecture
for varieties associated with Coxeter elements (see Theorem 3.5).

In this section, G is a connected reductive group, T is a maximal F -stable torus
of G, Φ = Φ(G,T) is the corresponding root system and W = NG(T)/T its Weyl
group. We put φ = q−1F , a linear transformation of V = Y (T)⊗ C. Throughout
this section we will assume that V is irreducible for the action of W � 〈φ〉. In
particular, G decomposes as an almost product of simple groups that are permuted
cyclically by F .

3.2.1. Previous results. We assume T is a Coxeter torus. This means that φ has an
eigenvalue of order the Coxeter number h, where h is the maximal possible order
of an eigenvalue of yφ in V for y ∈ W . In that case there exists w ∈ W and a
wφ-stable basis Δ of Φ such that each orbit of Φ under wφ contains exactly one
positive root α such that φ(α) < 0 (cf. [43, Section 7]). Furthermore, the following
properties are satisfied:
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• the exp(2πi/h)-eigenspace of φ in V is maximal and it is a line which
intersects trivially any reflecting hyperplane. As a consequence, the order
of |G|, which is a polynomial in q, has Φh as a simple factor; and

• if δ denotes the order of wφ as an endomorphism of V , then CW (F ) is a
cyclic group of order h0 = h/δ generated by v = wF (w) · · ·F δ−1(w).

The basis Δ defines a wF -stable Borel subroup B containing T. The corresponding
Deligne–Lusztig variety XG(B) will be referred to as a Coxeter variety and we will
denote by r its dimension.

We assume the image of q in k is a primitive h-root of 1. If G has type 2B2

(resp. 2F4, resp.
2G2) we assume in addition that � | q2 − q

√
2 + 1 (resp. � |

q4 − q3
√
2+ q2 − q

√
2 + 1, resp. � | q2 − q

√
3+ 1). The Sylow �-subgroups of G are

cyclic (cf. proof of Lemma 2.7) and T is the centraliser of one of them.
Let us recall some results of Lusztig [34] on the cohomology of Coxeter varieties.

We fix an F -stable lift v̇ of v in NG(T). The Frobenius endomorphism σ = v̇F δ

acts (on the left) semi-simply on Hi
c(XG(B),K) and each eigenvalue is equal to

qjδ in k for a unique j ∈ {0, . . . , h0 − 1}. The eigenspaces of σ are mutually
disjoint irreducible KG-modules and their characters {χ0, . . . , χh0−1} are the non-
exceptional characters in the block. Moreover, if we fix a square root qδ/2 of qδ in
K, then each eigenvalue of σ can be written as ζqimδ/2 for some integer i and some
root of unity ζ which depends only on the Harish–Chandra series of the associated
eigenspace. For a given ζ, the contribution of the corresponding Harish–Chandra
series to the cohomology of XG(B) is given by

Hr
c(XG(B),K) Hr+1

c (XG(B),K) · · · H
r+Mζ−mζ
c (XG(B),K)

χmζ
χmζ+1 · · · χMζ

for some Mζ ≥ mζ , where r is the dimension of XG(B) (which is also equal to the
F -semisimple rank of G). Furthermore, according to [24], the following tree

χmζ
χmζ+1 χmζ+2 χMζ−1 χMζ

is a subtree of the Brauer tree of the principal �-block. The missing vertex is the
exceptional one: it corresponds to the non-unipotent characters in the block. By
[19], the missing edges are labelled by the cuspidal kG-modules in the block. With
this notation, the conjecture of Hiß–Lübeck–Malle [30] can be stated as follows:

Conjecture 3.3 (Hiß-Lübeck-Malle). Let Γ be the Brauer tree of the principal
Φh-block. Then:

(i) (Shape of the tree) The vertices labelled by χmζ
are the only nodes connected

to the exceptional node in Γ.
(ii) (Planar embedding) The vertices labelled by χmζ

are ordered around the
exceptional vertex according to increasing values of mζ .

