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Abstract

We give a new approach to the construction of derived equivalences between blocks of finite groups,
based on perverse equivalences, in the setting of Broué’s abelian defect group conjecture. We provide in
particular local and global perversity data describing the principal blocks and the derived equivalences for
a number of finite simple groups with Sylow subgroups elementary abelian of order 9. We also examine
extensions to automorphism groups in a general setting.
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1. Introduction

This paper proposes a new approach to the construction of derived equivalences, based on
perverse equivalences. These equivalences, introduced by Joe Chuang and the second author,
aim to encode combinatorially the Morita equivalence class of a block within the derived equiva-
lence class of a fixed block [12]. The derived equivalences between blocks of symmetric groups
constructed in [11] are compositions of perverse equivalences, and it is expected that the con-
jectural derived equivalences provided by Deligne–Lusztig varieties for finite groups of Lie type
in non-describing characteristic are perverse. This has motivated our search for perverse equiva-
lences in the case of sporadic groups, in the setting of Broué’s abelian defect conjecture (cf. [10]
for a survey on Broué’s conjecture). We also consider certain finite groups of Lie type: in those
cases, we provide equivalences which should coincide with the conjectural ones coming from
Deligne–Lusztig varieties.

We provide lifts of stable equivalences to perverse equivalences. Our method requires only
calculations within the normalizer of a defect group. In the cases we consider here, Broué’s con-
jecture was already known to hold. The equivalences we provide are often different from the
known ones, which were usually not perverse. Also, to obtain perverse equivalences, we some-
times need to change the “obvious” stable equivalence, given by Green correspondence: this
depends on local data. For those groups of Lie type we consider, this is dictated by the prop-
erties of Deligne–Lusztig varieties. We consider finite groups with elementary abelian Sylow
3-subgroups of order 9: for these groups, Green correspondence provides a stable equivalence.
In addition, we have a complete description of the local normalized self-derived equivalences,
which enables us to parametrize splendid self-stable equivalences. Note that there are stable
equivalences between blocks that can be lifted to a derived equivalence but not to a perverse
derived equivalence. This occurs for example when all simple modules of one of the blocks
can be lifted to characteristic 0 (that happens for the local block in the setting of Broué’s
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conjecture), while the decomposition matrix of the other block cannot be put in a triangular
form.

Our approach can also be viewed as an attempt to mimic the extra structure carried by rep-
resentations of finite groups of Lie type in non-describing characteristic to the case of arbitrary
finite groups. Our equivalences depend on the datum of a perversity function π , which is re-
lated to Lusztig’s A-function for finite groups of Lie type. The precise conjecture for π for
groups of Lie type in non-defining characteristic is given in [14]. We actually work in the setting
of splendid Rickard equivalences, and we have a collection of perversity functions, associated
with p-subgroups. The collection of perversity functions determines the isomorphism type of
the source algebra of a block, within the class of blocks splendidly Rickard equivalent to a fixed
block.

Extensions of equivalences through �′-groups of automorphisms are easy to carry over for
perverse equivalences, and we devote an important part of this paper to the study of extensions
of equivalences. Our main point is that checking that a two-sided tilting complex will extend
depends only on the underlying (one-sided) tilting complex. We deduce from our results new
methods to check that equivalences extend. This enables us to show for instance that Broué’s
abelian defect conjecture holds for principal blocks in characteristic 2.

Section 3 is devoted to constructing equivalences. In Section 3.1, we explain first the de-
scription of the images of simple modules under perverse equivalences associated to increasing
perversity. We define the notion of (increasing) perverse splendid equivalences and show that
the data of perversity functions associated to the automizer and some of its subgroups determine
the isomorphism class of the source algebra of the block. We explain next our method for lifting
stable equivalences to perverse equivalences (Section 3.2). In Section 3.3, we explain the con-
struction of stable equivalences for principal blocks with elementary abelian Sylow �-subgroups
of order �2. We describe in detail the images of modules and we describe a family of stable equiv-
alences dependent on local perversity functions when � = 3. Finally, we recall in Section 3.4 the
setting of Broué’s conjecture for finite groups of Lie type, where two-sided tilting complexes are
expected to arise from Deligne–Lusztig varieties. We study in particular those finite groups of Lie
type with a Sylow 3-subgroup elementary abelian of order 9. We also recall Puig’s construction
of equivalences for the case “� | (q − 1)”.

Section 4 is devoted to automorphisms and extensions of equivalences. In Section 4.1, we
set up a general formalism that allows a reduction to finite simple groups for equivalences of a
suitable type between the principal block of a finite group with an abelian Sylow �-subgroup P ,
and the principal block of NG(P ). This is meant to encompass the various forms of Broué’s
abelian defect group conjecture. In Section 4.2, we provide extension theorems for equivalences.
We give criteria that ensure that a two-sided tilting complex can be made equivariant for the
action of a group of automorphisms; we recover results of Rickard and Marcus. We consider in
particular (compositions of) perverse equivalences. In Section 4.3, we apply the general results
of the previous sections to various forms of Broué’s conjecture: derived equivalences, Rickard
equivalences, splendid or perverse properties, positivity of gradings and perfect isometries. This
provides us in Section 4.4 with a general reduction theorem to simple groups, generalizing a
result of Marcus. We apply this to show that Broué’s conjecture can be solved using perverse
equivalences for certain cases when � = 2 or 3.

This last result is obtained by a case-by-case study of finite simple groups with elementary
abelian Sylow 3-subgroups of order 9 in Section 5. We provide a perverse equivalence with the
normalizer of a Sylow 3-subgroup for all such groups except A6 and M22, for which we need
the composition of two perverse equivalences. Perverse equivalences are encoded in global and
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local perversity functions. Note that these combinatorial data determine the source algebra of the
block up to isomorphism. While Broué’s conjecture was known to hold in all cases considered
(work of Koshitani, Kunugi, Miyachi, Okuyama, Waki), we have been led to construct a number
of new equivalences. In Section 6, we provide an analysis of simple groups with abelian Sylow
2-subgroups.

We thank Jean Michel and Hyohe Miyachi for useful discussions and help with references.

2. Notation and basic definitions

2.1. Algebras

2.1.1. Modules
All modules are finitely generated left modules, unless otherwise specified.
Let R be a commutative ring. We write ⊗ for ⊗R . Given q a prime power, Fq denotes a finite

field with q elements.
Let A be an R-algebra. We denote by Aopp the opposite algebra to A and we put Aen =

A ⊗ Aopp. Given an R-module M , we put AM = A ⊗ M , an A-module. We denote by SA a
complete set of representatives of isomorphism classes of simple A-modules.

Let M be a finitely generated module over an artinian algebra. The head of M is defined
to be its largest semi-simple quotient. We denote by IM (resp. PM or P(M)) an injective hull
(resp. a projective cover) of M . We denote by Ω(M) the kernel of a surjective map PM → M

and by Ω−1(M) the cokernel of an injective map M → IM . We define by induction Ωi(M) =
Ω(Ωi−1(M)) and Ω−i (M) = Ω−1(Ω−i+1(M)) for i > 1.

Let σ : B → A be a morphism of algebras and let M be an A-module. We define a B-module
σ M : it is equal to M as an R-module, and the action of b ∈ B given by the action of σ(b) on M .

The algebra A is symmetric if it is finitely generated and projective as an R-module, and if
HomR(A,R) � A as Aen-modules.

2.1.2. Categories
Assume R is noetherian and A is a finitely generated R-module. We denote by A-mod the

category of finitely generated A-modules.
Let C be an additive category and A an abelian category. We denote by

• Comp(C) the category of complexes of objects of C,
• Ho(C) the homotopy category of Comp(C), and
• D(A) the derived category of A.

A complex in C is contractible if it is 0 in Ho(C), and a complex in A is acyclic if it is 0 in
D(A). We write Comp(A) for Comp(A-mod), and so on.

We write 0 → M → N → ·· · → X → 0 (or sometimes M → N → ·· · → X) for a complex
where X �= 0 is in degree 0.

Given M,N ∈ Comp(C), we denote by Hom•(M,N) the complex with degree n term⊕
j−i=n Hom(Mi,Nj ). When C = A is abelian, we denote the derived version by R Hom• =

Hom•(P,N), where P ∈ Comp(A) is quasi-isomorphic to M and P is homotopically projective,
i.e., Hom•(P,C) is acyclic for any acyclic complex C ∈ Comp(A).
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Given two R-algebras A and B , we say that a functor Db(A) → Db(B) is standard if it is of
the form C ⊗A −, where C is a bounded complex of (B,A)-bimodules, finitely generated and
projective as B-modules and as Aopp-modules.

A tilting complex C for A is a perfect complex of A-modules (i.e., quasi-isomorphic to a
bounded complex of finitely generated projective A-modules) such that A is in the thick subcat-
egory of D(A) generated by C and HomD(A)(C,C[i]) = 0 for i �= 0.

A two-sided tilting complex C for (A,B) is a bounded complex of (A,B)-bimodules such
that the functor C ⊗L

B − : D(B) → D(A) is an equivalence.
A Rickard complex C for (A,B) is a bounded complex of (A,B)-bimodules, finitely gener-

ated and projective as left A-modules and as right B-modules, such that the functor C ⊗B − :
Ho(B) → Ho(A) is an equivalence. We also say that C induces a Rickard equivalence.

Assume that R = k is a field and A is a symmetric k-algebra. We denote by A-stab the stable
category, the triangulated quotient of Db(A) by the thick subcategory of perfect complexes. The
canonical functor A-mod → A-stab identifies A-stab with the additive quotient of A-mod by its
subcategory of projective modules.

Let B be a symmetric k-algebra. A bounded complex C of (A,B)-bimodules induces a stable
equivalence if its terms are projective as left A-modules and as right B-modules, and there are
isomorphisms of complexes of bimodules End•

A(C) � B ⊕R1 and End•
Bopp(C) � A⊕R2, where

R1 and R2 are homotopy equivalent to bounded complexes of projective bimodules. There is an
equivalence C ⊗B − : B-stab ∼−→ A-stab.

We say that a Rickard complex C lifts a complex D inducing a stable equivalence if C and
D are isomorphic in the quotient of Hob(A ⊗ Bopp) by its thick subcategory of complexes of
projective modules.

2.2. Modular setting

We will denote by O a complete discrete valuation ring with residue field k of characteristic
� > 0 and field of fractions K of characteristic 0. Let Z� denote the ring of �-adic integers.

2.3. Groups

We denote by Zn a cyclic group of order n, by Dn a dihedral group of order n, by SDn

a semi-dihedral group of order n, and by An and Sn the alternating and symmetric groups of
degree n respectively. If G is a finite group, we denote by Gopp the opposite group, we put
Gen = G × Gopp and we set �G = {(g, g−1) | g ∈ G} � Gen.

We denote by b0(G) the principal block idempotent of Z�G and by B0(G) = b0(G)Z�G

the principal block algebra. Given an OG-module M and an �-subgroup P of G, we de-
note by BrP (M) the image of MP in the coinvariants M/{g(m) − m}m∈M,g∈P ; this is an
O(NG(P )/P )-module.

Let R be either O or k and let H be a finite group. Assume that H and G have a common
Sylow �-subgroup P . We say that a bounded complex C of RB0(H ×Gopp)-modules is splendid
if its terms are direct summands of finite direct sums of modules of the form IndH×Gopp

�Q R, where
Q � P . We say that C induces a splendid Rickard equivalence (resp. a splendid Morita equiva-
lence) if C is splendid and C ⊗B − induces a Rickard equivalence (resp. a Morita equivalence)
between RB0(G) and RB0(H).
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3. Constructions of equivalences

3.1. Perverse equivalences

We explain some constructions and results of [12] (see also [53, §2.6]).

3.1.1. Definition
Let A and B be two finite-dimensional algebras over a field k. Fix r � 0 and q : [0, r] → Z,

where [0, r] = {0,1, . . . , r}. Fix filtrations ∅ = S−1 ⊂ S0 ⊂ · · · ⊂ Sr = SA and ∅ = S ′−1 ⊂ S ′
0 ⊂

· · · ⊂ S ′
r = SB .

A functor F : Db(B) → Db(A) is perverse relative to (q,S•,S ′•) if, whenever T is in S ′
i , the

composition factors of H−j (F (T )) are in Si−1 for j �= q(i) and in Si for j = q(i).
If F is an equivalence, then given T ∈ S ′

i , the A-module H−q(i)(F (T )) is the extension of an
object with composition factors in Si−1 by an object f (T ) in Si by an object with composition
factors in Si−1. The map f gives a bijection SB

∼−→ SA compatible with the filtrations. Note that
F−1 is perverse relative to (−q,S ′•,S•).

Consider a finite-dimensional k-algebra C, a filtration ∅ = S ′′−1 ⊂ S ′′
0 ⊂ · · · ⊂ S ′′

r = SC and
q ′ : [0, r] → Z. Given G : Db(C) → Db(B) perverse relative to (q ′,S ′•,S ′′• ), then the composi-
tion FG : Db(C) → Db(A) is perverse relative to (q + q ′,S•,S ′′• ).

3.1.2. Increasing perversity
Let A be a symmetric k-algebra. Given M ∈ A-mod and E ⊂ S = SA, we denote by ME the

largest submodule N of IM containing M and such that all composition factors of N/M are in E.
Consider a map π : S → Z�0, and let S ∈ S . We define a complex of A-modules C = CS =

0 → C−π(S) → ·· · → C0 → 0.

• If π(S) = 0 then we set C0 = S.
• Assume that π(S) > 0. We put C−π(S) = IS . Let E = π−1([0,π(S) − 1]). Let C−π(S)+1 =

IΩ−1(SE). We define d−π(S) as the composition of canonical maps C−π(S) = ISE �
Ω−1(SE) ↪→ C−π(S)+1.

Fix 0 < i < π(S). Assume that 0 → C−π(S) d−π(S)−−−−→ C−π(S)+1 → ·· · d−π(S)+i−1−−−−−−→ C−π(S)+i

has been constructed with the property that C−π(S)+i = IT , where T = imd−π(S)+i−1. Let E =
π−1([0,π(S) − i − 1]) and C−π(S)+i+1 = IΩ−1(T E). We define d−π(S)+i as the composition of
canonical maps C−π(S)+i = IT E � Ω−1(T E) ↪→ C−π(S)+i+1.

Finally, let T = imd−2, E = π−1(0) and C0 = Ω−1T E . We define d−1 as the canonical map
C−1 = IT E � C0.

There is a symmetric k-algebra B , well defined up to Morita equivalence, and a standard
equivalence F : Db(B)

∼−→ Db(A) such that {F(T )}T ∈SB
= {CS}S∈SA

. This equivalence is per-
verse, relative to the filtration ∅ ⊂ π−1(0) ⊂ π−1([0,1]) ⊂ π−1([0,2]) ⊂ · · · ⊂ SA and the
corresponding filtration on SB , and relative to the perversity function i 
→ i. Note conversely
that given a perversity datum (q,S•,S ′•) where q is increasing, the perverse equivalence arises
from a function π where π(S) = min{q(n) | S ∈ Sn}n�0. We write

B
π−→ A

to denote the perverse equivalence.
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3.1.3. Elementary equivalences
Assume that π(S) = {0,1}. We will describe a tilting complex for A in this case.
Let U be the smallest submodule of the A-module A such that all composition factors of A/U

are in π−1(0). Let f : PU � U be a projective cover. Denote by J (A) the Jacobson radical of A.
Let PV be a projective cover of the largest submodule V of A/J(A) all of whose composition

factors are in π−1(1). Let X = (0 → PV ⊕ PU
(0,f )−−−→ A → 0) be a complex of A-modules with

A in degree 0. Let B = EndHo(A)(X). Then B is a symmetric algebra and there is a standard
perverse equivalence Db(B)

∼−→ Db(A), B 
→ X.
Every perverse equivalence is a composition of elementary perverse equivalences or their

inverses, i.e., a composition of perverse equivalences associated to two-step filtrations with
q(1) − q(0) = ±1.

3.1.4. Perverse splendid equivalences
Let G and H be two finite groups with a common Sylow �-subgroup P and the same �-local

structure. Let R be either O or k.
Given Q � P , let πQ : SB0(CG(Q)/Z(Q)) → Z�0 be a map. We assume that πQ is invariant

under NG(Q) and independent of Q up to G-conjugacy.

Definition 3.1. An increasing perverse splendid equivalence between RB0(G) and RB0(H) rel-
ative to {πQ}Q is a standard Rickard equivalence of the form C ⊗RB0(G) −, where C is splendid
and such that for every Q � P , Br�Q(C) induces a perverse equivalence relative to πQ between
kB0(CG(Q)) and kB0(CH (Q)).

Remark 3.2. One can normalize the equivalence by assuming πP = 0 and πQ(k) = 0 for all Q.
Also, if G̃ is a finite group containing G as a normal subgroup of �′-index, H̃ is a finite group
containing H as a normal subgroup of �′-index and G̃/G � H̃ /H , then one can ask for an
equivariant form of the definition above by requiring the maps πQ to be invariant under the
action of N

G̃
(Q).

Note that given an increasing perverse equivalence as above, we obtain perversity functions
πH

Q : SB0(CH (Q)/Z(Q)) → Z�0, via the bijections SB0(CG(Q)/Z(Q))
∼−→ SB0(CH (Q)/Z(Q)) induced

by the perverse equivalence provided by Br�Q(C).

Remark 3.3. Assume P � H . Then we have a canonical isomorphism of algebras RB0(H)
∼−→

R(H/O�′(H)) and we have H/O�′(H) � P � E, where E � H/PO�′(H). The map πH
1 corre-

sponds to a map ρ1 : SKE → Z�0. Similarly, πH
Q corresponds to a map ρQ : SKCE(Q) → Z�0

coming from CH (Q)/CP (Q)O�′CH (Q) � CE(Q).

Proposition 3.4. Let G′ be a finite group with P as a Sylow �-subgroup and the same local
�-structure as G. Consider a perversity data {π ′

Q}Q and assume there is a splendid complex C′
inducing an increasing perverse splendid equivalence between RB0(G

′) and RB0(H), relative
to that perversity data.

Then, Hom•
RH (C′,C) has homology concentrated in degree 0. That homology induces a

splendid Morita equivalence between RB0(G) and RB0(G
′). In particular, those blocks have

isomorphic source algebras.
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Proof. We have an isomorphism of complexes of (RCG′(Q),RCG(Q))-bimodules

Br�Q

(
Hom•

RH

(
C′,C

)) � Hom•
RCH (Q)

(
Br�Q

(
C′),Br�Q(C)

)
by [48, Lemma 4.2 and proof of Theorem 4.1]. It follows that X = Hom•

RH (C′,C) induces
an increasing perverse splendid equivalence associated to the 0 perversity data. So, Br�Q(X)

has homology concentrated in degree 0 for all Q. By [4, Théorème 1.3], it follows that X is
homotopy equivalent to a complex Y concentrated in degree 0. So, Y 0 induces a splendid Morita
equivalence. It follows that the principal blocks of G and G′ have isomorphic source algebras
(cf. [44] or [57]). �

Note that Proposition 3.4 generalizes to perverse equivalences which are not increasing. It
generalizes also to sequences of perversity data, corresponding to compositions of perverse
splendid equivalences.