Assertion (i) is known to hold for any group but E7 and E8. The proof relies on
a case-by-case analysis, combining results of Fong–Srinivasan for classical groups
[23], Hiß for Ree groups [28], Hiß–Lübeck–Malle for groups of type E6 [30], and
Hiß–Lübeck for groups of type F4 and 2E6 [29]. The planar embedding was not
known for groups of type 2G2,

2F4, F4, E7, and E8. The first two cases were
recently settled in [19] (under the assumption p �= 2, 3 in type 2F4), but the other
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cases remained unsolved. Our main result gives an unconditional proof of this
conjecture.

Theorem 3.4. The conjecture of Hiß–Lübeck–Malle holds.

From [19, Theorem 4.13] and [20, Theorem 4.5], we deduce that the geometric
version of Broué’s conjecture holds for the principal Φh-block. Moreover, in that
case the contribution to the block of the cohomology of YG(U) with coefficients in
O is torsion-free (cf. §2.2.1 for the definition of Σ).

Theorem 3.5. There is a bounded complex C of finitely generated �-permutation

O(G × NG(T )
opp)-modules such that Res

G×NG(T )opp

G×(L�Σ)opp (C ⊗O k) is isomorphic to

R̃Γc(YG(U), k) in Hob(k(G × (T � Σ)opp)) and such that C induces a perverse
Rickard equivalence between the principal blocks of OG and ONG(T ).

3.2.2. Determination of the Brauer trees. We shall now give a proof of the conjec-
ture of Hiß–Lübeck–Malle. For that purpose, we will use Corollary 2.11 and the re-
sults in [20] to compute the syzygies of the trivial module. By [19, Proposition 2.12],

the generalized qmζδ-eigenspace of σ = v̇F δ on R̃Γc(XG(B), k) is quasi-isomorphic
to a complex concentrated in degree r. Moreover, it has no projective indecom-
posable summand since it can be lifted to an O-free OG-module of character χmζ

.
Consequently, we can apply Corollary 2.11 to obtain the following isomorphism of
kG-modules

(3.2) qmζδHr
c(XG(B), k) � Ω2mζ−r k.

The principal �-block is self-dual, the dual of the character χmζ
is χmζ−1 and

the dual of the module Ω2mζ−r k is Ωr−2mζ k. In particular, if we apply (3.2) to
ζ and ζ−1 we deduce that both Ω2mζ−r k and Ωr−2mζ−1 k can be lifted to O-free
OG-modules with character χmζ

. In order to compare the positions of these two
modules in Green’s walk we will use the following relation.

Lemma 3.6. With the notation in §3.2.1, we have mζ−1 +Mζ ≡ r mod h.

Proof. Recall from [34, Table 7.1] that the eigenvalues of σ on the series associated
with ζ are ζqaδ/2, ζqδ(a/2+1), . . . , ζqδ(a/2+Mζ−mζ) for some integer a. Moreover, the
interval {a/2, . . . , a/2 + Mζ − mζ} is centered at r/2, so that a + Mζ − mζ = r.
Finally, we observe that a does not change if we replace ζ by its conjugate ζ−1.
Since ζqaδ/2 (resp. ζ−1qaδ/2) is equal in k to qδmζ (resp. qδmζ−1 ) and qδ has order
h modulo �, we deduce that a ≡ mζ +mζ−1 mod h and we conclude the proof using
the previous equality. �

Let 1 = ζ1, . . . , ζs be the roots of unity that appear in the eigenvalues of σ = v̇F δ

on H•
c(XG(B),K), ordered according to increasing value ofmζ . From the lemma we

compute r−2mζ−1−(2mζ−r) ≡ 2(Mζ−mζ) mod 2h and 2mζi+1
−r−(r−2mζ−1

i
) ≡

2 mod 2h since mζi+1
= Mζi+1 and mζ1 = r. We deduce that Green’s walk starting

from the trivial module satisfies the following pattern

(3.3)

1G
+r �� χmζ1

+2 �� χmζ2

+2(Mζ2
−mζ2

)
�� χmζ2

+2 �� χmζ3

+2(Mζ3
−mζ3

)
�� · · ·

The following consequence will be helpful in determining the Brauer tree.
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Lemma 3.7. During Green’s walk from k to Ω2hk � k, the first occurrence of a
character in a Harish-Chandra series associated with ζ �= 1 is χmζ

.

Proof. If χmζ
is not the first character of the ζ-series encountered in a Green walk,

then between any two occurrences of χmζ
, at least one character from a different

series must occur. Let ξ �= ζ be the corresponding root of unity. By the results
recalled in §3.2.1, every character in the block lying in this series will also occur.
In particular, since the Brauer tree is a tree, any occurrence of χmξ

will be found
between these two occurrences of χmζ

, which contradicts (3.3). �

We claim that this information together with the results in §3.2.1 is enough to
determine the Brauer tree. We will only examine the case of the ζ1-series (the
principal series) and the ζ2-series as the other cases are similar. Since the distance
between χmζ1

= StG and χ0 = 1G is equal to r, which is also the length of the
principal series, a character is connected to the principal series in the Brauer tree
if and only if it is connected to the Steinberg character:

St
χmζ1

+1 χMζ1
−1 1G

By (3.3), we know that χmζ2
is two steps further the first occurrence of the Stein-

berg. If the (r + 2)-th vertex χ in the walk is not the exceptional one then we are
in the following situation

St
χmζ1

+1 χMζ1
−1 1G

χ

χmζ2

Here χ is a non-exceptional character lying in a Harish-Chandra series associated
with some root of unity ζ. But by parity χ cannot be equal to χmζ

, which contra-
dicts Lemma 3.7.
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Therefore, χmζ2
is connected to the exceptional node and the Brauer tree has

the following shape:

St χmζ1
+1 χMζ1

−1 1G

χmζ2

Finally, since the branch corresponding to the ζ2-series has Mζ2 − mζ2 edges, we
deduce from (3.3) that the Brauer tree has the following shape

St χmζ1
+1 χMζ1

−1 1G

χmζ2
+1 χMζ2

−1 χMζ2
χmζ2

It remains to iterate the process to obtain the planar embedded Brauer tree
predicted by the conjecture of Hiß–Lübeck–Malle. This completes the proof of
Theorem 3.4.

3.3. Non-unipotent �-blocks. We keep the assumption on � given in §3.2 and
we fix a pair (G∗,T∗, F ∗) dual to (G,T, F ). Throughout this section, we will
assume that G is adjoint, so that the centralizer of any semisimple element in G∗

is connected. Let s ∈ G∗ be a semisimple �′-element. Following [8], we denote
by E�(G, (s)) the union of rational series E(G, (st)) where t runs over a set of
representatives of conjugacy classes of semisimple �-elements in CG∗(s). By [8,
Théorème 2.2] and [9, §3.2], it is a union of blocks that have either trivial or full
defect. Furthermore, if E�(G, (s)) contains a non-trivial block, then s must be
conjugate to an element of CG∗(S∗

� ) = T ∗, where S∗
� denotes the Sylow �-subgroup

of T ∗ = (T∗)F
∗
. Note that by [8, Théorème 3.2], the principal block is the only

unipotent block with non-trivial defect.
We assume now that s is an �′-element of T ∗ such that E�(G, (s)) contains a

non-trivial block b. If there is a proper F ∗-stable Levi subgroup L∗ of G∗ such
that CG∗(s) ⊂ L∗, then by [3, Théorème B’] the block b is Morita equivalent to an
�-block bs in E�(L, (s)). Now [L∗,L∗] is simply connected and two cases can arise: if
� � |Z(L∗)F | then [L∗,L∗] has a minimal F -stable connected normal subgroup that
contains s. It is also the unique one whose Coxeter number is h. If S∗

� is central
in L∗ then bs is isomorphic to a unipotent block of L and the results in §3.2 apply
and the Brauer tree of the block is known by induction on the rank of G.