The definition and the proposition above generalize to the case of non-principal blocks, using
the general notion of splendid equivalences [35,55]. An important property of splendid Rickard
equivalences is that they lift from k to O [48, Theorem 5.2].

Theorem 3.5. Let C be a splendid Rickard complex for (kB0(G), kB0(H)). There is a splendid
Rickard complex C̃ for (B0(G),B0(H)) such that kC̃ � C in Comp(kB0(G × H opp)). Further-
more, C̃ is unique up to isomorphism.

Note that the “elementary” splendid Rickard equivalences between blocks of symmetric
groups constructed in [11] are increasing perverse splendid equivalences [12]. Two blocks of
symmetric groups with isomorphic defect groups are connected by compositions of such equiv-
alences, and their inverses.

Remark 3.6. We do not know examples of splendid equivalences that are perverse, but not per-
verse splendid (i.e., the local equivalences are not perverse).

3.2. Lifts of stable equivalences

3.2.1. Recognition criteria
Let A and A′ be two symmetric algebras over a field k, with no simple direct factors, and let

L : Db(A′) → Db(A) be a standard functor inducing a stable equivalence L̄ : A′-stab ∼−→ A-stab.
Let π : S → Z�0. There is a symmetric algebra B and a standard perverse equivalence

F :Db(B)
∼−→ Db(A) [12]. Assume that {F(T )}T ∈SB

coincides, up to isomorphism in A-stab,
with {L(S′)}S′∈SA′ .

The composition F−1L : Db(A′) → Db(B) is given by tensoring by a complex X of
(B,A′)-bimodules. There is a (B,A′)-bimodule M with no non-zero projective direct summand,
projective as a B-module and as a right A′-module, that is isomorphic to X in (B ⊗ A′opp)-stab.
The functor M ⊗A′ − : A′-stab → B-stab is an equivalence and it preserves isomorphism classes
of simple modules. Since M has no non-zero projective direct summand, it follows that M ⊗A′ S′
is indecomposable whenever S′ ∈ SA′ and we deduce that we have an equivalence M ⊗A′ − :
A′-mod ∼−→ B-mod [34, Theorem 2.1]. The composition G = F ◦(M ⊗A′ −) : Db(A′) ∼−→ Db(A)

is a standard perverse equivalence lifting L̄.
Let k0 be a subfield of k such that the extension k/k0 is separable. Let A0 and A′

0 be two
symmetric k0-algebras such that A = kA0 and A′ = kA′ . Assume that
0



D.A. Craven, R. Rouquier / Advances in Mathematics 248 (2013) 1–58 9
• there is a standard functor L0 : Db(A′
0) → Db(A0) with L = kL0, and

• given S ∈ SA0 and S1, S2 two simple direct summands of kS, then π(S1) = π(S2).

The second assumption gives a function π0 : SA0 → Z�0, S 
→ π(S1) where S1 is a simple
direct summand of kS. There is a symmetric k0-algebra B0 and a standard perverse equivalence
Db(B0)

∼−→ Db(A0). As above, we obtain a standard stable equivalence A′
0-stab ∼−→ B0-stab that

preserves semi-simple modules, and hence simple modules. We deduce that there is a standard
perverse equivalence G0 : Db(A′

0)
∼−→ Db(A0) such that G0 and L0 induce isomorphic stable

equivalences and such that kG0 � G.

3.2.2. Strategy
Assume that we are given a stable equivalence L̄ as above. Our strategy to lift L̄ to a de-

rived equivalence is to look for a function π as in Section 3.1.2 such that the set of A-modules
{C0

S}S∈SA
, coincides with the set {L̄(S′)}S′∈SA′ . Note that CS is isomorphic to C0

S in A-stab.
In the setting of Broué’s conjecture, we take for A a block with a normal abelian defect group

(for example, A = k(P � E) where k is a field of characteristic �, P is an abelian �-group and
E an �′-group). The determination of the L(S′) requires the determination of the Green cor-
respondents of simple modules: this computation is not directly feasible for larger groups (for
example the Monster). Given a perversity function π , the calculation of the CS is a reasonable
computational task. A more tricky matter is the determination of an appropriate function π (in
general, there are infinitely many). There are constraints: the filtration on SA should make the
decomposition matrix of A triangular. Also, the datum π modulo 2 should come from a perfect
isometry. As for the specific value of π , we have proceeded by trying systematically all possi-
bilities, increasing progressively the values of π . (For finite groups of Lie type in non-defining
characteristic then we use the perversity function given in [14].)

Let us explain this more precisely. Let G be a finite group, A = OB0(G) and H another
finite group with principal block B =OB0(H). Assume that we are given a standard equivalence
F : Db(A)

∼−→ Db(B) inducing a perverse equivalence Db(kA)
∼−→ Db(kB) relative to π : SB →

Z�0. Note that this provides a bijection SA
∼−→ SB . The map I : K0(KA)

∼−→ K0(KB) induced
by KF is a perfect isometry [6]. There is a map ε : SKA → {±1} and a bijection J : SKA

∼−→ SKB

such that I (χ) = ε(χ)J (χ) for χ ∈ SKA. We have χ(1) ≡ ε(χ)J (χ)(1) (mod �), if I (K) = K .
Let Z be a subset of SKB whose image in K0(kB) by the decomposition map is a basis (Z is

a “basic set”). In this case, J−1(Z) is a basic set for A.
Assume now that the image of Z in K0(kB) is the basis given by SB ; this provides a bijection

Z
∼−→ SB . Given V ∈ SB corresponding to ψ ∈ Z, we have π(V ) ≡ ε(J−1(ψ)) (mod 2).
Define a partial order on SB by V > V ′ if π(V ) > π(V ′). This gives an order on Z and

on SA. Then the decomposition of the irreducible characters in J−1(Z) is given by a unitriangular
matrix.

3.3. Stable equivalences for � × �

3.3.1. Construction of a complex of bimodules
We recall the construction of [51, §6.2]. Let G be a finite group, � a prime and P a Sylow

�-subgroup of G. We assume in this subsection that K contains all |G|th roots of unity. Let
H = NG(P ). We assume that P is elementary abelian of order �2 and G is not �-nilpotent.

Let Q be a subgroup of P of order �. Let N̄H (Q) be a complement to Q in NH (Q),
so that NH (Q) = Q � N̄H (Q). Let C̄H (Q) = CH (Q) ∩ N̄H (Q) � NH (Q). Let N̄G(Q) be a
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complement to Q in NG(Q) containing N̄H (Q). Let C̄G(Q) = CG(Q) ∩ N̄G(Q) � NG(Q). We
have N̄G(Q) = C̄G(Q)N̄H (Q).

Let d be the distance from the edge corresponding to k to the exceptional vertex in the
Brauer tree of kB0(C̄G(Q)). Let E be the set of simple modules (up to isomorphism) of
kB0(C̄G(Q)) whose distance to the exceptional vertex is d + 1 (mod 2); hence, k /∈ E . De-
fine an injection γ : E ↪→ SkB0(C̄H (Q)): γ (S) is the unique simple kC̄H (Q)-module such that

HomkC̄H (Q)-stab(ResC̄G(Q)

C̄H (Q)
S, γ (S)) �= 0. The set E and the map γ are N̄H (Q)-stable.

Let N� = (C̄H (Q) × C̄G(Q)opp)�N̄H (Q). We have a decomposition of F�N�-modules

b0
(
C̄H (Q)

)
F�C̄G(Q)b0

(
C̄G(Q)

) = MQ ⊕ T ,

where T is projective and MQ restricts to an indecomposable (F�B0(C̄H (Q)) ⊗
F�B0(C̄G(Q))opp)-module inducing a stable equivalence. A projective cover of kMQ is of the
form ⊕

S∈SkB0(C̄H (Q))

Pγ (S) ⊗ P ∗
S → kMQ.

The map may be chosen so that its restriction to
⊕

S∈E Pγ (S) ⊗ P ∗
S is defined over F� and we

obtain a complex of F�N�-modules

X = (0 → UQ
a−→ MQ → 0)

with kUQ = ⊕
S∈E Pγ (S) ⊗ P ∗

S . The restriction of X to F�B0(C̄H (Q)) ⊗ F�B0(C̄G(Q))opp is
a Rickard complex. This is the complex C(MQ,E) defined in a more general setting in Sec-
tion 4.2.6. We put TQ = UQ ⊕ P , f = a + id, and

D = (
0 → TQ

f−→ b0
(
C̄H (Q)

)
F�C̄G(Q)b0

(
C̄G(Q)

) → 0
)
,

a complex of F�N�-modules homotopy equivalent to X.
Define

T ′
Q = Res

NH×Gopp (�Q)/�Q

NH×Gopp (�Q) Ind
NH×Gopp (�Q)/�Q

N�
TQ.

We have T ′
Q = F�Q ⊗ TQ: the action of Qen is the canonical action on F�Q, the action of

C̄H (Q) × C̄G(Q)opp comes from the action on TQ and the action of �NH (Q) comes from the
tensor product of the actions on F�Q and TQ.

The map f provides by induction a morphism of F�NH×Gopp(�Q)-modules

f ′ : T ′
Q → b0

(
CH (Q)

)
F�CG(Q)b0

(
CG(Q)

)
and the associated complex gives a Rickard complex by restriction to F�B0(CH (Q)) ⊗
F�B0(CG(Q))opp.

Consider finally the morphism of F�(H × Gopp)-modules

gQ : b0(H × G) IndH×Gopp

NH×Gopp (�Q) T
′
Q → b0(H)F�Gb0(G)

deduced from f ′ by adjunction. Then,

C =
(

0 →
⊕

b0(H × G) IndH×Gopp

NH×Gopp (�Q) T
′
Q

∑
gQ−−−→ b0(H)F�Gb0(G) → 0

)

Q
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induces a stable equivalence between the principal blocks of F�G and F�H [51, Theorem 6.3].
Here, Q runs over subgroups of P of order � up to H -conjugacy.

Fix a decomposition b0(H)F�Gb0(G) = M ⊕ R, where M is an indecomposable F�(G ×
H ◦)-module with vertex �P and R is a direct sum of indecomposable modules with vertices
strictly contained in �P . Then, Br�Q(M) � MQ for Q a subgroup of P of order � (see [5, The-
orem 3.2] for example). We proceed with the construction above with TQ replaced by UQ: define

U ′
Q = Res

NH×Gopp (�Q)/�Q

NH×Gopp (�Q) Ind
NH×Gopp (�Q)/�Q

N�
UQ. We obtain a complex homotopy equivalent

to C:

0 →
⊕
Q

b0(H × G) IndH×Gopp

NH×Gopp (�Q) U
′
Q → M → 0.

Remark 3.7. Note that U ′
Q = 0 if NH (Q) = CH (Q), or if the Brauer tree of kB0(C̄G(Q)) is

a star with exceptional vertex in the centre (this happens for example if � = 3). In that case,
MQ induces a splendid Morita equivalence. If this holds for all subgroups Q of P of order �,
then M induces a splendid stable equivalence.

3.3.2. Images
Let L be a kB0(G)-module. Let Q be a subgroup of P of order �. We keep the notation of Sec-

tion 3.3.1. Let Γ = N� × NG(Q). We have an embedding α : NH (Q) ↪→ Γ , g 
→ ((ḡ, ḡ−1), g),
where ḡ ∈ N̄H (Q) is the image of g. The action of Γ on TQ ⊗ ResG

NG(Q) L restricts via α

to an action of NH (Q) on TQ ⊗F�C̄G(Q) L, and f induces a morphism of kNH (Q)-modules

TQ ⊗F�C̄G(Q) L → ResG
NH (Q) L. By adjunction, this provides a morphism of kH -modules

hQ : b0(H) IndH
NH (Q)(TQ ⊗F�C̄G(Q) L) → b0(H)ResG

H L.

Thus

C ⊗F�G L �
(

0 →
⊕
Q

b0(H) IndH
NH (Q)(TQ ⊗F�C̄G(Q) L)

∑
hQ−−−→ b0(H)ResG

H L → 0

)
.

3.3.3. Self-derived equivalences for kS3
Let G =S3, � = 3 and A = kG. Let P1 be the projective cover of the trivial A-module S1 and

P2 the projective cover of the non-trivial simple A-module S2. A projective cover of A, viewed
as an Aen-module, is

P1 ⊗ P ∗
1 ⊕ P2 ⊗ P ∗

2
b−→ A.

We set C = C(A, {S2}) = (0 → P2 ⊗ P ∗
2

b−→ A → 0) (cf. Section 4.2.6). This is a Rickard com-
plex. Given n � 0, the equivalence induced by the Rickard complex C⊗An is perverse relative to
the function π given by π(1) = 0 and π(2) = n.

We have C ⊗A P2 � P2[1] in Ho(A). Assume that n > 0. We deduce that

HomHo(A)

(
P2,ResA C⊗An[i]) = HomHo(Aopp)

(
P ∗

2 ,ResAopp C⊗An[i]) = 0 for i �= −n.

Thus the composition factors of Hi(C⊗An) are isomorphic to S1 ⊗S∗
1 for i �= −n and we deduce

that there is an isomorphism in Ho(Aen):

C⊗An � (
0 → P2 ⊗ P ∗ → · · · → P2 ⊗ P ∗ b−→ A → 0

)

2 2
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where the non-zero terms are in degrees −n, . . . ,0 and the complex on the right is the unique
indecomposable complex with the given terms and with homology isomorphic to S1 ⊗ S∗

1 in
degrees −n + 1, . . . ,0.

Let F be a standard self-equivalence of Db(A) such that F(S1) � S1. Then, F is a perverse
equivalence for a perversity function π with π(1) = 0. Consequently, F (or F−1) is given by the
Rickard complex C⊗An for some n � 0.

Remark 3.8. The group TrPic(A) of isomorphism classes of standard self-derived equivalences
of A has been determined in [56, §4]. The result above on the subgroup of those self-equivalences
that fix the trivial representation can be deduced easily.

3.3.4. Local twists for 3 × 3
The construction of stable equivalences in Section 3.3.1 builds on the “simplest” possible lo-

cal derived equivalences. Assume that � = 3; then we have UQ = 0 for all subgroups Q of P

of order � (see Remark 3.7). We have b0(H)F�Gb0(G) = M ⊕ R, where M is an indecom-
posable (F�B0(G) ⊗ F�B0(H))-module inducing a stable equivalence and the indecomposable
summands of R have vertex of order at most � (Remark 3.7, see also [28, Lemma 3.8]).

We explain here how to modify the stable equivalence induced by M using a self-stable equiv-
alence of B0(H). Let T be a set of representatives of H -conjugacy classes of subgroups Q of P

of order � such that |CH (Q)/CH (P )| = 2. Fix a map η : T → Z�0.
Let Q ∈ T . There is an �′-subgroup E′

Q of N̄H (Q) such that N̄H (Q) = (P ∩ C̄H (Q)) �

E′
Q. Let EQ = E′

Q ∩ C̄H (Q). We have C̄H (Q) = (P ∩ C̄H (Q)) � EQ. Let VQ be a non-trivial

simple F�B0(N̄H (Q))-module with non-trivial restriction to EQ. Note that ResEQ
VQ is uniquely

defined: this is the 1-dimensional non-trivial F�(EQ/O�′(C̄H (Q)))-module.
Let N ′

� = C̄H (Q)en�N̄H (Q). The construction of Section 3.3.3 provides an indecomposable
complex of F�N

′
�-modules

XQ = (
0 → PVQ

⊗ P ∗
VQ

→ ·· · → PVQ
⊗ P ∗

VQ
→ F�B0

(
C̄H (Q)

) → 0
)
,

where the non-zero terms are in degrees −η(Q), . . . ,0 and whose restriction to F�B0(C̄H (Q))en

is a Rickard complex.
We proceed now as in Section 3.3.1 to glue the complexes XQ. We have NH en(�Q) =

Qen × N ′
�. Let

U ′
Q = b0

(
H en) IndH en

NHen (�Q)

(
F�Q ⊗ (

PVQ
⊗ P ∗

VQ

))
.

We have a bounded complex of F�B0(H
en)-modules

C′(η) =
(

· · · →
⊕

Q∈T ,η(Q)�3

U ′
Q

∑
hQ−−−→

⊕
Q∈T ,η(Q)�2

U ′
Q

∑
hQ−−−→

⊕
Q∈T ,η(Q)�1

U ′
Q

→ F�B0(H) → 0

)

which induces a self-stable equivalence of F�B0(H), for certain hQ ∈ EndF�(H
en)(U

′
Q). We put

C(η) = C′(η) ⊗F�H M : this complex of (F�B0(H) ⊗ F�B0(G)opp)-modules induces a stable
equivalence.

Let L be a simple F�B0(G)-module, and let L′ be the unique indecomposable direct summand
of b0(H)ResG L with vertex P . Given Q ∈ T , let
H
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L′
Q = Res�(Q�E′

Q)

(
Res

(Q�E′
Q)/Q

Q�E′
Q

VQ

⊗ Res
(Q�E′

Q)/EQ

Q�E′
Q

(
HomF�EQ

(
Res

(Q�E′
Q)/Q

Q�E′
Q

VQ,L′))).
Thus, L′

Q = VQ ⊗ HomF�EQ
(VQ,L′), the action of x ∈ Q is given by v ⊗ f 
→ v ⊗ xf and the

action of y ∈ E′
Q is v ⊗ f 
→ yv ⊗ yfy−1, for v ∈ VQ and f ∈ HomF�EQ

(VQ,L′). We have a

decomposition ResQ�E′
Q
(L′) = L1

Q ⊕ L2
Q, where L1

Q is the maximal direct summand such that

ResEQ
(L1

Q) is a multiple of VQ. Then L′
Q � VQ ⊗ L1

Q.
Consider a decomposition L′

Q = L′′
Q ⊕ P as F�(Q � E′

Q)-modules, where P is projective.

Let LQ = b0(H) IndH
Q�E′

Q
L′′

Q. We have an isomorphism

C(η) ⊗F�G L �
(

· · · →
⊕

Q∈T ,η(Q)�3

LQ

∑
Ind(sQ)−−−−−−→

⊕
Q∈T ,η(Q)�2

LQ

∑
Ind(sQ)−−−−−−→

⊕
Q∈T ,η(Q)�1

LQ → L′ → 0

)

⊕ bounded complex of projective modules,

where sQ ∈ EndF�NH (Q)(IndNH (Q)

Q�E′
Q

L′′
Q) is non-zero, but not invertible.

Remark 3.9. In the examples studied in Section 5, the maps in the complexes are uniquely
determined up to scalars, thanks to the fact that the following conditions hold:

• when η(Q) > 0, dim HomkH (LQ,L′) = 1,
• when η(Q) > 1, dimL′′

Q = 1.