If such a proper Levi subgroup L∗ does not exist then s and by extension b are
said to be isolated. Under our assumptions on �, very few isolated blocks with
non-trivial defect can appear in exceptional adjoint groups.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

COXETER ORBITS AND BRAUER TREES III 1139

Lemma 3.8. Let (G, F ) be an exceptional adjoint simple group not of type G2.
Under the assumptions on � in §3.2, any isolated �-block has trivial defect.

Proof. Let M∗ = C∗
G(s). It is a connected reductive subgroup of G∗. If � does not

divide [M∗,M∗]F
∗
, then S∗

� must be central in M∗ since M∗ = [M∗,M∗]Z(M∗).

Therefore M∗ ⊂ CG∗(S∗
� ) = T∗. Consequently, � divides the order of [M∗,M∗]F

∗

whenever s is isolated.
Recall that the conjugacy classes of isolated elements are parametrized by roots

in the extended Dynkin diagram (given, for example, in [2]). With the assumption
on §3.2, there is a unique (tp)-cyclotomic polynomial Ψ such that � divides Ψ(q)
and Ψ divides the polynomial order of G (we have Ψ = Φh if we exclude the Ree and
Suzuki groups). Therefore, the group [M∗,M∗]F

∗
contains a non-trivial �-subgroup

if and only if Ψ appears in its polynomial order, that is if [M∗,M∗] contains an F ∗-
stable component with the same Coxeter number as (G, F ). The Coxeter numbers
for exceptional groups are given in Table 1.

(G, F ) 2B2
3D4

2E6 E6 E7 E8
2F4 F4

2G2 G2

h 8 12 18 12 18 30 24 12 12 6

Table 1. Coxeter numbers for exceptional groups

Using the extended Dynkin diagram, one can check that the only centralizers of
isolated elements that have the same Coxeter number are A2 ×A2 ×A2 realized as
2A2(q

3) for 2E6(q) and as A2(q) × 2A2(q
2) for E6, and A2 realized as 2A2(q) for

G2. By [16, §2] and [22, §2], the first two cases never happen for simply connected
groups. �

For classical groups, the �-blocks with cyclic defect have been determined in [23].
For G2 they are given in [42] (note that when q ≡ −1 modulo 3 there exists a non-
trivial quasi-isolated block). As a consequence, the Jordan decomposition provides
an inductive argument for determining all the �-blocks up to Morita equivalence.

Theorem 3.9. Assume G is an adjoint simple group. In the Coxeter case, the
Brauer tree of any non-trivial �-block of G is known.

Remark 3.10. Using [16] and [15], one can check that for groups of type 2B2,
3D4,

2E6, E8,
2F4, and

2G2, the order of the derived group of the centraliser of any
semisimple element is coprime to �. Therefore, any non-principal �-block will be
either trivial or Morita equivalent to OS�.

3.4. New planar embedded Brauer trees. We give here the new Brauer trees
that we have obtained. Note that the shape of the trees for 2F4 and F4 were already
known by [28] and [29] but the planar embeddings was known for F4 and p �= 2, 3
only (cf. [20]). We have used the package CHEVIE of GAP3 to label the irreducible
unipotent characters with the convention that 1, ε, and r stand, respectively, for
the trivial, the sign, and the reflection representation of a Coxeter group.

3.4.1. Type 2F4. Here q = 2m
√
2 for some integer m ≥ 1. The Coxeter case corre-

sponds to prime numbers � dividing Φ′
24(q) = q4 −

√
2q3 + q2 −

√
2q + 1. The class

of q in k is a primitive 24th root of unity. We have denoted by θ (resp. i, resp. η)
the unique primitive 3rd (resp. 4th, resp. 8th) root of unity which is equal to q8
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St φ2,1 1
2F II

4 [−1]

2F4[−θ2]

2F II
4 [i]

2B2[η
3]ε

2B2[η
3]1

2F4[−θ]
2F II

4 [−i]

2B2[η
5]ε

2B2[η
5]1

Figure 1. Brauer tree of the principal Φ′
24-block of 2F4.

St φ4,13 φ′′
6,6 φ4,1 1B2,1 B2,r B2,ε

F4[i]F4[θ]

F4[−i]F4[θ
2]

Figure 2. Brauer tree of the principal Φ12-block of F4.

(resp. q6, resp. q3) in k. The planar embedded Brauer tree of the principal �-block
is given by Figure 1.

3.4.2. Type F4. The Coxeter case corresponds to prime numbers � dividing Φ12(q) =
q4 − q2 + 1. The class of q in k is a primitive 12th root of unity. We have denoted
by θ (resp. i) the unique primitive 3rd (resp. 4th) root of unity which is equal to q4

(resp. q3) in k. The planar embedded Brauer tree of the principal �-block is given
by Figure 2.

3.4.3. TypeE7. The Coxeter case corresponds to prime numbers � dividing Φ18(q) =
q6 − q3 + 1. The class of q in k is a primitive 18th root of unity. We fix a square
root

√
q ∈ O of q. We have denoted by θ (resp. i) the unique primitive 3rd (resp.

4th) root of unity which is equal to q6 (resp. (
√
q)9) in k. The planar embedded

Brauer tree of the principal �-block is given by Figure 3.

3.4.4. TypeE8. The Coxeter case corresponds to prime numbers � dividing Φ30(q) =
q8 + q7 − q5 − q4 − q3 + q + 1. The class of q in k is a primitive 30th root of unity.
We fix a square root

√
q ∈ O of q. We have denoted by θ (resp. i, resp. ζ) the

unique primitive 3-\rd (resp. 4th, resp. 5th) root of unity which is equal to q10

(resp. (
√
q)15, resp. q6) in k. The planar embedded Brauer tree of the principal

�-block is given by Figure 4.
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Remark 3.11. (Communicated by David Craven) From the Coxeter case in E7

one can also deduce the Brauer trees of the principal Φ18-block of E8 and its
Alvis–Curtis dual. Assume q has order 18 modulo �. Then there exists an F -
stable parabolic subgroup P = LU of G with F -stable Levi complement L such
that � � [G : L] (take L to be the centralizer of a Φ18-torus). Let c (resp. b)
be the principal �-block of L (resp. G). Then b(OG/U)c is a finitely generated
(bOG, cOL)-bimodule that is projective as a bOG-module and as a right cOL-
module. Moreover, one can check that the functor b(KG/U)c ⊗KL − induces a
bijection between the irreducible characters in c and b. By [4, Théorème 0.2], we
deduce that the functor bOG/Uc⊗OL induces a Morita equivalence between cOL
and bOG. In particular, we obtain the planar embedded Brauer tree of the principal
Φ18-block of E8 from the tree of the principal Φ18-block of E7. The same argument
applies to the �-block of G containing the Steinberg character.
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(French), Publ. Math. Inst. Hautes Études Sci. 97 (2003), 1–59, DOI 10.1007/s10240-003-
0013-3. MR2010739 (2004i:20079)
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[6] Michel Broué, Gunter Malle, and Raphaël Rouquier, Complex reflection groups, braid groups,
Hecke algebras, J. Reine Angew. Math. 500 (1998), 127–190. MR1637497 (99m:20088)
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fini (French), J. Reine Angew. Math. 395 (1989), 56–67, DOI 10.1515/crll.1989.395.56.
MR983059 (90b:20037)

[9] Marc Cabanes and Michel Enguehard, Local methods for blocks of reductive groups over
a finite field, Finite reductive groups (Luminy, 1994), Progr. Math., vol. 141, Birkhäuser
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[29] Gerhard Hiss and Frank Lübeck, The Brauer trees of the exceptional Chevalley groups of

types F4 and 2E6, Arch. Math. (Basel) 70 (1998), no. 1, 16–21, DOI 10.1007/s000130050159.
MR1487449 (98k:20017)
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