Let G̃ be a finite group containing G as a normal subgroup of �′-index. If the function η is
invariant under the action of G̃ on conjugacy classes of subgroups of order 3, then C(η) extends
to a complex of k((H × Gopp)�N

G̃
(P ))-modules.

Remark 3.10. There are six conjugacy classes of 3′-subgroups E of GL2(F3) such that
(F2

3)
E = 0. They are determined by their isomorphism type: Z2, Z2

2 , Z4, D8, Q8 and SD16.
Assume that all non-trivial elements of E act fixed-point freely on (F3)

2 − {0}: this cor-
responds to the types Z2, Z4 and Q8. Let A = kP � E, where P = Z2

3 . Let M ′ be an
Aen-module inducing a self-stable equivalence. By [9, Theorem 3.2] there is an integer n such
that Ωn

Aen(M
′) induces a self-Morita equivalence. Let G be a finite group with Sylow 3-subgroup

P and with NG(P )/CG(P ) = E. Let C be a two-sided tilting complex for (A, kB0(G)). Let
D = Hom•

kB0(G)opp(C,M). This induces a self-stable equivalence of A, so there is an integer
n and an invertible Aen-module M ′′ such that Ωn(M ′′) ⊗A D is isomorphic to A in Aen-stab.
Let C′ = Hom•

A(M ′′[−n],C): this is a two-sided tilting complex for (A, kB0(G)) and it is iso-
morphic in the stable category to M . So, given a two-sided tilting complex, we obtain all stable
equivalences up to a shift and a self-Morita equivalence.

Note that if G is simple then the automizer E will be of type Z4, D8, Q8 or SD16.



14 D.A. Craven, R. Rouquier / Advances in Mathematics 248 (2013) 1–58
3.4. Lie type

3.4.1. Deligne–Lusztig varieties
For finite groups of Lie type in non-describing characteristic, Broué conjectured that a solution

of the abelian defect conjecture will arise from the complex of cohomology of a Deligne–Lusztig
variety [6, §6]. That is known in very few cases, and in those cases, defect groups are cyclic [52,
3,18–20]. We recall now the setting and constructions of [7].

Let G be a reductive connected algebraic group endowed with an endomorphism F such
that there is δ ∈ Z>0 with the property that Fδ is a Frobenius endomorphism relative to an Fqδ

structure on G. Here, q ∈ R>0 and we assume there is a choice q ∈ K . Let G = GF . Let W be
the Weyl group of G and B+ be the braid monoid of W . We denote by φ the automorphisms of
W and B+ induced by F . Let w 
→ w : W → B+ be the length-preserving lift of the canonical
map B+ → W . Let π = w2

0, where w0 is the longest element of W .
Let � be a prime number that does not divide qδ , and let P be a Sylow �-subgroup of G.

We assume that P is abelian and CG(P ) is a torus. Let d be the multiplicative order of q

in k×: this is a φ-regular number for W . There exists bd ∈ B+ such that (bdφ)d = πφd . Let
B+

d = CB+(bdφ), and let Y(bd) be the corresponding Deligne–Lusztig variety. The complex
C = RΓ (Y (bd),O)b0(G) has an action of CG(P ) × Gopp. It is conjectured that

• the action extends (up to homotopy) to an action of (CG(P ) � B+
d ) × Gopp, and

• the canonical map O(CG(P )�B+
d ) → End•

D(OGopp)
(C) is a quasi-isomorphism of algebras,

with image isomorphic to OB0(NG(P )).

It is conjectured further [12] that these equivalences are perverse. Let us explain how the maps
πQ of Section 3.1.4 are encoded in the geometry.

Given χ a unipotent character of G, let Aχ denote the degree of its generic degree. Conjec-
turally, if G has connected centre and � is good, the unipotent characters in B0(G) form a basic
set and the decomposition matrix of B0(G) is unitriangular with respect to that basic set, for the
order given by the function A (cf. [24, Conjecture 3.4] and [23, Conjecture 1.3]). This gives a
bijection between SB0(G) and the set of unipotent characters in B0(G). The function π1 should
be given by the unique degree of cohomology of Y(bd,K) where the corresponding unipotent
character occurs.

The complex C has a canonical representative R̃Γ (Y (bd),O) in Ho(O(CG(P ) × Gopp))

that is splendid [47,52] and given Q a subgroup of P , we have k Br�Q(R̃Γ (Y (bd))) �
R̃Γ (Y (bd)�Q, k). Hence, the local derived equivalences are controlled by Deligne–Lusztig va-
rieties associated with Levi subgroups of G and this gives a corresponding description for the
functions πQ.

There is a conjecture for the unipotent part of the cohomology of Deligne–Lusztig varieties
associated with powers of w0. For applications to Broué’s conjecture, the conjecture below covers
the cases � | (q ± 1).

Conjecture 3.11. (See [17, §3.3.23].) Let χ be a unipotent character of G. Given n, i � 0, if
[Hi(Y (wn

0),K) : χ] �= 0, then i = nAχ .

In [14] the first author has proposed a general conjecture for the multiplicities
[Hi(Y (bd),K) : χ].
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Assume that � = 3. We consider now all groups (G,F ) such that G is semi-simple and
P � (Z3)

2. For each such group, and for each conjugacy class of subgroups Q of order 3, we
provide the semi-simple type of (CG(Q),F ) and we give an element b in the braid monoid of
CG(Q) such that YG(bd)�Q = YCG(Q)(b). We also provide in some cases another semi-simple
group and an element in the braid monoid such that the Deligne–Lusztig variety can be identified
equivariantly with YCG(Q)(b) [36, §1.18].

• B2, d = 1.
– A1, s2,
– A1, s2.

• 2A3, d = 1.
– A1, s2,
– (A1 × A1, (x, y) 
→ (y,F (x))), (s2, s2). This is equivalent to A1, s4.

• 2A4, d = 1.
– 2A2, (st)3,
– (A1 × A1, (x, y) 
→ (y,F (x))), (s2, s2). This is equivalent to A1, s4.

• A3, d = 2.
– A1, s,
– (A1 × A1, (x, y) 
→ (y,F (x))), (s, s). This is equivalent to A1, s2.

• A4, d = 2.
– A2, sts,
– (A1 × A1, (x, y) 
→ (y,F (x))), (s, s). This is equivalent to A1, s2.

• B2, d = 2.
– A1, s,
– A1, s.

Note that there are finite simple groups of Lie type with elementary abelian Sylow
3-subgroups of order 9 that do not arise as rational points of a reductive connected algebraic
group, but as a quotient of such a group. There are two classes of such groups:

• G = PSL3(q) with q ≡ 4,7 (mod 9);
• G = PSU3(q) with q ≡ 2,5 (mod 9).

3.4.2. Morita equivalences
Let G be a finite group and � a prime. Let T be an �-nilpotent subgroup of G with Sylow

�-subgroup P . Let W = NG(T )/T .
We assume that

• CT (P ) = CG(P ),
• there is an �′-subgroup U of G such that T ⊂ NG(U), T ∩ U = 1 and G = UT U , and
• W is an �′-group.

Let us recall a result of Puig [43, Corollaire 3.6].

Theorem 3.12. The bimodule eU Z�Gb0(G) induces a Morita equivalence between B0(G) and
B0(NG(P )), where eU = 1 ∑

x.
|U | x∈U
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Let E be a group of automorphisms of G that stabilizes U and P . Then, the (B0(NG(P )) ⊗
B0(G)opp)-module eU Z�Gb0(G) extends to a ((B0(NG(P )) ⊗ B0(G)opp) � E)-module.

The main example is the following (cf. [8, Theorem 23.12]). We take G, F , and so on as in
Section 3.4.1, and we assume that δ = 1. Let T ⊂ B be an F -stable maximal torus contained in an
F -stable Borel subgroup of G and let U be the unipotent radical of B. Let U = UF and T = TF .
The assumptions above are satisfied when � | (q − 1) and � � |WF |. We have NG(P ) = NG(T)F .

Remark 3.13. Consider the same setting for G′ another reductive group, defined over Fq ′ . If
the finite groups NG(T)F /O�′(NG(T)F ) and NG′(T′)F ′

/O�′(NG′(T′)F ′
) are isomorphic, then

Theorem 3.12 provides a splendid Morita equivalence between B0(G) and B0(G
′).

Let us be more specific for our needs. The condition above is satisfied when

• G = PSUn(q), � | (q − 1) and 2 �= � > n/2.
• G = PSp4(q) and � | (q − 1), � �= 2.

Broué’s conjecture predicts the existence of another derived equivalence (not a Morita equiva-
lence), provided by the Deligne–Lusztig variety associated with the element π of the braid group.
Note that such an equivalence would arise from an action of G× (P �B+)opp on a geometric ob-
ject, while in the Harish-Chandra equivalence above, the action of NG(P ) on Z�(G/U) doesn’t
arise from a monoid action on G/U .

4. Automorphisms

4.1. Stability of equivalences

Extensions of equivalences and reductions to finite simple groups have been considered in
various particular situations: isotypies [22], (splendid) Rickard and derived equivalences [37].
We introduce here a framework that handles various types of equivalences.

4.1.1. Extensions of equivalences
Let R be a commutative Z�-algebra. We consider the data C consisting, for every finite

group G, of a full subcategory C(G) of the category of bounded complexes of R-projective
finitely generated RG-modules. We assume that C(G) is closed under taking direct sums and
direct summands, and closed under automorphisms of G. We assume also that the following
holds:

(S1) given H � G of �′-index and given X ∈ C(H), then IndG
H (X) ∈ C(G).

A consequence of the assumptions is that given X ∈ Compb(RG) and given H � G of
�′-index, if ResH (X) ∈ C(H), then X ∈ C(G), since X is a direct summand of IndG ResH X.

Definition 4.1. Let G and H be two finite groups. We say that X ∈ Compb(RB0(G) ⊗
RB0(H)opp) induces a C-equivalence between the principal blocks of G and H if

• the canonical map RB0(G) → End•
RH opp(X) is a split injection with cokernel in C(Gen), and

• the canonical map RB0(H) → End• (X) is a split injection with cokernel in C(H en).
RG
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Given G � G̃ and H � H̃ with H̃ /H = G̃/G = E an �′-group, we put �̃(G,H) = {(x, y) ∈
G̃ × H̃ opp | (xG,yH) ∈ �E}.

Definition 4.2. We say that X ∈ Compb(R�̃(G,H)) induces an E-equivariant C-equivalence
between the principal blocks of G and H if ResG×H opp(X) induces a C-equivalence between the

principal blocks of G and H and b0(G̃) IndG̃×H̃ opp
X = b0(H̃ ) IndG̃×H̃ opp

X.

Lemma 4.3. Let G� G̃ be finite groups with � � [G̃ : G]. Let H � H̃ with H̃ /H = G̃/G. Let X ∈
Compb(R�̃(G,H)) be a complex inducing an equivariant C-equivalence between the principal
blocks of G and H .

Then b0(G̃ × H̃ ) IndG̃×H̃ opp
X induces a C-equivalence between the principal blocks of G̃

and H̃ .

Proof. Let X1 = ResG×H opp(X) and X2 = IndG̃×H̃ opp
(X). We have canonical isomorphisms

(Mackey formula)

Res
G×H̃ opp X2

∼−→ IndG×H̃ opp
X1 and Res

G̃×H opp X2
∼−→ IndG̃×H opp

X1.

We have canonical isomorphisms in Compb(R(G̃ × Gopp)):

Res
G̃×Gopp End•

RH̃ opp(X2)
∼−→ Hom•

RH̃ opp(Res
G×H̃ opp X2,X2)

∼−→ Hom•
RH̃ opp

(
IndG×H̃ opp

X1,X2
)

∼−→ Hom•
RH opp(X1,Res

G̃×H opp X2)

∼−→ Hom•
RH opp

(
X1, IndG̃×H opp

X1
)

∼−→ RG̃ ⊗RG End•
RH opp(X1).

We deduce a commutative diagram in Compb(RGen):

RB0(G̃) ⊗RB0(G) RB0(G)
1⊗can

∼ mult

RB0(G̃) ⊗RB0(G) End•
RH opp(X1)

∼

RB0(G̃) can b0(G̃)End•
RH̃ opp(X2)

It follows that the canonical map RB0(G̃) → End•
RH̃ opp(b0(G̃)X2) is a split injection with co-

kernel in C(G̃en).
The other condition is checked by swapping the roles of G and H opp. �
Using the notation of the proof of Lemma 4.3, note that we have a commutative diagram

Compb(RB0(H̃ ))
X2⊗RH̃

−

Res

Compb(RB0(G̃))

Res

Compb(RB0(H))
X1⊗RH − Compb(RB0(G))
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Remark 4.4. Consider G � G̃ and H � H̃ with H̃ /H = G̃/G = E an �′-group. Let P be a
Sylow �-subgroup of G and Q a Sylow �-subgroup of H . If CG̃

(P ) ⊂ G and C
H̃

(Q) ⊂ H ,
then given X ∈ Compb(R�̃(G,H)) whose restriction is in Compb(RB0(G × H opp)), we have
X ∈ Compb(RB0(�̃(G,H))) [2, Theorem 6.4.1].

We can even do a little better to extend equivalences.

Lemma 4.5. Consider finite groups G1 �G2 � G̃2 � G̃1 and H1 �H2 � H̃2 � H̃1 with G1 � G̃1,
H1 � H̃1, � � [G̃1 : G1], G̃1/G1 = H̃1/H1, G̃2/G1 = H̃2/H1 and G2/G1 = H2/H1 (compatible
with the inclusions G2/G1 � G̃2/G1 � G̃1/G1 and H2/H1 � H̃2/H1 � H̃1/H1). Let Ei =
G̃i/Gi .

Let X ∈ Compb(R�̃(G1,H1)) be a complex inducing an E1-equivariant C-equivalence be-
tween the principal blocks of G1 and H1.

Then b0(G2 × H
opp
2 ) Ind�̃(G2,H2) Res

�̃(G1,H1)∩(G̃2×H̃
opp
2 )

(X) induces an E2-equivariant

C-equivalence between the principal blocks of G2 and H2.

Proof. If G1 = G2, then in this case the result is clear. If G̃1 = G̃2, then

ResG2×H
opp
2

Ind�̃(G2,H2)(X) � IndG2×H
opp
2 Res�̃(G1,H1)∩(G2×H

opp
2 ) X,

and the result follows from Lemma 4.3. The general case follows from the two cases studied
above. �
Lemma 4.6. Let G� G̃ � Ĝ with G� Ĝ and � � [Ĝ : G]. Let P be a Sylow �-subgroup of G. Let
H̃ = GC

G̃
(P ) and Ĥ = GC

Ĝ
(P ). Assume that Ĝ = G̃C

Ĝ
(P ).

The B0(H̃ × Ĥ opp)-module B0(H̃ ) ⊗Z�G B0(Ĥ ) extends to a B0((H̃ × Ĥ opp)�(G̃))-mod-
ule M , where h ∈ G̃ sends x ⊗ y to hxh−1 ⊗ hyh−1. The module M induces a splen-
did (G̃/H̃ )-equivariant Morita equivalence between B0(H̃ ) and B0(Ĥ ), and the module

IndG̃×Ĝopp
(M) provides an isomorphism of algebras

B0(G̃)
∼−→ B0(Ĝ), x 
→ b0(Ĝ)x.

Proof. The Alperin–Dade theorem ([1, Theorem 2], [15]) shows that there are isomorphisms

B0(G)
∼−→ B0(H̃ ), a 
→ b0(H̃ )a and B0(G)

∼−→ B0(Ĥ ), a 
→ b0(Ĥ )a.

We obtain an isomorphism

B0(G)
∼−→ B0(H̃ ) ⊗Z�G B0(Ĥ ), a 
→ b0(H̃ )a ⊗ b0(Ĥ )

compatible with the �(G̃)-action described in the lemma, and this provides M � B0(G) with a
structure of a B0((H̃ × Ĥ opp)�(G̃))-module. Note that Res

H̃×Ĥ opp(M) induces a Morita equiva-

lence that sends B0(H̃ ) to B0(Ĥ ). We have IndG̃

H̃
(B0(H̃ )) = B0(G̃) and IndĜ

Ĥ
(B0(Ĥ )) = B0(Ĝ)

[2, Theorem 6.4.1(v)], hence the Morita equivalence induced by IndG̃×Ĝopp
(M) sends B0(G̃) to

B0(Ĝ) (cf. the proof of Lemma 4.3) and it gives rise to the isomorphism of algebras described in
the lemma. �

We assume now that the data C satisfy the following additional assumption:

(S2) given G, G′ two finite groups, given X ∈ C(G) and Y ∈ Compb(RG′) with Y i projective
over R for all i, then X ⊗R Y ∈ C(G × G′).
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Lemma 4.7. Let Gi � G̃i and Hi � H̃i for i = 1,2. Assume that G̃i/Gi = H̃i/Hi and
� � [G̃i : Gi]. Let Xi be a complex inducing a G̃i/Gi -equivariant C-equivalence between the
principal blocks of Gi and Hi for i = 1,2. Then, X1 ⊗R X2 induces a (G̃1 × G̃2)/(G1 ×
G2)-equivariant C-equivalence between the principal blocks of G1 × G2 and H1 × H2.

Proof. The equivariance part is clear, so we can assume G̃i = Gi and H̃i = Hi . We have a
canonical isomorphism End•

RH
opp
1

(X1) ⊗R End•
RH

opp
2

(X2)
∼−→ End•

R(H1×H2)
opp(X1 ⊗R X2). The

canonical map R(G1 × G2) → End•
R(H1×H2)

opp(X1 ⊗R X2) is a split injection, with cokernel L

isomorphic to (R1 ⊗R RG2) ⊕ (RG1 ⊗R R2) ⊕ (R1 ⊗R R2), where Ri is the cokernel of the
canonical map RGi → End•

RH
opp
i

(Xi). It follows from (S2) that L ∈ C(G1 × G2). The other

property is obtained by swapping the roles of Gi and H
opp
i . �

If A is an R-algebra, n � 0 is an integer, and X is a complex of A-modules, then there is a
canonical extension of X⊗n from a complex of A⊗n-modules to a complex of A � Sn-modules:
it is obtained as the total complex associated with an n-fold complex [16, §1.1] (see also [37,
Lemma 4.1] for an explicit description). The following lemma is a consequence of Lemma 4.7.

Lemma 4.8. Let G� G̃, H � H̃ with G̃/G = H̃ /H and � � [G̃ : G]. Let X be a complex inducing
a C-equivariant equivalence between the principal blocks of G and H .

Let n � 1 and let L be an �′-subgroup of Sn. Then, X⊗n induces a C-equivariant equivalence
between the principal blocks of G � L and H � L.

4.1.2. Stability of properties of finite groups with abelian Sylow p-subgroups
Let E1 be the set of finite groups with abelian Sylow �-subgroups and let E be the set of pairs

(G, G̃) with G ∈ E1, G � G̃ and � � [G̃ : G].
Recall that if P is a Sylow �-subgroup of G, then G̃ = GN

G̃
(P ) (Frattini argument), and

hence NG̃
(P )/NG(P ) = G̃/G. There is an �′-subgroup E of N

G̃
(P ) such that N

G̃
(P ) = P �E.

We have G̃ = GE and G̃ is a quotient of G � E by an �′-subgroup. Let N�(G, G̃) = �̃(H,G),
where H = NG(P ) and H̃ = N

G̃
(P ). We have N�(G, G̃) = (H × Gopp)�H̃ .

Definition 4.9. We say that a subset P of E satisfies (∗) if

(i) P is closed under direct products;
(ii) given (H, H̃ ) ∈P and (G, G̃) ∈ E such that H � G � G̃ � H̃ , we have (G, G̃) ∈ P ;
(iii) if (G, G̃) ∈P , n � 0 and L is an �′-subgroup of Sn, then (Gn, G̃ � L) ∈P ;
(iv) if G is an abelian �-group, then (G, G̃) ∈P ;
(v) (G/O�′(G), G̃/O�′(G̃)) ∈P if and only if (G, G̃) ∈P .

We say that a subset P of E satisfies (∗′) if, in addition, we have

(vi) given (G, G̃) ∈ P and (G, Ĝ) ∈ E with G̃ � Ĝ, and given a Sylow �-subgroup P of G, if
Ĝ = G̃C

Ĝ
(P ) then (G, Ĝ) ∈P .

Proposition 4.10. Let P be a subset of E satisfying (∗) (resp. (∗′)). Let F be a set of non-cyclic
finite simple groups with non-trivial abelian Sylow �-subgroups. Given G ∈ F , let Ĝ � Aut(G)

be such that the image of Ĝ in Out(G) is a Hall �′-subgroup of Out(G). Assume that there is a
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pair (G, G̃) ∈ P such that G̃/GC
G̃
(G) = Ĝ/G (resp. such that G̃/GC

G̃
(G) � Ĝ/G and given

a Sylow �-subgroup P of G, we have N
G̃
(P )/C

G̃
(P ) = N

Ĝ
(P )/C

Ĝ
(P )).

If (G, G̃) ∈ E is such that all non-cyclic composition factors of G of order divisible by � are
in F , then (G, G̃) ∈P .

Proof. Let us show first that the assumptions for (∗′) imply those for (∗). Let G ∈F and G̃ be as
in the “resp.” case of the proposition. Because of (∗)(v), we may assume that O�′(G̃) = 1, hence
we may assume that G̃ � Ĝ. We have Ĝ = G̃C

Ĝ
(P ), and so (G, Ĝ) ∈P by (∗′)(vi).

Let us now prove the proposition in the case (∗). One may assume that O�′(G) = 1. It follows
from the classification of finite simple groups [22, §5] that there is a collection

• (H0, H̃0) ∈ E where H0 is an �-group,
• H1, . . . ,Hn ∈F ,
• d1, . . . , dn ∈ Z>0, and
• L1, . . . ,Ln a family of �′-subgroups of Sd1, . . . ,Sdn ,

and there are embeddings

H0 × H
d1
1 × · · · × Hdn

n � G � G̃ � H̃0 × Ĥ1 � L1 × · · · × Ĥn � Ln,

where Hi � Ĥi and Ĥi/Hi is a Hall �′-subgroup of Out(Hi).
Property (∗)(iv) ensures that (H0, H̃0) ∈ P . Assume i > 0. Consider a pair (Hi, H̃i) ∈ P as

in the proposition. We have H̃i/O�′(H̃i) � Ĥi and we deduce from (∗)(v) that (Hi, Ĥi) ∈ P .
Hence, (H

di

i , Ĥi � Li) ∈ P by (∗)(iii). We deduce that (H0 × H
d1
1 × · · · × H

dn
n , H̃0 × Ĥ1 � L1 ×

· · · × Ĥn � Ln) ∈P by (∗)(i), hence (G, G̃) ∈P by (∗)(ii). �
4.1.3. Equivalences and Broué’s conjecture

Proposition 4.11. Let C be data satisfying (S1) and (S2). Let P be the set of pairs (G, G̃) ∈ E
such that there is a G̃/G-equivariant C-equivalence between the principal blocks of G

and NG(P ). The set P satisfies property (∗′).

Proof. Conditions (i), (ii) and (iii) follow from Lemmas 4.7, 4.5 and 4.8, respectively. Since
the principal blocks of G and G/O�′(G) are isomorphic, we have (G, G̃) ∈ P if and only if
(G/O�′(G), G̃/O�′(G)) ∈ P . Assume that O�′(G) = 1. Then O�′(G̃) centralizes G, and hence
(G, G̃) ∈ P if and only if (G, G̃/O�′(G̃)) ∈ P . So, condition (v) holds. Condition (iv) holds as
well: take X = RG.

Consider now G� G̃ � Ĝ with G� Ĝ and � � [Ĝ : G]. Let P be a Sylow �-subgroup of G and
assume that Ĝ = G̃C

Ĝ
(P ). Let X ∈ Compb(RN�(G, G̃)) inducing an equivariant C-equivalence

between the principal blocks of G and NG(P ). We have

N�(G, Ĝ) = (
NG(P ) × Gopp)�N

G̃
(P )�C

Ĝ
(P ) = N�(G, G̃)C

N�(G,Ĝ)

(
P en).

Let Y = b0(N�(G, G̃)) IndN�(G,Ĝ)

N�(G,G̃)
(X). We have Res

N�(G,G̃)
(Y ) � X by Lemma 4.6, and this

shows condition (vi). �
The next proposition is clear.
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Proposition 4.12. The following data C satisfy properties (S1) and (S2):

• acyclic complexes with R-projective components (C-equivalences are standard derived
equivalences);

• contractible complexes with R-projective components (C-equivalences are Rickard equiva-
lences).

4.2. Automorphisms

We provide extension results for derived equivalences in the presence of automorphism
groups. The main results are due to Marcus [37,39,40] (except for Section 4.2.7).

4.2.1. Extensions of modules
Let A be a k-algebra and G a finite group endowed with a homomorphism φ : G → Aut(A).

Let M be an (A � G)-module. The structure of (Aen � Gen)-module on Endk(M) restricts to a
structure of k�G-module on EndA(M). The corresponding morphism G → Aut(EndA(M)) is
the following: given g ∈ G and f ∈ EndA(M), we set g(f )(m) = g(f (g−1(m))) for m ∈ M . We
have a canonical isomorphism kG ⊗ M

∼−→ IndA�G ResA M , and an isomorphism of algebras

EndA(M) � G
∼−→ EndA�G(kG ⊗ M), f ⊗ g 
→ (

h ⊗ m 
→ hg ⊗ hf
(
h−1m

))
.

Recall also that J (A)G ⊂ J (A � G), hence ResA�G
A preserves semi-simplicity.

4.2.2. Two-sided tilting complexes
Let k be a commutative ring. Let A and B be two flat k-algebras and G a finite group with

homomorphisms G → Aut(A) and G → Aut(B).
We start with a classical result [37].

Lemma 4.13. Let X be a complex of ((A ⊗ Bopp) � G)-modules. Then ResA⊗Bopp X is a two-
sided tilting complex for (A,B) if and only if Ind(A�G)⊗(B�G)opp

X is a two-sided tilting complex
for (A � G,B � G).

Proof. Let X1 = ResA⊗Bopp X and X2 = Ind(A�G)⊗(B�G)opp
X. Following the proof of Lem-

ma 4.3, we obtain a commutative diagram

B � G
can

R End•
A(X1) � G

∼

B � G
can

R End•
A�G(X2)

There is a similar commutative diagram with the roles of A and B reversed. The lemma fol-
lows. �
4.2.3. Rickard complexes

The following lemma is an equivariant version of a result of Rickard [48, p. 336].

Lemma 4.14. Assume that k is a regular noetherian ring and A and B are symmetric k-algebras.
Let C be a complex of ((A ⊗ Bopp) � G)-modules which restricts to a two-sided tilting complex
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for (A,B). There is a complex D of ((A ⊗ Bopp) � G)-modules that is quasi-isomorphic to C

and which restricts to a Rickard complex for (A,B).

Proof. Let C′ be a right-bounded complex quasi-isomorphic to C, all of whose terms are finitely
generated and projective. Let n ∈ Z be such that Hi(C) = 0 for i < n. Then D = τ�n−m(C′)
satisfies the required property for m the Krull dimension of k (see [48, pp. 135–136]). �

A proof similar to that of Lemma 4.13 shows the following classical result. Note that the
assumption on |G| is necessary to ensure that a complex of (Aen � G)-modules is contractible if
its restriction to Aen is contractible.

Lemma 4.15. Assume that |G| ∈ k×. Let X be a complex of ((A ⊗ Bopp) � G)-modules. Then
ResA⊗Bopp X is a Rickard complex for (A,B) if and only if Ind(A�G)⊗(B�G)opp

X is a Rickard
complex for (A � G,B � G).

4.2.4. Tilting complexes
Let A be a flat k-algebra and G a finite group endowed with a homomorphism G → Aut(A).

Lemma 4.16. Let T ∈ Comp(A � G). Then ResA T is a tilting complex for A if and only if
kG ⊗ T is a tilting complex for A � G. There is a canonical isomorphism EndD(A)(T ) � G

∼−→
EndD(A�G)(kG ⊗ T ).

Proof. By Section 4.2.1, we have

R End•
A(T ) � G

∼−→ R End•
D(A�G)(kG ⊗ T ).

Thus, HomD(A)(T ,T [i]) = 0 for i �= 0 if and only if HomD(A�G)(kG ⊗ T , kG ⊗ T [i]) = 0 for
i �= 0.

Assume that T is a tilting complex for A. Then, IndA�G(T ) is perfect. Also, A is in the thick
subcategory of D(A) generated by T , hence A � G = IndA�G A is in the thick subcategory of
D(A) generated by IndA�G T . So, IndA�G T is a tilting complex.

Conversely, assume that IndA�G T is a tilting complex. We have ResA(kG ⊗ T ) � T |G|,
and hence T is a perfect complex for A. Since A is in the thick subcategory of D(A � G)

generated by IndA�G T , it follows that A is in the thick subcategory of D(A � G) generated by
ResA IndA�G T � T |G|. It follows that T is a tilting complex for A. �

The following lemma is an equivariant version of a result of Keller [26, §8.3.1].

Lemma 4.17. Let C ∈ Comp(A � G) and let B = EndD(A)(C). Assume that HomD(A)(C,

C[n]) = 0 for n < 0. There is a complex X of ((A ⊗ Bopp) � G)-modules and an isomorphism
φ : C

∼−→ X in D(A � G) such that the composition of canonical maps EndD(A)(C) = B →
EndComp(A)(X) → EndD(A)(X) is given by φ.

Proof. Up to isomorphism in D(A � G), we may assume that C is homotopically projective.
Let U = (A ⊗ End•

A(C)opp) � G, a dg algebra. The complex C extends to a dg U -module.
Let U− = τ�0(U), a dg subalgebra of U . We have H 0(U−)

∼−→ H 0(U) = (A ⊗ B) � G. Let
X = H 0(U)⊗L

U− C. The canonical quasi-isomorphism U− ∼−→ H 0(U−) induces an isomorphism
φ : C ∼−→ X in D(A � G). It satisfies the stated property. �
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Lemma 4.17 gives the following useful criterion to extend equivalences.

Lemma 4.18. Let C ∈ Comp(A � G) be such that ResA C is a tilting complex. Let B =
EndD(A)(C). There is a complex X of ((A ⊗ Bopp) � G)-modules and an isomorphism φ : C ∼−→
X in D(A � G) such that ResA⊗Bopp(X) is a two-sided tilting complex and the composition of
canonical maps EndD(A)(C) = B → EndComp(A)(X) → EndD(A)(X) is given by φ.

Lemma 4.19. Let T be a two-sided tilting complex for (A,B). Assume that there is a complex C

of (A � G)-modules such that T � C in D(A). There is an action of G on B and a complex X

of ((A ⊗ Bopp) � G)-modules such that X � T in D(A ⊗ Bopp).

Proof. Consider X as in Lemma 4.18. Then ResA⊗Bopp(X) and T are two-sided tilting com-
plexes and there is an isomorphism X

∼−→ T in D(A) compatible with the canonical maps
B → EndD(A)(X) and B → EndD(A)(T ). This forces X and T to be isomorphic in D(A⊗Bopp)

(Lemma 4.20). �
Lemma 4.20. Let C,D ∈ Comp(A⊗Bopp) be such that C is a two-sided tilting complex. Assume
that there is an isomorphism φ : C ∼−→ D in D(A) such that the composition of canonical maps
EndD(A)(C) = B → EndComp(A)(X) → EndD(A)(X) is given by φ. There is an isomorphism
C

∼−→ D in D(A ⊗ Bopp) restricting to φ.

Proof. The map φ induces isomorphisms of Ben-modules HomD(A)(C,C[i]) ∼−→ HomD(A)(C,

D[i]) for i ∈ Z. The canonical map B → R End•
A(C) is an isomorphism in D(Ben) and we

obtain an isomorphism B
∼−→ R Hom•

A(C,D) in D(Ben). Applying C ⊗L
B − gives the required

isomorphism. �
4.2.5. Equivariant lifts of stable equivalences

We assume that k is a field for the rest of Section 4.2.

Lemma 4.21. Let A be a symmetric k-algebra and M , N two complexes of A-modules. Assume
M and N are isomorphic in A-stab. Then there exists U , V two bounded complexes of projective
A-modules and α : M → U , β : V → C[−1] two morphisms of complexes, where C is the cone
of α, such that the cone of β is quasi-isomorphic to N .

Proof. By definition, there is a complex of A-modules L and there are morphisms of com-
plexes f : L → M and g : L → N whose cones U ′ and V ′ are perfect complexes. Let U be
a bounded complex of (finitely generated) projective modules that is quasi-isomorphic to U ′.
Since A is self-injective, U is homotopically injective, hence there is a morphism of complexes
α′′ : U ′ → U that is a quasi-isomorphism. We put α = α′′ ◦α′, where α′ : M → U is the canonical
map. We denote by C the cone of α, a complex quasi-isomorphic to L[1]. There is a distin-

guished triangle V ′ β ′−→ C[−1] → N � in D(A). Let V be a bounded complex of projective
modules quasi-isomorphic to V ′. Since such a complex is homotopically projective, the compo-
sition V

∼−→ V ′ β ′−→C[−1] in Db(A) comes from a morphism of complexes β : V → C[−1]. This
∼
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proves the lemma.

V

β

C[−1] M
α

U

N

�

Proposition 4.22. Let A and B be two symmetric k-algebras endowed with an action of a finite
group G. Let M be a complex of ((A ⊗ Bopp) � G)-modules such that ResA⊗Bopp M induces a
stable equivalence. Assume that there is a complex N of ((A ⊗ Bopp) � G)-modules isomorphic
to M in ((A⊗Bopp)�G)-stab and such that N ⊗L

B − induces an equivalence Db(B)
∼−→ Db(A).

Then there exists a complex X of ((A ⊗ Bopp) � G)-modules with the following properties:

• X is quasi-isomorphic to N ,
• ResA⊗Bopp X induces a Rickard equivalence that lifts the stable equivalence induced by

ResA⊗Bopp M ,
• there are distinguished triangles in Ho((A ⊗ Bopp) � G)

L → M → U � and V → L → X �
where U , V are bounded complexes of projective ((A ⊗ Bopp) � G)-modules.

Proof. Lemma 4.21 shows the existence of X with all the properties except the fact Y =
ResA⊗Bopp(X) induces a Rickard equivalence. We will deduce the finer property as in [46,
Corollary 5.5]. We know that Y induces a derived equivalence, i.e., there is an isomorphism
of complexes End•

A(Y ) � B ⊕ T , where T is acyclic. The distinguished triangles of the proposi-
tion show that Y is isomorphic to ResA⊗Bopp(M) in Ho((A ⊗ Bopp)-stab), hence T is homotopy
equivalent to a bounded complex of projective modules. As it is acyclic, it is homotopy equivalent
to 0. Similarly, End•

Bopp(Y ) � A in Ho(Aen), hence Y is a Rickard complex. �
Remark 4.23. The previous proposition can be applied to the case where k is a field of character-
istic � > 0, G and H are two finite groups with a common Sylow �-subgroup, and A = B0(kG),
B = B0(kH). The proposition shows that if ResA⊗Bopp(M) is splendid, then ResA⊗Bopp(X) is
splendid.

Proposition 4.24. Let A and B be two symmetric k-algebras with no simple direct factors and
endowed with an action of a finite group G. Let M be an ((A ⊗ Bopp) � G)-module such that
ResA⊗Bopp M induces a stable equivalence. Assume that there is a two-sided tilting complex T

for A ⊗ Bopp that is isomorphic to ResA⊗Bopp(M) in (A ⊗ Bopp)-stab, and such that ResA(T )

extends to a complex of (A � G)-modules.
There is a bounded complex C of ((A ⊗ Bopp) � G)-modules such that ResA⊗Bopp C � T in

D(A ⊗ Bopp).

Proof. Let ρ : G → Aut(A) and ψ : G → Aut(B) be the canonical homomorphisms. Lem-
ma 4.19 shows that there is a homomorphism ψ ′ : G → Aut(B) and a complex X of ((A ⊗
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Bopp) �ρ,ψ ′ G)-modules such that ResA⊗Bopp(X) is a two-sided tilting complex and X � T in
D(A ⊗ Bopp).

Let N be an ((A ⊗ Bopp) �ρ,ψ ′ G)-module that is isomorphic to X in ((A ⊗ Bopp) �ρ,ψ ′
G)-stab. Then ResA⊗Bopp N � ResA⊗Bopp M in (A ⊗ Bopp)-stab. We have the structure of an
((A ⊗ Bopp) �ρ,ψ G, (A ⊗ Bopp) �ρ,ψ ′ G)-bimodule on Homk(N,M), and this restricts to
a structure of (Ben �ψ,ψ ′ G)-module on HomA(N,M). We have HomA(N,M) � B ⊕ U as
Ben-modules, where U is a projective Ben-module. We deduce that the Ben-module B extends
to a (Ben �ψ,ψ ′ G)-module L. Let C = Hom•

Bopp(L,X): this is a complex of ((A ⊗ Bopp) �ρ,ψ

G)-modules satisfying the required property. �
We have a descent counterpart.

Proposition 4.25. Let A and B be two symmetric k-algebras with no simple direct factors
and endowed with an action of a finite group G such that |G| ∈ k×. Let M be a bounded
complex of ((A ⊗ Bopp) � G)-modules such that ResA⊗Bopp M induces a stable equivalence.
Assume that there is a two-sided tilting complex T for ((A � G), (B � G)) that is isomorphic to
Ind(A�G)⊗(B�G)opp

(M) in ((A � G) ⊗ (B � G)opp)-stab, and such that there is an isomorphism
ResA�G T � C ⊗ kG in D(A � G), where C ∈ Comp(A � G).

There is a bounded complex Y of ((A ⊗ Bopp) � G)-modules such that
Ind(A�G)⊗(B�G)opp

(Y ) � T in D((A � G) ⊗ (B � G)opp).

Proof. Lemma 4.16 shows that C is a tilting complex for A. Let B ′ = EndD(A)(C). Let X ∈
Comp((A ⊗ B ′opp) � G) as in Lemma 4.18. We have an isomorphism C

∼−→ X in D(A � G),
whose restriction to D(A) is compatible with the action of B ′ up to homotopy. Let N be an
((A ⊗ B ′) � G)-module isomorphic to X in ((A ⊗ B ′) � G)-stab. We have HomA(M,N) =
L ⊕ R as (B,B ′)-bimodules, where L has no projective direct summand. Then L extends to a

((B ⊗B ′opp)�G)-module. The (B �G,B ′ �G)-bimodule L′ = Ind(B�G)⊗(B ′
�G)opp

(B⊗B ′opp)�G
(L) induces

a stable equivalence that sends simple modules to simple modules. Hence, L ⊗B − sends simple
modules to semi-simple modules. Since it induces a stable equivalence, it sends simple modules
to simple modules, and we deduce that L ⊗B ′ − : B ′-mod → B-mod is an equivalence [34,
Theorem 2.1] and the equivalence L′⊗B ′

�G : (B ′ × G)-mod ∼−→ (B � G)-mod comes from an
isomorphism B �G

∼−→ B ′ �G. We deduce that there is a G-invariant isomorphism σ : B ∼−→ B ′
such that Bσ

∼−→ L as (B ⊗ B ′) � G-modules. The complex Y = σ ∗X satisfies the required
property. �
4.2.6. Okuyama’s sequential lifts

Let A and B be two symmetric k-algebras with no simple direct factors and acted on by a
finite group G. Assume that the simple A and B-modules are absolutely simple. Let M be an
((A⊗Bopp) � G)-module, projective as an A-module and as a Bopp-module. We assume that M

induces a stable equivalence between A and B and it has no non-zero projective direct summand.
Let φ : U → M be a projective cover of M . We have ResA⊗Bopp U � ⊕

S∈SB
PM⊗BS ⊗ P ∗

S

(cf. [50, Lemma 2.12] and Lemma 4.27 below).
Let I be a G-invariant subset of SB . Then, there is a direct summand Q of U such that

ResA⊗Bopp Q � ⊕
S∈I PM⊗BS ⊗ P ∗

S . Let C = C(M,I) = 0 → Q
φ|Q−−→ M → 0, a complex of

((A ⊗ Bopp) � G)-modules with M in degree 0.
Assume that ResA(C) is a tilting complex and let B ′ = EndD(A)(C). Lemma 4.18 provides a

complex X of ((A⊗B ′opp)�G)-modules such that ResA⊗B ′opp(X) is a two-sided tilting complex.
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We consider a situation studied in the non-equivariant setting by Okuyama [42] (this is to
be used in Section 6.3). Let I0, . . . , Il be G-invariant subsets of SB . We assume that the se-
quence satisfies the following conditions. Let A0 = A and M0 = M . Assume that a G-algebra
Ai and an ((Ai ⊗ Bopp) � G)-module Mi have been defined. We assume that ResAi

C(Mi, Ii) is
a tilting complex. We set Ai+1 = EndD(Ai)(C(Mi, Ii)). We view Ai+1 as an ((Ai+1 ⊗ B) �
G)-module by restricting the canonical (Aen

i+1 � G)-module structure via the canonical map
B → EndD(Ai)(C(Mi, Ii)), and we denote by Mi+1 a maximal direct summand of Ai+1 with
no non-zero projective direct summand. Note that ResAi+1⊗Bopp(Mi+1) induces a stable equiva-
lence.

Let us assume finally that B = Al+1 (as algebras, without G-action). We have a sequence of
derived equivalences

Db(A)
∼−→ Db(A1)

∼−→ · · · ∼−→ Db(Al)
∼−→ Db(B),

whose composition lifts the stable equivalence induced by HomA(M,−). It follows from Propo-
sition 4.24 that there is a complex of ((A ⊗ Bopp) � G)-modules whose restriction to A ⊗ Bopp

is a two-sided tilting complex.

4.2.7. Perverse equivalences
Let A be a symmetric k-algebra and G a finite group of automorphisms of A with |G| ∈ k×.
Define an equivalence relation on SA�G by M ∼ N if HomA(ResA M,ResA N) �= 0. Induc-

tion and restriction define a bijection SA/G
∼−→ SA�G/∼.

The perversity datum (q,S•) for A � G is said to be G-compatible if it is compatible with ∼.

Proposition 4.26. Let (q1,S1• ), . . . , (qd,Sd• ) be a family of G-invariant perversity data for A

and let (q ′
1,S ′1• ), . . . , (q ′

d ,S ′d• ) be the corresponding G-compatible perversity data for A � G.
There are algebras B0 = A, . . . ,Bd endowed with a G-action and complexes Xi of ((Bi−1 ⊗
B

opp
i ) � G)-modules such that

• ResBi−1⊗B
opp
i

(Xi) induces a perverse equivalence Db(Bi)
∼−→ Db(Bi−1) relative to (qi,S i•),

and
• Ind(Bi−1�G)⊗(Bi�G)opp

(Xi) induces a perverse equivalence relative to (q ′
i ,S ′i• ).

Proof. Since every perverse equivalence is a composition of perverse equivalences associated
to two-step filtrations with q(1) − q(0) = ±1, it is enough to prove the proposition when the
(qi,S i•) satisfy that requirement. Next, it is enough to deal with an individual (q,S i•). Shifting if
necessary, it is enough to deal with the case q(0) = 0.

Consider an elementary equivalence as in Section 3.1.3. The submodule U of A is G-stable
and so is the submodule V of A/J(A). It follows from Lemma 4.27 below that the complex
X extends to a complex of (A � G)-modules. Lemma 4.18 shows that there is a complex C of
((A ⊗ Bopp) � G)-modules inducing a perverse equivalence.

The case of a perverse equivalence associated to a two-step filtration and q given by q(0) = 0,
q(1) = −1 is handled similarly.

The last part of the lemma follows from Lemma 4.29 below. �
Lemma 4.27. Let M be an (A�G)-module with projective cover P . Then ResA P is a projective
cover of ResA M .
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Proof. Set A′ = A � G. The A-module A′/(A′J (A)A′) is semi-simple, hence it is semi-simple
as an A′-module, so J (A′) ⊂ A′J (A)A′ = A′J (A) and soc(A) ⊂ soc(A′). Let N be the kernel
of a projective cover P → M . Since N has no non-zero projective direct summand, we have
soc(A′)N = 0, hence soc(A)N = 0: this shows that ResA N has no non-zero projective direct
summand. �
Remark 4.28. Note that if G acts trivially on SA, then sequences of perversity data are automat-
ically G-invariant.

Lemma 4.29. Let B be a symmetric k-algebra endowed with an action of G. Let X ∈
Compb((A ⊗ Bopp) � G). Let (q,SA,•,SB,•) be a G-invariant perversity datum and
(q ′,SA�G,•,SB�G,•) the corresponding G-compatible datum.

Then ResA⊗Bopp X induces a perverse equivalence relative to (q,SA,•,SB,•) if and only if
Ind(A�G)⊗(B�G)opp

(X) induces a perverse equivalence relative to (q ′,SA�G,•,SB�G,•).

Proof. Let Y = Ind(A�G)⊗(B�G)opp
(X). The equivalence part is Lemma 4.13. Let S′ ∈ SB�G

and L = Y ⊗L
B�G S′. We have ResA L � X ⊗L

B ResB(S′).
Assume that ResA⊗Bopp X induces a perverse equivalence, and let S′ ∈ SB�G,i . Since

ResB(S′) is a direct sum of simple modules in SB,i , we deduce that ResA Hj (L) has compo-
sition factors in SA,i−1 for j �= −q(i) and composition factors in SA,i for j = −q(i). We deduce
that the composition factors of Hj(L) have the required property and Y induces a perverse
equivalence. The converse statement has a similar proof. �

The following result shows that the lifting strategy is well behaved with respect to outer auto-
morphisms.

Corollary 4.30. Let A and B be two symmetric k-algebras with no simple direct factors
and endowed with the action of a finite group G with |G| ∈ k×. Let M be a bounded
complex of ((A ⊗ Bopp) � G)-modules such that ResA⊗Bopp M induces a stable equiva-
lence. Let (q1,S1• ), . . . , (qd,Sd• ) be a family of G-invariant perversity data for A and let
(q ′

1,S ′1• ), . . . , (q ′
d ,S ′d• ) be the corresponding G-compatible perversity data for A � G. Let

B0 = A,B1, . . . ,Bd be algebras endowed with a G-action and let Xi be complexes of ((Bi−1 ⊗
B

opp
i ) � G)-modules for i = 1, . . . , d , such that ResBi−1⊗B

opp
i

(Xi) induces a perverse equiva-

lence Fi : Db(Bi)
∼−→ Db(Bi−1) relative to (qi,S i•). Assume that the sets {M ⊗B S}S∈SB

and
{F1 · · ·Fd(T )}T ∈SBd

coincide up to isomorphism in A-stab.
Then there is a ((Bd ⊗Bopp)�G)-module N such that ResBd⊗Bopp N induces a Morita equiv-

alence and such that X1 ⊗B1 · · · ⊗Bd−1 Xd ⊗Bd
N � M in ((A ⊗ Bopp) � G)-stab. In particular,

the composition of perverse equivalences

Db(B) N⊗B−−−−−→∼ Db(Bd) Fd−→∼ Db(Bd−1) → ·· · → Db(B1)
F1−→∼ Db(A)

lifts the stable equivalence induced by M .

Proof. The existence of the algebras Bi and of the complexes Xi is provided by Proposition 4.26.
Let Y = Hom•

A(X1 ⊗B1 · · · ⊗Bd−1 Xd,M), a complex of ((Bd ⊗ Bopp) � G)-modules. Note
that ResBd⊗Bopp(Y ) induces a stable equivalence that sends simple modules to simple modules.

There is a ((B ⊗B
opp
d )�G)-module N with no projective direct summands that is isomorphic

to Y in ((Bd ⊗ Bopp) � G)-stab. Since N has no projective summand, we deduce as in the proof
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of Lemma 4.27 that ResBd⊗Bopp(N) has no projective summand. The functor N ⊗B − induces a
stable equivalence between B and Bd that sends simple modules to simple modules. It follows
from [34, Theorem 2.1] that N ⊗B − induces a Morita equivalence.

Consider the evaluation map ρ : X1 ⊗B1 ⊗· · · ⊗Bd−1 Xd ⊗Bd
Y → M , a morphism of com-

plexes of ((A ⊗ Bopp) � G)-modules. Since the Xi ’s induce Rickard equivalences, it follows
that ρ is an isomorphism in Ho(A ⊗ Bopp), hence ρ is an isomorphism in Ho((A ⊗ Bopp) � G)

(cf. [50, Lemma 10.2.7]). �
4.3. Equivalences with extra structure

4.3.1. Particular equivalences
We consider data B consisting, for every (G, G̃) ∈ E , of a family B(G, G̃) of objects of

Comp(RB0(N�(G, G̃))).
We say that (G, G̃) ∈ E satisfies Broué’s (B,C)-conjecture (for principal blocks) if there exists

X ∈ B(G, G̃) such that ResNG(P )×Gopp(X) induces a C-equivalence between the principal blocks
of G and NG(P ).

We say that B satisfies (S3) if:

(i) whenever (Gi, G̃i) ∈ E and Xi ∈ B(Gi, G̃i) for i = 1,2, we have X1 ⊗ X2 ∈ B(G1 × G2,

G̃1 × G̃2);
(ii) whenever G1 � G2 � G̃2 � G̃1 with G1 � G̃1, if X ∈ B(G1, G̃1), we have

b0(G2) IndN�(G2,G̃2) Res
N�(G1,G̃1)∩(N

G̃2
(P2)×G̃

opp
2 )

(X) ∈ B(G2, G̃2);

(iii) given (G, G̃) ∈ E , X ∈ B(G, G̃), n � 0 and L an �′-subgroup of Sn, we have X⊗n ∈
B(Gn, G̃ � L);

(iv) whenever G is an abelian �-group and (G, G̃) ∈ E , we have RG ∈ B(G, G̃);
(v) given (G, G̃) ∈ E and (G, Ĝ) ∈ E with G̃ � Ĝ and Ĝ = G̃C

Ĝ
(P ) where P is a Sylow

�-subgroup of G, if X ∈ B(G, G̃), then b0(N�(G, Ĝ)) IndN�(G,Ĝ)(X) ∈ B(G, Ĝ).

Proposition 4.31. Let P be the set of pairs (G, G̃) ∈ E satisfying Broué’s (B,C)-conjecture.
If B satisfies (S3) and C satisfies (S1) and (S2), then P satisfies property (∗′).

Proof. The proposition follows from Proposition 4.11 and its proof. �
4.3.2. Examples of stable data

Let us define various data B. Given (G, G̃) ∈ E , we describe the condition for X to be in
B(G, G̃). We set A = RB0(G), B = RB0(NG(P )) and Y = ResA⊗Bopp(X). We denote by E an
�′-subgroup of N

G̃
(P ) such that N

G̃
(P ) = PE.

• Splendid complexes: Y i is a direct summand of a direct sum of modules of the form
IndNG(P )×Gopp

�Q (R), where Q � P , for i ∈ Z.
• (Increasing) perverse complexes (R = k): Y ⊗A − is perverse relative to some datum

(q,SA,•,SB,•) (resp. and q is increasing).
• Iterated perverse complexes (R = k or O): there is a sequence of algebras A1 = B,A2, . . . ,

Al = A with actions of E and complexes Xi ∈ Compb((Ai ⊗A
opp
i+1)�E) for i = 1, . . . , l −1

such that
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– the actions of E on A1 and Al are the canonical actions,
– kXi ⊗L

kAi+1
− is perverse, and

– X � X1 ⊗L
A2

· · · ⊗L
Al−1

Xl−1 in D((B ⊗ Aopp) � E).
• Positively gradable complexes (R = k or O and k is assumed to be algebraically closed).

There is a non-negative grading on kB0(G) and a structure of graded (kB ⊗ kAopp)-module
on kY . Here, we take a tight grading on kB , i.e., one for which J i(kB) = (kB)i ⊕
J i+1(kB) [54].

• Character maps (R = K). Hi(Y ) = 0 for i �= 0,1 and HomA⊗Bopp(H 0(Y ),H 1(Y )) = 0.
• Perfect character maps: Y defines a character map (cf. above) and denoting by μ the char-

acter of X, the following holds for g ∈ G̃ and h ∈ N
G̃
(P ) such that (h, g) ∈ N�(G, G̃):

– μ(h,g) ∈ gcd(|C
G̃
(g)|, |CN

G̃
(P )(h)|)O;

– if one of g,h is an �′-element and the other is not, then μ(h,g) = 0.

Remark 4.32. Note that the data B defined above prescribe conditions only on
ResNG(P )×Gopp(X), except in the cases of iterated perverse complexes and perfect character
maps.

Let us explain how the definitions above relate to classical notions.
Let R = K and B be the data of character maps. Assume that G̃ = G. Then [X ⊗KG −] :

K0(KB0(G)) → K0(KB0(NG(P ))) is a morphism of abelian groups. This gives a bijection

B(G,G)/iso.
∼−→ HomZ-mod

(
K0

(
KB0(G)

)
,K0

(
KB0

(
NG(P )

)))
.

Let C be the class of acyclic complexes. Then, X induces a C-equivalence if and only if
[X ⊗KG −] is an isometry (we require isometries to be bijective). The isometry is perfect [6] if
B is taken to be the data of perfect character maps.

Let R be either k or O, and let C be given by complexes homotopy equivalent to 0 and B by
splendid complexes. An object X ∈ B(G,G) induces a C-equivalence if and only if it induces a
splendid Rickard equivalence [48].

Proposition 4.33. The data B defined above satisfy property (S3).

Proof. The case of character maps is immediate, while the case of perfect character maps follows
from [22, Theorem 1E, Theorem 2B, §6].

The properties (S3)(i), (iii), (iv), (v) are easy in all other cases.
Property (S3)(ii) for (iterated, increasing) perverse complexes follows from Lemma 4.29.
Let us consider the case of graded complexes. Take R = k. Let (G, G̃) ∈ E and X be a complex

of ((B ⊗Aopp)�E)-modules whose restriction to B ⊗Aopp is a two-sided tilting complex. There
is an E-invariant tight grading on B [54, §6.2.1]. Proposition 4.34 below shows that there is an
E-invariant grading on A and a compatible grading on X. Furthermore, if there is a non-negative
grading on A compatible with that on B via ResB⊗Aopp(X), then we can choose an E-invariant
compatible grading on A that is non-negative. We deduce that property (S3)(ii) holds.

The property is clear for the other types of data. �
The following proposition examines the behaviour of automorphisms and gradings under ac-

tions of finite groups.
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Proposition 4.34. Assume that k is algebraically closed. Let A and B be two finite-dimensional
k-algebras endowed with the action of a finite group G. Let OutG(A) be the image of CAut(A)(G)

in Out(A).
Let C be a complex of ((A ⊗ Bopp) � G)-modules such that ResA⊗Bopp(C) is a two-sided

tilting complex. Then the canonical isomorphism Out(A)0 ∼−→ Out(B)0 induced by C restricts to
an isomorphism OutG(A)0 ∼−→ OutG(B)0.

Assume that |G| ∈ k×, and fix a grading on B invariant under G. Then there is a grading on
A invariant under G and a structure of graded ((A ⊗ Bopp) � G)-module on C, where G is in
degree 0.

Assume that the morphism Gm → OutG(B) induced by the grading on B can be lifted to a
morphism Gm → Aut(B) such that the corresponding grading is non-negative. Then, it can also
be lifted to a morphism Gm → CAut(B)(G) such that the corresponding G-invariant grading is
non-negative.

Proof. We use the results of [54, §4.2]. Let D Pic(A) be the locally algebraic group whose
S points are the group of quasi-isomorphism classes of invertible complexes of (Aen ⊗
OS)-modules [58]. Let D PicG(A) be its subgroup of complexes that extend to a structure of
complexes of ((Aen � G) ⊗ OS)-modules. Let Picf (A) be the subgroup of D Pic(A) whose
S-points consist of isomorphism classes of (Aen ⊗OS)-modules that are locally free of rank 1 as
(A ⊗ OS)-modules and as (Aopp ⊗ OS)-modules. Let Picf,G(A) = Picf (A) ∩ D PicG(A). The
canonical map Picf (A) → Out(A) restricts to a map Picf,G(A) → OutG(A). The canonical iso-
morphism R Hom•

A(C,− ⊗L
A C) : D Pic(A)

∼−→ D Pic(B) restricts to isomorphisms Picf (A)
∼−→

Picf (B) and D PicG(A)
∼−→ D PicG(B), and hence to Picf,G(A)

∼−→ Picf,G(B). Passing to quo-
tients, we obtain an isomorphism between connected components OutG(A)0 ∼−→ OutG(B)0.

Let us assume now that there is a G-invariant grading on B , i.e., a morphism φ : Gm →
CAut(B)(G). This induces a morphism Gm → OutG(B), and hence a morphism ψ : Gm →
OutG(A). In order to show that this morphism lifts to a morphism Gm → CAut(A)(G), it is enough
to prove that there is a lift as a morphism of varieties, in a neighbourhood of the identity of Gm.

We have the canonical structure of a ((Ben � G) ⊗ OCAut(B)(G))-module on B ⊗ OCAut(B)(G):
the action of (B � G) ⊗OCAut(B)(G) is the canonical one, while the right action of b ∈ B is given
by right multiplication by ρ(b), where ρ : B → B ⊗OCAut(B)(G) is the universal algebra map: at
a closed point of CAut(B)(G), it is the corresponding automorphism of B .

Let L = R Hom•
Bopp(C,C⊗L

B (B⊗OCAut(B)(G))), a complex of ((Aen �G)⊗OCAut(B)(G))-mod-
ules. We have L(1) � A in D(Aen � G), hence there is a neighbourhood U of the identity in
CAut(A)(G) such that Hi(L) = 0 for i �= 0 and H 0(L) is an ((Aen � G) ⊗ OU)-module that
is free of rank 1 as a left (A ⊗ OU)-module and as a right (Aopp ⊗ OU)-module. Shrink-
ing U , we can assume that H 0(L) is isomorphic to A ⊗ OU as an ((A � G) ⊗ OU)-module,
since A is projective as an (A � G)-module, hence it is rigid. Fixing an isomorphism of
((A � G) ⊗ OU)-modules H 0(L)

∼−→ A ⊗ OU provides a morphism U → CAut(A)(G). We
obtain a morphism φ−1(U) → CAut(A)(G) lifting ψ locally and we are done.

Assume that there is a lift Gm → Aut(B) such that the grading is non-negative. Consider
the original grading on B . Given two simple B-modules S and T in degree 0, let f (S,T ) be
the smallest integer d such that there are simple B-modules S1, . . . , Sn in degree 0 and integers
d0, . . . , dn with

∑
di = d and

Ext1B
(
S,S1〈−d0〉

) �= 0, Ext1B
(
S1, S2〈−d1〉

) �= 0, . . . ,

Ext1
(
Sn−1, Sn〈−dn−1〉

) �= 0, Ext1
(
Sn,T 〈−dn〉

) �= 0.
B B
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[54, Proposition 5.14 and Lemma 5.15] shows the existence of a function d : SB → Z such
that given two simple B-modules S and T in degree 0, then f (S,T ) + d(S) − d(T ) � 0. Fur-
thermore, the proof of [54, Lemma 5.15] provides a function that is G-invariant, since f is
G-invariant. Given l ∈ Z, there is a decomposition as (B � G)-modules B = ⊕

l Pl , where
Pl � ⊕

d(S)=l P
dim S
S . The graded algebra of endomorphisms of

⊕
l Pl〈l〉 has a non-negative

grading, it is isomorphic to B as a G-algebra, and the induced morphism Gm → Out(B) is the
same as the one coming from the original grading on B [54, proof of Proposition 5.14]. �

We deduce from Propositions 4.10, 4.12, 4.31 and 4.33 our main reduction theorem.

Theorem 4.35. Let C be given by contractible or acyclic complexes, with R-projective compo-
nents. Let B be one of the data defined above.

Let F be a set of non-cyclic finite simple groups with non-trivial abelian Sylow �-subgroups.
Assume that, given G ∈ F , there is a pair (G, G̃) satisfying Broué’s (B,C)-conjecture with
the following property. Let Ĝ be a finite group containing G̃/Ol′(G̃) with G � Ĝ and Ĝ/G

a Hall �′-subgroup of Out(G). Then, we require that N
Ĝ
(P )/C

Ĝ
(P ) = N

G̃
(P )/C

G̃
(P ), where

P is a Sylow �-subgroup of G.
Let G be a finite group with an abelian Sylow �-subgroup. Assume that all non-cyclic compo-

sition factors of G with order divisible by � are in F . Let G̃ be a finite group containing G as a
normal subgroup of �′-index. Then (G, G̃) satisfies Broué’s (B,C)-conjecture.

4.4. Broué’s conjecture for principal blocks

Theorem 4.36. Let G be a finite group with an abelian Sylow �-subgroup P , where � = 2 or
� = 3.

(a) If � = 2 or (� = 3 and |P | � 9), then there is a splendid Rickard equivalence between B0(G)

and B0(NG(P )).
(b) If |P | � 9, such an equivalence can be chosen to be a composition of perverse equivalences.
(c) If |P | � �2 and P has no simple factor A6 or M22 (when � = 3), then the equivalence can

be chosen to be a single increasing perverse equivalence.

The case � = 3 of (a) is due to Koshitani and Kunugi [28], while the case � = 2 is due to
Marcus [38].

The existence of a splendid increasing perverse Rickard equivalence when P is cyclic is al-
ready known [12]. In the next two sections, we show that the theorem holds by reduction to
simple groups, using Theorem 4.35.

5. Defect 3 × 3

This section gives a combinatorial description of all principal blocks of finite groups with
Sylow 3-subgroup Z2

3 , up to splendid Morita equivalence, i.e., the source algebra is determined
by the combinatorics. The description is done in terms of perversity functions (both global and
local). Some blocks Morita equivalent to the local block are given non-zero perversity function:
in doing so, we try to follow the precise form of the abelian defect group conjecture for finite
groups of Lie type.
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5.1. Local structure

In this section we will collate the local information that we need to prove that the maps
we obtain from the algorithm are really derived equivalences. This includes information on the
centralizers of elements of order 3, and on automizers of Sylow 3-subgroups.

5.1.1. Decompositions
The structure of finite groups with elementary abelian Sylow 3-subgroups of order 9 is de-

scribed in the following proposition (cf. the proof of Proposition 4.10).

Proposition 5.1. Let G be a finite group with a Sylow 3-subgroup P isomorphic to Z2
3 . Assume

that O3′(G) = 1. Then O3′
(G) is simple or O3′

(G) = G1 × G2 where G1 and G2 are simple
groups with Sylow 3-subgroups of order 3.

When O3′
(G) = G1 × G2 in the proposition above, then B0(Gi) is splendidly Morita equiv-

alent to the principal block of the normalizer of a Sylow 3-subgroup (cf. Remark 3.7) and we
deduce that the same holds for G. We describe below perversity functions for other equivalences.

Let G be a finite simple group with Sylow 3-subgroup P of order 3. Then, G is of one of the
following types

• J1;
• PSL2(q), PSL2(r);
• PSL3(q);
• PSU3(r).

Here, q ≡ 2,5 (mod 9) (q > 2 for PSL2(q)) and r ≡ 4,7 (mod 9).
In all of those cases, |NG(P )/CG(P )| = 2. Denote by k (resp. ε) the trivial (resp. non-trivial)

simple kB0(NG(P ))-module. There is a perverse equivalence between the principal blocks of G

and NG(P ) corresponding to the following perversity functions:

k ε

J1 0 0
PSL2(q) 0 1
PSL2(r) 0 2
PSL3(q) 0 3
PSU3(r) 0 6

Remark 5.2. Note that PSL2(4) � PSL2(5) and the Deligne–Lusztig theory provides two differ-
ent perversity functions.

5.1.2. Automizers
We begin by describing the automizers for almost simple groups with Sylow 3-subgroups

isomorphic to Z2
3 .

Let G̃ be an almost simple group, i.e., a finite group whose derived subgroup G is simple and
is the unique minimal non-trivial normal subgroup. Let P be a Sylow 3-subgroup of G. Assume
that P � Z2

3 and 3 � [G̃ : G]. We list the almost simple groups G̃ modulo the equivalence relation
generated by G̃ ∼ H̃ if [G,G] = [H,H ], H̃ � G̃ and G̃ = H̃C ˜ (P ).
G
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The classification is the following. We indicate first the simple groups and then the almost
simple ones, modulo equivalence.

• Z4: A6, A7;
• Z8: A6.22 = PGL2(9);
• Q8: M22, PSU3(q), PSL3(r); A6.23 = M10;
• D8: A8, PSp4(q), PSp4(r), PSL4(q), PSL5(q), PSU4(r), PSU5(r); S6, S7;
• SD16: M11, M23, HS; A6.22 = Aut(A6), M22.2,

– PSp4(q).Z2n if q = 2n and PSp4(r).Z2n if r = 2n (extension by the extraordinary graph
automorphism),

– PSL3(r).Z2 (extension by the graph automorphism),
– PSU3(q).Zn where q2 = pn and p is prime (extension by the Frobenius automorphism

over Fp).

Here, q ≡ 2,5 (mod 9) (q > 2 for PSU3(q) and PSp4(q)) and r ≡ 4,7 (mod 9), so that
� | Φ1(r) and � | Φ2(q). Note that n is even in the extended group PSU3(q).Zn. Note finally that
the square of the extraordinary graph automorphism is the Frobenius over F2.

5.1.3. Centralizers of 3-elements
The structure of the centralizers of 3-elements influences the local perversity functions, for

finite groups of Lie type. We provide here a description of centralizers for those finite groups
considered in Section 5.1.2.

Proposition 5.3. Let G̃ be one of the groups listed in Section 5.1.2 and assume that G is an
alternating group or is sporadic. Let x be an element of order 3 in G̃. We have C

G̃
(x) = 〈x〉×A,

where A is given in the table below. When there is more than one conjugacy class of elements of
order 3, we list all possibilities.

G̃ A6 A7 PGL2(9) M10 M22 S6 S7 A8

A Z3,Z3 A4,Z3 Z3 Z3 A4 S3,S3 S3,S4 S3,A5

G̃ Aut(A6),M11 M22.2 M23 HS

A S3 S4 A5 S5

Proof. The proof of this is trivial for the alternating groups and follows from the information in
the Atlas for the sporadic groups [13]. �

We now move on to the groups of Lie type, where we choose convenient representatives for
G̃ up to equivalence.

Proposition 5.4. Let G̃ be one of the groups of Lie type in Section 5.1.2. Let x be an element of
order 3 in G̃. We have C

G̃
(x) = 〈x〉×A, where A is given in the table below. When there is more

than one conjugacy class of elements of order 3, we list all possibilities.
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G̃ A

PSL3(r) (Z(r−1)/3)2 � Z3
PSL3(r).Z2 ((Z(r−1)/3)2 � Z3) � Z2
PSU3(q) (Z(q+1)/3)2 � Z3
PSU3(q).Zn ((Z(q+1)/3)2 � Z3) � Zn

Sp4(q) SL2(q) × Z(q+1)/3, GU2(q)/Z3
Sp4(q).Z2n (SL2(q) × Z(q+1)/3) � Zn, (GU2(q)/Z3) � Zn

Sp4(r) SL2(r) × Z(r−1)/3, GL2(r)/Z3
Sp4(r).Z2n (SL2(r) × Z(r−1)/3) � Zn, (GL2(r)/Z3) � Zn

GL4(q) GL2(q) × Z
(q2−1)/3, GL2(q2)/Z3

GU4(r) GU2(r) × Z
(r2−1)/3, GL2(r2)/Z3

GL5(q) GL3(q) × Z
(q2−1)/3, Zq−1 × GL2(q2)/Z3

GU5(r) GU3(r) × Z
(r2−1)/3, Zr+1 × GL2(r2)/Z3

Proof. These descriptions are well known. Here are some references

(1) PSL3(r): see [32, Lemma 3.1].
(2) PSU3(q): see [27, Lemma 2.5].
(3) Sp4(q) (Sp4(r) is similar): see [41, Example 3.6].
(4) GL4(q): see [30, Lemma 2.2].
(5) GU4(r): see the proof of [31, Lemma 2.2].
(6) GL5(q): see [30, Lemma 2.6].
(7) GU5(r): see the proof of [31, Lemma 2.2]. �
5.1.4. Reductions for Lie type

We now reduce the number of groups that need to be checked to finitely many by using
splendid Morita equivalences between groups of a given Lie type.

• For G = PSL3(r), in [32, Theorem 1.2] it is shown that the principal block of G is splendidly
Morita equivalent to that of PSL3(4).

• For G = PSU3(q), in [27, Theorem 0.2] it is shown that the principal block of G is splendidly
Morita equivalent to that of PSU3(2) = Z2

3 � Q8.
• For G = PSL4(q), in [30, Theorem 0.3] it is shown that the principal block of G is splendidly

Morita equivalent to that of PSL4(2).
• For G = PSL5(q), in [30, Theorem 0.2] it is shown that the principal block of G is splendidly

Morita equivalent to that of PSL5(2) (and also to that of N ).
• For G = PSp4(q), in [41, Example 3.6] it is shown that the principal block of G is splendidly

Morita equivalent to that of PSp4(2).
• The principal 3-blocks of PSp4(r), PSU4(r), and PSU5(r) are splendidly Morita to those

corresponding to r = 4 (cf. Remark 3.13).

Hence the simple groups that we have to analyze are PSL3(4), PSU3(2), PSL4(2), PSL5(2),
PSU4(4), PSU5(4), PSp4(2) and PSp4(4) of Lie type, and A6, A7, M11, M22, M23 and HS.

5.2. Results of the algorithm

In the next four subsections we will describe the result of the algorithm (see Section 3.2.2)
on various simple (and in two cases almost simple) groups G with a Sylow 3-subgroup P
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isomorphic to Z2
3 . These are divided according to the automizer E = NG(P )/CG(P ), in the

order Z4, Q8, D8 and finally SD16.
We assume that K is big enough for the finite groups considered. Each section will follow the

same template for automizer E: we start by giving information on the group P �E, in particular
its simple modules and the radical series for trivial source modules (including projectives). We
write N = NG(P ). Note that the canonical isomorphism N/O3′(N)

∼−→ P � E gives an isomor-
phism of algebras kB0(N)

∼−→ k(P � E) and we will freely identify modules in the principal
blocks of N with k(P � E)-modules. We list in a table the perversity functions and the local
twists (local perversity functions) as a summary of the results to be described in the subsections.
Note that a row of the table determines the block up to a splendid Morita equivalence. This
applies as well for composite perverse equivalences.

In the subsections we examine each (almost) simple group in turn, describing first the sim-
ple modules and Green correspondents, then giving the perversity function π together with the
decomposition matrix. The Green correspondents are known in Lie type when “� | (q −1)” (The-
orem 3.12). In the other cases, they can be determined by a computer by constructing the simple
modules and decomposing their restriction. The identification of N with Z2

3 �Z4, . . . ,Z
2
3 �SD16

is not canonical. The choice we make affects the description of the Green correspondents Ci .
When G = G(q0) is a finite group of Lie type, we provide the generic degree of the irreducible
characters, a polynomial in q that specializes to the actual degree for q = q0.

We give the decomposition matrix of B0(G) in an upper triangular form (in some cases, we
only provide the upper square part). This gives rise to a basic set of “unipotent characters” {χi}i
in bijection with simple modules (we always choose χ1 = 1). They agree with the unipotent char-
acters for Lie type, except for PSU3(r) and PSL3(q), where we need a different (and larger) set.
Our numbering of simple modules gives an implicit bijection between simple B0(G)-modules
Si and simple B0(N)-modules Ti . We construct the images Xi in B0(N) of the simple modules
under the perverse equivalence determined by π . We give explicit descriptions of the complexes
Xi in all cases where feasible, and when they are not simple, i.e., when π(i) �= 0. We describe the
cohomology of the complexes Xi in table form. Write [Xi] = ∑

j aij [Tj ] in K0(kN). We have

[Si] = ∑
j (−1)π(j)aij d(χj ), where d : K0(KG) → K0(kG) is the decomposition map. We in-

dicate
∑

j (−1)π(j)aijχj = ∑
j,r (−1)π(j)+r [Hr(Xi) : Tj ]χj in the table (column “[Si]”). This

explains how the classes [Xi] determine the decomposition matrix of B0(G).
The last ingredient in the construction is a twist of the stable equivalence between B0(G)

and B0(N). This is determined by functions ηR , where R runs over N -conjugacy classes of
subgroups of order 3 of P . This twist is only needed in some cases where E = D8 or E = SD16.
We determine the images Yi of the modules Si under the twisted stable equivalence, following
Section 3.3.4. The maps in the complexes are uniquely determined, as we are in the setting
described in Remark 3.9. The problem of actually finding appropriate twist functions is discussed
in Remark 5.8. Note that in some cases we have been unable to find perverse equivalences without
introducing local perverse twists.

We show that Xi is isomorphic to Yi in the stable category, as needed to obtain a per-
verse equivalence between kB0(G) and kB0(N) lifting the twisted stable equivalence (cf. Sec-
tion 3.2.2).

In all cases it is immediate to check that the perversity function π is invariant under the action
of field automorphisms and under the action of the outer automorphism group of G. Whenever
this automorphism group is non-trivial, this follows from the fact that the function π takes the
same value on non-trivial “unipotent” characters of the same degree. Also, the twisted stable
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equivalences are invariant under the outer automorphism group of G. This enables us to use
Corollary 4.30 and the descent method of Section 3.2.1.

In the last paragraph of Section 5.6.4.3, we give an example of a non-principal block.
All the equivalences we construct are actually defined over F3, except the one for A7 in

Section 5.3.1. Note that when E �� Z4 then the simple F3E-modules are absolutely simple.
Let us introduce some more notation. The trivial modules are labelled S1 and T1. Often when

describing the structure of a kN -module we will abbreviate Ti to i, and to save space we separate
the radical layers by /, so a module with T1 in the head and T2 in the second radical layer would
be described as 1/2. The projective cover of Ti will be denoted by P(i).

Remark 5.5. Okuyama has constructed derived equivalences for all blocks of simple groups with
Sylow 3-subgroup Z2

3 [41]. Note that the equivalences in [41] are all compositions of perverse
equivalences. If the subsets I0, . . . , Ir used by Okuyama are nested (i.e., Il ⊂ Im or Im ⊂ Il for
all l,m), then the composition itself is perverse.

5.3. Automizer Z4

Over an algebraically closed field of characteristic 3, the group Z2
3 � Z4 has four simple,

1-dimensional modules, but over F3 (or any other field without a fourth root of unity) it pos-
sesses only three. We denote the two 1-dimensional modules over F3 by T1 and T2, and the
2-dimensional simple (but not absolutely simple) module by T3, which over F9 splits into T3,1
and T3,2.

P(1) =

1
3

122
3
1

, P(2) =

2
3

112
3
2

, P(3) =

3
1122
333
1122

3

.

In this section we will prove that the perverse form of Broué’s conjecture holds for A7, but not
for A6. Instead we set up a perverse equivalence from A6 to A7. (Note that if G̃ is an extension
of S6, rather that just A6, then the perverse form of Broué’s conjecture does hold for G̃, as we
shall see in the next section.)

The perversity function is given in the following table.

T1 T2 T3

A7 0 1 0

In addition, there is a composition of two perverse equivalences for A6

kB0(A6)
(0,0,1)−−−−→ kB0(A7)

(0,1,0)−−−−→ kB0(N).

5.3.1. The alternating group A7
Let G =A7.

5.3.1.1. Simple modules. There are four simple modules in kB0(G), of dimensions 1, 10,
10 and 13. Over F3, the two 10-dimensional modules S3,1 and S3,2 amalgamate into a
20-dimensional module S3. Write S2 for the 13-dimensional simple module. The Green
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correspondents are

C1 = 1, C2 =
2
3
2
, C3 = 3.

5.3.1.2. The perverse equivalence. There is a perverse equivalence between kB0(G) and
kB0(N) with the π -values on the left, which makes the decomposition matrix look as follows.
Note that this equivalence has been constructed already by Okuyama [41, Example 4.1].

π Ord. Char. S1 S3,1 S3,2 S2

0 1 1
0 10 1
0 10 1
1 35 2 1 1 1

14 1 1
14 1 1

We have

X2 : 0 → P(2) → C2 → 0,

and H−1(X2) = Ω−1(C2) = 11/3/2.

5.3.2. The alternating group A6
Let G =A6.

5.3.2.1. Simple modules. There are four simple modules in kB0(G), of dimensions 1, 3, 3
and 4. Over F3, the two 3-dimensional modules amalgamate into a 6-dimensional module S3.
We label the 4-dimensional simple module S2.

We construct a perverse equivalence between the principal blocks of G and H =A7 lifting the
stable equivalence given by induction and restriction. We label the three simple F3H -modules in
the principal block by U1, U2 and U3, with the ordering taken from Section 5.3.1. The images
Ci of Si in H under the stable equivalence are

C1 = U1, C2 = U2, C3 =
U3

U1 ⊕ U1
U3

.

5.3.2.2. The perverse equivalence. We set π(U1) = π(U2) = 0 and π(U3) = 1. Let Xi be the
complex for the image of the ith simple module for the corresponding perverse equivalence. We
have X1 = C1 and X2 = C2. The structure of P(U3) is

P(U3) =

U3
U1 ⊕ U1

U2 ⊕ U3 ⊕ U2
U1 ⊕ U1

U3

.

We deduce that X3 = (0 →P(U3) → C3 → 0), with cohomology
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H−1(X3) = (U2 ⊕ U2)/(U1 ⊕ U1)/U3.

It satisfies the conditions of the algorithm, so produces a perverse equivalence. This equivalence
has been constructed by Okuyama [41, Example 4.2].

5.3.2.3. Outer automorphisms. The group Out(A6) has order 4, with three order-2 extensions,
yielding the groups S6, PGL2(9) and M10 (the one-point stabilizer of the Mathieu group M11). In
Section 5.5.1 we will provide a perverse equivalence between the principal block of S6 and the
principal block of its normalizer, and this will be compatible with the outer automorphism of S6.
For the other two extensions PGL2(9) and M10, the decomposition matrices are not triangular,
and so there can be no perverse equivalence for their principal blocks. However, since both of the
equivalences Db(kB0(G))

∼−→ Db(kB0(H)) (from above) and Db(kB0(H))
∼−→ Db(kB0(N))

(from Section 5.3.1) are compatible with exchanging the two simple modules defined over F9,
the derived equivalence obtained by composing these two perverse equivalences will extend to
both PGL2(9) and M10.

Remark 5.6. While the decomposition matrix of B0(G) is triangular, the fact that the princi-
pal block of PGL2(9) has a non-triangular decomposition matrix means that there can be no
perverse equivalence between kB0(G) and kB0(N). Indeed, all standard stable equivalences are
compatible with the action of PGL2(9)/G by Remark 3.10, hence all perverse equivalences ex-
tend to PGL2(9) since the two modules of dimension 3 in B0(G) are fixed by PGL2(9) (cf.
Corollary 4.30).

5.4. Automizer Q8

For the group Z2
3 � Q8, there are five simple F3-modules, all absolutely simple. The first

four are 1-dimensional, and the last is 2-dimensional. The three non-trivial 1-dimensional mod-
ule are permuted transitively by the S3-group of outer automorphisms of Q8. The projective
indecomposable modules are as follows.

P(1) =

1
5

234
5
1

, P(2) =

2
5

134
5
2

, P(3) =

3
5

124
5
3

, P(4) =

4
5

123
5
4

, P(5) =

5
1234
555
1234

5

.

The perversity functions are given in the following table.

T1 T2 T3 T4 T5

PSL3(r) 0 3 3 3 2
PSU3(q) 0 6 6 6 4

In addition, there is a composition of two perverse equivalences for principal blocks of M22
and for M10 (these blocks are splendidly Morita equivalent) given by the composite π -values
(0,1,1,0,0), (0,0,0,0,1).

kB0(M22)-mod � kB0(M10)-mod
(0,0,0,0,1)−−−−−−→ • (0,1,1,0,0)−−−−−−→ kB0(N)-mod.
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5.4.1. The group PSL3(4)

Let G = PSL3(4). Okuyama has shown that the principal blocks of G and N are derived
equivalent [41, Example 4.6]. In this section, we produce a perverse equivalence.

5.4.1.1. Simple modules. There are five simple modules in the principal 3-block, of dimensions
1, 15, 15, 15, and 19. We label the 19-dimensional module S5, and the three 15-dimensional
simple modules S2 to S4. There is an S3-group of outer automorphisms that permutes transitively
S2, S3 and S4. We choose the Si so that the Green correspondents Ci are

C1 = 1, C2 =
5
12
5

, C3 =
5

13
5

, C4 =
5

14
5

, C5 =
234
55
234

.

5.4.1.2. The perverse equivalence. There is a perverse equivalence between kB0(G) and
kB0(N) with the π -values on the left, which makes the decomposition matrix look as follows.
We provide the generic degree for the corresponding irreducible characters of PSL3(q).

π Ord. Char. S1 S5 S2 S3 S4

0 1 1
2 q(q + 1) 1 1
3 (q + 1)(q2 + q + 1)/3 1 1 1
3 (q + 1)(q2 + q + 1)/3 1 1 1
3 (q + 1)(q2 + q + 1)/3 1 1 1

q3 1 1 1 1

The explicit complexes are as follows.

X5: 0 → P(5) → P(234) → C5 → 0,

X2: 0 →P(2) →P(34) → P(5) → C2 → 0,

X3: 0 →P(3) →P(24) → P(5) → C3 → 0,

X4: 0 →P(4) →P(23) → P(5) → C4 → 0.

The cohomology of the complexes above is displayed in the following table.

Xi H−3 H−2 H−1 [Si ]
5 1/5 11 5 − 1
2 1/5/2 1 2 − 5
3 1/5/3 1 3 − 5
4 1/5/4 1 4 − 5

5.4.2. The group PSU3(2)

Let G = PSU3(2) = Z2 � Q8.
3
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We construct a self-perverse equivalence of kG with the π -values on the left, which makes
the decomposition matrix look as follows.

π Ord. Char. S1 S5 S2 S3 S4

0 1 1
4 q(q − 1) 1
6 (q − 1)(q2 − q + 1)/3 1
6 (q − 1)(q2 − q + 1)/3 1
6 (q − 1)(q2 − q + 1)/3 1

q3 1 2 1 1 1

The explicit complexes are as follows.

X5: 0 → P(5) → P(234) → P(234) → P(5) → C5 → 0,

X2: 0 → P(2) → P(34) →P(234) → P(25) → P(2) → C2 → 0,

X3: 0 → P(3) → P(24) →P(234) → P(35) → P(3) → C3 → 0,

X4: 0 →P(4) →P(23) →P(234) → P(45) →P(4) → C4 → 0.

The cohomology of the complexes above is displayed in the following table.

Xi H−6 H−5 H−4 H−3 H−2 H−1 [Si ]
5 1/5 11 11 1 5
2 1/5/2 1 ⊕ 1/5 11 1 2
3 1/5/3 1 ⊕ 1/5 11 1 3
4 1/5/4 1 ⊕ 1/5 11 1 4

Remark 5.7. Note that the perversity function for PSU3(r) is twice that of PSL3(q), after identi-
fication of the “unipotent characters”. This is our reason for providing this perverse equivalence,
instead of the identity.

5.4.3. The Mathieu group M22
Let G = M22. By [41, Example 4.5], there is a splendid Morita equivalence between kB0(G)

and kB0(H), where H = M10. There is an embedding of H inside G so that NH (P ) = N .
The composition of the splendid Morita equivalence from kB0(G) to kB0(H) and the derived
equivalence kB0(H) → kB0(N) from Section 5.3.2, yields a derived equivalence kB0(G) →
kB0(N). There can be no perverse equivalence between kB0(G) and kB0(N) since there is none
between kB0(H) and kB0(N).

5.4.3.1. Outer automorphisms. There is an outer automorphism of M22, and this will be dis-
cussed in Section 5.6.3. Note that the splendid Morita equivalence from kB0(G) to kB0(H)

extends to one between kB0(M22.2) and kB0(A6.22).

5.5. Automizer D8

For the group N = Z2
3 �D8, there are five simple F3-modules, all absolutely simple. The first

four are 1-dimensional, and the last is 2-dimensional. We denote by T4 the exterior square of the
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2-dimensional module. The modules T2 and T3 are permuted by the outer automorphism of D8.
There are two Klein four subgroups lying in D8. One acts trivially on T2 and not on T3, while the
other acts trivially on T3 and not on T2. The projective indecomposable modules are as follows.

P(1) =

1
5

123
5
1

, P(2) =

2
5

124
5
2

, P(3) =

3
5

134
5
3

, P(4) =

4
5

234
5
4

, P(5) =

5
1234
555
1234

5

.

We also need relative projective modules. There are two conjugacy classes of subgroups of or-
der 3 in N , with representatives Q1 and Q2. We denote by M1,j , . . . ,M4,j the indecomposable
summands of the permutation module IndN

Qi
k.

M1,1 =
5

12
5

, M2,1 =
5
34
5

, M3,1 =
12
5
12

, M4,1 =
34
5
34

,

M1,2 =
5

13
5

, M2,2 =
5
24
5

, M3,2 =
13
5
13

, M4,2 =
24
5
24

.

The perversity and local twist functions are given in the following table.

T1 T2 T3 T4 T5 η(Q1) η(Q2)

S7 0 1 1 0 0 0 0
PSp4(q),S6 0 3 3 4 3 1 1
PSp4(r) 0 6 6 8 6 2 2
PSL4(q),A8 0 3 5 6 4 2 1
PSU4(r) 0 6 10 12 8 4 2
PSL5(q) 0 6 8 10 7 3 2
PSU5(r) 0 12 16 20 14 6 4

In addition, there is a composition of two perverse equivalences for PGL2(9) = A6.22 given
by the composite π -values (0,1,1,0,0), (0,0,0,0,1) (and η = 0).

Remark 5.8. Let us explain how we find the non-trivial local twists η. They are needed when
the local equivalences are not Morita. If one merely runs the algorithm to find a perverse equiv-
alence, one finds that the C0

Si
’s (constructed as in Section 3.1.2) are not isomorphic to the Ci ’s

in the stable category. In the examples, there is a module Ni and a complex Ni → Ci that is
isomorphic to C0

Si
in the stable category. More precisely, the complex CSi

is quasi-isomorphic to

a complex 0 → C
′−π(i)
Si

→ ·· · → C′−2
Si

→ C′−1
Si

⊕ Ni → Ci → 0 where the C′r
Si

are projective. If
the functions η take value in {0,1}, then Ni is a sum of a module projective relatively to Q1 and
a module projective relatively to Q2.

For PSp4(4), PSL4(2), PSU4(4), PSL5(2) and PSU5(4) below, the modules Ni do not have
these relative projectivity properties, and the local twists will need to take values > 1. Note
nevertheless that Ni is filtered by relative projective modules.

5.5.1. The group PSp4(2) =S6
Let G = PSp4(2) =S6.
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5.5.1.1. Simple modules. There are five simple modules in the principal 3-block, of dimensions
1, 1, 4, 4, and 6. We label the non-trivial 1-dimensional module S5, the 6-dimensional simple
module S4, and the two 4-dimensional simple modules S2 and S3. There is an outer automor-
phism that swaps S2 and S3 and we choose the labelling so that the Green correspondents Ci

are

C1 = 1, C2 =
3
5
3
, C3 =

2
5
2
, C4 =

5
14
5

, C5 = 4.

5.5.1.2. The perverse equivalence. There is a perverse equivalence between kB0(G) and
kB0(N) with local twist ηQ1 = ηQ2 = 1 and with the π -values on the left, which makes the
decomposition matrix look as follows.

π Ord. Char. S1 S5 S2 S3 S4

0 1 1
3 q(q − 1)2/2 1
3 q(q2 + 1)/2 1 1
3 q(q2 + 1)/2 1 1
4 q4 1 1 1 1 1

(q − 1)(q2 + 1) 1 1
(q − 1)(q2 + 1) 1 1
q(q − 1)(q2 + 1) 1 1
q(q − 1)(q2 + 1) 1 1

The explicit complexes are as follows.

X5: 0 → P(5) → P(234) → M4,1 ⊕ M4,2 → C5 → 0,

X2: 0 →P(2) →P(5) →P(3) ⊕ M1,2 → C2 → 0,

X3: 0 →P(3) →P(5) →P(2) ⊕ M1,1 → C3 → 0,

X4: 0 → P(4) → P(4) → P(23) → P(5) → C4 → 0.

The cohomology of the complexes above is displayed in the following table.

Xi H−4 H−3 H−2 H−1 [Si ]
5 1/5 1 5
2 2 1 2 − 1
3 3 1 3 − 1
4 23/5/4 1 4 + 1 − 2 − 3 − 5

5.5.2. The group PSp4(4)

Let G = PSp4(4).

5.5.2.1. Simple modules. There are five simple modules in the principal 3-block, of dimensions
1, 34, 34, 50, and 256. We label the 50-dimensional module S4 and the 256-dimensional mod-
ule S5. The two 34-dimensional modules S2 and S3 are permuted by an outer automorphism and
we choose the Si so that the Green correspondents are Ci = Ti .
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5.5.2.2. The perverse equivalence. There is a perverse equivalence between kB0(G) and
kB0(N) with local twist ηQ1 = ηQ2 = 2 and the π -values on the left, which makes the decom-
position matrix look as follows.

π Ord. Char. S1 S5 S2 S3 S4

0 1 1
6 q(q + 1)2/2 1
6 q(q2 + 1)/2 1
6 q(q2 + 1)/2 1
8 q4 1

(q + 1)(q2 + 1) 1 1 1
(q + 1)(q2 + 1) 1 1 1
q(q + 1)(q2 + 1) 1 1 1
q(q + 1)(q2 + 1) 1 1 1

The explicit complexes are as follows.

X2: P(2) → P(5) → P(35) →P(234) → P(4) ⊕ M4,2 → M4,2 → C2,

X3: P(3) → P(5) → P(25) →P(234) → P(4) ⊕ M4,1 → M4,1 → C3,

X5: P(234) →P(2344) →P(455) → P(5) ⊕ M1,1 ⊕ M1,2 → M1,1 ⊕ M1,2 → C5,

X4: P(4) → P(4) → P(4) → P(5)

→ P(55) →P(23445) →P(234) ⊕ M4,1 ⊕ M4,2 → M4,1 ⊕ M4,2 → C4.

The cohomology of the complexes above is displayed in the following table.

Xi H−8 H−7 H−6 H−5 H−4 H−3 H−2 H−1 [Si ]
2 2 1 1 2
3 3 1 1 3
5 1/5 1 1 1 5
4 23/5/4 23/5 1 1 1 1 4

5.5.3. The group PSL4(2) =A8

Let G = PSL4(2) = A8. There is an easy perverse equivalence constructed by Okuyama [41,
Example 4.3]: the perversity function vanishes on all simple modules except one, where the
π -value is 1. However, this is not compatible with the Deligne–Lusztig theory for PSL4(q), and
we provide a different perverse equivalence.

5.5.3.1. Simple modules. There are five simple modules in the principal 3-block, of dimensions
1, 7, 13, 28 and 35. We label the modules S1 to S5 so that they have dimensions 1, 13, 35, 28
and 7 respectively. The Green correspondents Ci are

C1 = 1, C2 =
3
5
3
, C3 = 5, C4 = 2, C5 = 4.



44 D.A. Craven, R. Rouquier / Advances in Mathematics 248 (2013) 1–58
5.5.3.2. The perverse equivalence. There is a perverse equivalence between kB0(G) and
kB0(N) with local twist ηQ1 = 2 and ηQ2 = 1 and with the π -values on the left, which makes
the decomposition matrix look as follows.

π Ord. Char. S1 S2 S5 S3 S4

0 1 1
3 q(q2 + q + 1) 1 1
4 q2(q2 + 1) 1 1
5 q3(q2 + q + 1) 1 1 1 1
6 q6 1 1 1

(q − 1)2(q2 + q + 1) 1
q2(q − 1)2(q2 + q + 1) 1
(q − 1)(q2 + 1)(q2 + q + 1) 1
q(q − 1)(q2 + 1)(q2 + q + 1) 1 1 1

The explicit complexes are as follows.

X2: 0 → P(2) → P(5) → P(3) ⊕ M1,2 → C2 → 0,

X5: 0 → P(5) → P(345) → P(234) ⊕ M4,1 → M4,1 ⊕ M4,2 → C5 → 0,

X3: 0 → P(3) → P(34) →P(45) → P(5) ⊕ M1,1 → M1,1 ⊕ M1,2 → C3 → 0,

X4: 0 → P(4) → P(4) → P(3) → P(3) → P(4) → M4,2 → C4 → 0.

The cohomology of the complexes above is displayed in the following table.

Xi H−6 H−5 H−4 H−3 H−2 H−1 [Si ]
2 2 1 2 − 1
5 12/5 1 1 5 − 2 + 1
3 1/5/3 1 1 3 − 5 − 1
4 23/5/4 2 1 1 4 + 5 − 3

5.5.4. The group PSU4(4)

Let G = PSU4(4). In [31, Corollary 2.7], it is shown that the principal block of G is splendidly
Morita equivalent to that of N . We provide a different equivalence.

5.5.4.1. Simple modules. There are five simple modules in the principal 3-block, of dimensions
1, 52, 272, 832 and 4096. We label the modules S1 to S5 so that they have dimensions 1, 52, 832,
4096 and 272 respectively. The Green correspondents are Ci = Ti .

5.5.4.2. The perverse equivalence. There is a perverse equivalence between kB0(G) and
kB0(N) with local twist ηQ1 = 4 and ηQ2 = 2 and with the π -values on the left, which makes
the decomposition matrix look as follows.
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π Ord. Char. S1 S2 S5 S3 S4

0 1 1
6 q(q2 − q + 1) 1
8 q2(q2 + 1) 1
10 q3(q2 − q + 1) 1
12 q6 1

(q + 1)2(q2 − q + 1) 1 1 1
(q + 1)(q2 + 1)(q2 − q + 1) 1 1 1
q2(q + 1)2(q2 − q + 1) 1 1 1
q(q + 1)(q2 + 1)(q2 − q + 1) 1 1 1

The explicit complexes are too long to write down here, but we make a record of the relatively
projective modules involved.

Xi −4 −3 −2 −1

X2 M4,2 M4,2
X5 M1,1 M1,1 M1,1 ⊕ M1,2 M1,1 ⊕ M1,2
X3 M4,1 M4,1 M4,1 M4,1
X4 M4,1 M4,1 M4,1 ⊕ M4,2 M4,1 ⊕ M4,2

The cohomology of the complexes above is displayed in the following table.

Xi H−12 H−11 H−10 H−9 H−8 H−7 H−6 H−5 H−4 H−3 H−2 H−1 [Si ]
X2 2 1 1 2
X5 12/5 12 1 1 1 1 5
X3 1/5/3 12/5 2 1 1 3
X4 23/5/4 5/23 2/5 12/5 1 1 1 1 1 4

5.5.5. The group PSL5(2)

Let G = PSL5(2). In [30, Theorem 0.2] it is shown that the principal block of G is splendidly
Morita equivalent to that of N . We provide here a different equivalence.

5.5.5.1. Simple modules. There are five simple modules in the principal 3-block, of dimensions
1, 124, 155, 217 and 868. We label the modules S1 to S5 so that they have dimensions 1, 124,
217, 868 and 155 respectively. The Green correspondents Ci are

C1 = 1, C2 = 2, C3 = 4, C4 = 3, C5 = 5.

5.5.5.2. The perverse equivalence. There is a perverse equivalence between kB0(G) and
kB0(N) with local twists ηQ1 = 3 and ηQ2 = 2 and with the π -values on the left, which makes
the decomposition matrix look as follows.
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π Ord. Char. S1 S2 S5 S3 S4

0 1 1
6 q2(q4 + q3 + q2 + q + 1) 1
7 q3(q2 + 1)(q2 + q + 1) 1 1 1
8 q4(q4 + q3 + q2 + q + 1) 1 1 1
10 q10 1 1 1

(q − 1)(q2 + 1)(q4 + q3 + q2 + q + 1) 1
(q − 1)2(q2 + q + 1)(q4 + q3 + q2 + q + 1) 1
q2(q − 1)2(q2 + q + 1)(q4 + q3 + q2 + q + 1) 1
q3(q − 1)(q2 + 1)(q4 + q3 + q2 + q + 1) 1 1 1

The explicit complexes are as follows.

X2: P(2) → P(5) → P(35) →P(234) → P(4) ⊕ M4,2 → M4,2 → C2,

X5: P(5) → P(345) → P(23344) → P(23445)

→ P(455) ⊕ M1,1 → P(5) ⊕ M1,1 ⊕ M1,2 → M1,1 ⊕ M1,2 → C5,

X3: P(3) →P(34) → P(45) → P(55) →P(3455)

→P(23445) ⊕ M4,1 → P(234) ⊕ M4,1 ⊕ M4,2 → M4,1 ⊕ M4,2 → C4,

X4: P(4) → P(4) → P(4) → P(34) → P(35)

→ P(55) → P(2345) → P(234) ⊕ M4,1 → P(4) ⊕ M4,1 → M4,1 → C3.

The cohomology of the complexes above is displayed in the following table.

Xi H−10 H−9 H−8 H−7 H−6 H−5 H−4 H−3 H−2 H−1 [Si ]
X2 2 1 1 2
X5 12/5 1 1 1 1 5 − 1 − 2
X3 1/5/3 1 1 1 1 3 − 5 + 1
X4 23/5/4 5/23 2/5 1 1 4 + 2 − 5

5.5.6. The group PSU5(4)

Let G = PSU5(4).

5.5.6.1. Simple modules. There are five simple modules in the principal 3-block, of dimen-
sions 1, 3280, 14 144, 52 840 and 1 048 576. We label the modules S1 to S5 so that they have
dimensions 1, 52 840, 3280, 1 048 576 and 14 144. The Green correspondents are Ci = Ti .

5.5.6.2. The perverse equivalence. There is a perverse equivalence between kB0(G) and
kB0(N) with local twist ηQ1 = 6 and ηQ2 = 4 and with the π -values on the left, which makes
the decomposition matrix look as follows.
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π Ord. Char. S1 S2 S5 S3 S4

0 1 1
12 q2(q4 − q3 + q2 − q + 1) 1
14 q3(q2 + 1)(q2 − q + 1) 1
16 q4(q4 − q3 + q2 − q + 1) 1
20 q10 1

(q + 1)(q2 + 1)(q4 − q3 + q2 − q + 1) 1 1 1
(q + 1)2(q2 − q + 1)(q4 − q3 + q2 − q + 1) 1 1 1
q3(q + 1)(q2 + 1)(q4 − q3 + q2 − q + 1) 1 1 1
q2(q + 1)2(q2 − q + 1)(q4 − q3 + q2 − q + 1) 1 1 1

The explicit complexes are too long to write down here, but we make a record of the relatively
projective modules involved.

Xi −6 −5 −4 −3 −2 −1

X2 M4,2 M4,2 M4,2 M4,2
X5 M1,1 M1,1 M1,1 ⊕ M1,2 M1,1 ⊕ M1,2 M1,1 ⊕ M1,2 M1,1 ⊕ M1,2
X3 M4,1 M4,1 M4,1 M4,1 M4,1 M4,1
X4 M4,1 M4,1 M4,1 ⊕ M4,2 M4,1 ⊕ M4,2 M4,1 ⊕ M4,2 M4,1 ⊕ M4,2

The cohomology of the complexes above is displayed in the following table.

Xi H−20 H−19 H−18 H−17 H−16 H−15 H−14 H−13 H−12 H−11

X2 2
X5 12/5 12 1 1
X3 1/5/3 12/5 2
X4 23/5/4 5/23 23/5 5/23 2/5 12/5 1 1

Xi H−10 H−9 H−8 H−7 H−6 H−5 H−4 H−3 H−2 H−1 [Si ]
X2 1 1 1 1 2
X5 1 1 1 1 1 1 5
X3 1 1 1 1 3
X4 1 1 1 1 1 1 1 4

5.6. Automizer SD16

The group Z2
3 � SD16 has seven simple F3-modules, all absolutely simple. There are four

of dimension 1 – denoted T1 to T4 – and three of dimension 2 – denoted T5 to T7. They are
chosen so that kerT3 = D8 and kerT4 = Q8. There is a unique labelling so that the projective
indecomposable modules are given below:

P(1) =

1
7
35
6
1

, P(2) =

2
7
45
6
2

, P(3) =

3
6
15
7
3

, P(4) =

4
6
25
7
4

,
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P(5) =

5
67

12345
67
5

, P(6) =

6
125
677
345

6

, P(7) =

7
345
667
125

7

.

Let Q be a representative of the unique conjugacy class of subgroups of P of order 3. There
are four modules with vertex Q and trivial source, labelled as below.

M1,1 =
135
67
135

, M2,1 =
245
67
245

, M3,1 =
67
135
67

, M4,1 =
67
245
67

.

There are also four modules with vertex C3 and 2-dimensional source, labelled as below.

M1,2 =
135

6677
123455

67

, M2,2 =
245

6677
123455

67

, M3,2 =
67

123455
6677
135

, M4,2 =
67

123455
6677
245

.

The perversity and local twist functions are given in the following table.

T1 T2 T3 T4 T5 T6 T7 η(Q)

M11 0 4 2 5 7 6 3 1
M23 0 1 0 0 2 0 0 0
M22.2,A6.22,PSp4(q).Z2n 0 4 0 4 3 3 3 1
PSp4(r).Z2n 0 8 0 8 6 6 6 2
PSL3(r).Z2 0 2 0 2 3 3 3 0
PSU3(q).Zn 0 4 0 4 6 6 6 0
HS 0 7 0 4 3 10 3 1

5.6.1. The Mathieu group M11
Let G = M11. By [41, Example 4.9], there is a derived equivalence between kB0(G) and

kB0(N). In this section we will produce a perverse equivalence between the two blocks.

5.6.1.1. Simple modules. There are seven simple modules in the principal 3-block, of dimen-
sions 1, 5, 5, 10, 10, 10 and 24. The ordering on the Si is the chosen such that S2 and S4
are 5-dimensional (dual) modules, S3 and S5 are 10-dimensional (dual) modules, S6 is the
24-dimensional module, and S7 is the self-dual 10-dimensional module. The choice of S2 through
to S7 is such that the Green correspondents are given below.

C1 = 1, C2 =
3
6
5
, C3 =

7
45
6
27

, C4 =
5
7
3
,

C5 =
2
67
45
6

, C6 =
6
12
7

, C7 = 4.
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5.6.1.2. The perverse equivalence. There is a perverse equivalence between kB0(G) and
kB0(N) with local twist ηQ = 1 and with the π -values on the left, which makes the decom-
position matrix look as follows.

π Ord. Char. S1 S3 S7 S2 S4 S6 S5

0 1 1
2 10 1
3 10 1
4 16 1 1 1
5 11 1 1 1
6 44 1 1 1 1
7 55 1 1 1 1 1 1

10 1
16 1 1 1

The explicit complexes are as follows.

X3: 0 →P(3) →P(7) → C3 → 0,

X7: 0 →P(7) →P(25) → M2,1 → C7 → 0,

X2: 0 →P(2) →P(6) →P(67) → P(3) ⊕ M4,2 → C2 → 0,

X4: 0 → P(4) → P(5) → P(25) → P(246) → M2,2 → C4 → 0,

X6: 0 →P(6) →P(5) →P(4) →P(2) →P(5) →P(6) → C6 → 0,

X5: 0 →P(5) →P(5) →P(6) →P(46) → P(45) → P(25) → P(26) → C5 → 0.

The cohomology of the complexes above is displayed in the following table.

Xi H−7 H−6 H−5 H−4 H−3 H−2 H−1 [Si ]
3 3 3
7 1/7 1 7
2 2 3 1 2 − 3 − 1
4 2/7/4 1/7,3 1 4 − 2 + 3
6 7/34/6 3 1 6 − 4 − 7 + 1
5 1234/67/5 7/34,1,2 1/7/3 3 3 1 1 5 − 6 + 7 − 3 − 1

Here, “1/7,3” means a direct sum of 1/7 and 3 and “7/34,1,2” a direct sum of 7/34, 1 and 2.

5.6.2. The Mathieu group M23
Let G = M23.

5.6.2.1. Simple modules. There are seven simple modules in the principal 3-block, of dimen-
sions 1, 22, 104, 104, 253, 770 and 770. The ordering on the Si is such that S2 and S5 are
104-dimensional (dual) modules, S3 is 253-dimensional, S4 is 22-dimensional, and S6 and S7
are (dual) 770-dimensional modules. The choice of S2 and S5 through to S7 is such that the
Green correspondents are given below.

C1 = 1, C2 =
2
7
5
, C3 = 3, C4 = 4, C5 =

5
6
2
, C6 = 6, C7 = 7.
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5.6.2.2. The perverse equivalence. There is a perverse equivalence between kB0(G) and
kB0(N) with local twist ηQ = 0 and with the π -values on the left, which makes the decom-
position matrix look as follows. This equivalence has been constructed previously by Okuyama
[41, Example 4.7].

π Ord. Char. S1 S3 S4 S6 S7 S2 S5

0 1 1
0 253 1
0 22 1
0 770 1
0 770 1
1 896 1 1 1
2 230 1 1 1

896 1 1 1
2024 1 1 1 1 1 1 1

The explicit complexes are as follows.

X2: 0 → P(2) → C2 → 0,

X5: 0 → P(5) → P(5) → C5 → 0.

The cohomology of the complexes above is as follows: the first complex X2 has H−1(X2) =
4/6/2, and the second complex X5 has H−2(X5) = 1234/67/5 and H−1(X5) = 1 ⊕ 7/34.

5.6.3. The extended Mathieu group M22.2
Let G = M22.2. In this section we will produce a perverse equivalence between kB0(G) and

kB0(N). As we mentioned in Section 5.4.3, there is a splendid Morita equivalence between the
principal blocks of M22 and M10 = A6.23, and this extends to a splendid Morita equivalence
between the principal blocks of M22.2 and A6.22. As we saw in Section 5.5.1, there is a per-
verse equivalence between the principal blocks of A6.22 and its normalizer, and so therefore the
same holds for M22.2. As we have already proved that the perverse equivalence exists, and have
described it earlier, we simply give the simple modules, and then the decomposition matrix and
π -values.

5.6.3.1. Simple modules. There are seven simple modules in the principal 3-block, of di-
mensions 1, 1, 55, 55, 98, 231 and 231. The ordering on the Si is such that S2 and S4 are
231-dimensional modules, S3 and S6 are 55-dimensional modules, S5 is 98-dimensional, and S7
is the non-trivial 1-dimensional module. The choice of S2 through to S4 and S6 is such that the
Green correspondents are given below.

C1 = 1, C2 =
7
34
6

, C3 = 3, C4 =
6
12
7

,

C5 =
5
67
5

, C6 = 2, C7 = 4.
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5.6.3.2. The perverse equivalence. There is a perverse equivalence between kB0(G) and
kB0(N) with the π -values on the left, which makes the decomposition matrix look as fol-
lows.

π Ord. Char. S1 S3 S5 S7 S6 S2 S4

0 11 1
0 551 1
3 1541 1 1 1
3 12 1
3 552 1
4 3851 1 1 1 1
4 3852 1 1 1 1

1542 1 1 1
560 1 1 1

5.6.4. The Higman–Sims group HS

Let G = HS. By [41, Example 4.8], there is a derived equivalence between kB0(G) and
kB0(N). In this section we will produce a perverse equivalence between the two blocks, different
to that of [41].

5.6.4.1. Simple modules. There are seven simple modules in the principal 3-block, of dimen-
sions 1, 22, 154, 321, 748, 1176 and 1253. The ordering on the Si is such that the dimensions of
the Si are (in order) 1, 1176, 154, 321, 1253, 748 and 22. The Green correspondents are given
below.

C1 = 1, C2 =
7
34
6

, C3 = 3, C4 =
6

12
7

,

C5 =
5
67
5

, C6 =
25
67
25

, C7 = 4.

5.6.4.2. The perverse equivalence. There is a perverse equivalence between kB0(G) and
kB0(N) with local twist ηQ = 1 and with the π -values on the left, which makes the decom-
position matrix look as follows.

π Ord. Char. S1 S3 S7 S5 S4 S2 S6

0 1 1
0 154 1
3 22 1
3 1408 1 1 1
4 1750 1 1 1 1
7 2750 1 1 1
10 3200 1 1 1 1 1

770 1 1
1925 1 1 1
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The explicit complexes are as follows.

X7: P(7) →P(25) → M2,1 → C7,

X5: P(5) →P(67) →P(5) ⊕ M3,1 → C5,

X4: P(4) → P(2) → P(5) → P(6) → C4,

X2: P(2) → P(6) → P(6) → P(2) → P(4) → P(5) → P(7) → C2,

X6: P(6) → P(6) → P(6) → P(6)

→ P(2) → P(2) → P(6) → P(6) → P(47) → P(25) → C6.

The cohomology of the complexes above is displayed in the following table.

Xi H−10 H−9 H−8 H−7 H−6 H−5 H−4 H−3 H−2 H−1 [Si ]
7 1/7 1 7
5 5 13 5 − 1 − 3
4 5/7/4 1 4 + 1 − 5 − 7
2 2 1/7/3 15/77/34 5 3 2 + 3 + 7 − 4
6 A1 A2 A3 15/77/34 7/45 1/7/3 3 1 6 − 2 + 4 − 5 − 7 − 7

Here, A1 = 12/77/345/6, A2 = 125/77/34 and A3 = 12/77/345.

5.6.4.3. A non-principal block of HS. We have NG(P ) � Z2 × (P � E). We denote by A

(resp. B) the unique non-principal block of F3G (resp. F3N ) with defect group P . We have
a canonical isomorphism B

∼−→ F3P � E and we label simple modules for B as described in
Section 5.6. By [29, Theorem 0.2], there is a derived equivalence between A and B , and we
show it is perverse. Let us recall the construction.

The block A has seven simple modules. We denote by S1 and S3 the (dual) simple modules of
dimension 49, by S2 and S4 the simple modules of dimension 154, by S5 the simple module of
dimension 77 and by S6 and S7 the (dual) simple modules of dimension 770. The choice is such
that the Green correspondents are given below.

C1 =
1
7
3
, C2 = 2, C3 =

3
6
1
, C4 = 4, C5 = 5, C6 = 6, C7 = 7.

There is a perverse equivalence between A and B with zero local twists and with the π -values
on the left, which makes the decomposition matrix look as follows.

π Ord. Char. S5 S2 S4 S6 S7 S1 S3

0 77 1
0 1541 1
0 1542 1
0 7701 1
0 7702 1
1 8961 1 1 1
1 8962 1 1 1

175 1 1 1
1925 1 1 1 1 1
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The explicit complexes are as follows.

X1: 0 →P(1) → C1 → 0,

X3: 0 →P(3) → C3 → 0.

We have H−1(X1) = 5/6/1 and H−1(X3) = 5/7/3.
The outer automorphism of order 2 of HS swaps the simple modules S1 and S3. It follows

that the perversity function is equivariant.

6. Prime 2

In this section, we assume that � = 2.

6.1. Defect 2 × 2

Let G = PSL2(q) where q ≡ 3,5 (mod 8). We have a splendid Morita equivalence between
B0(G) and B0(A4) when q ≡ 3 (mod 8) (resp. B0(A5) when q ≡ 5 (mod 8)) [21]. It can be
checked to be compatible with automorphisms.

There is a perverse equivalence between kB0(A5) and kB0(A4) [45], [48, §3]. We denote by
T2 the non-trivial simple F2A4-module. There are three simple B0(A5)-modules. Over F2, the
2-dimensional modules S2,1 and S2,2 amalgamate into a 4-dimensional simple module S2. The
Green correspondents are

C1 = 1, C2 = 2
2
.

There is a perverse equivalence between B0(G) and B0(N) with the π -values on the left, which
makes the decomposition matrix look as follows.

π Ord. Char. S1 S2,1 S2,2

0 1 1
1 31 1 1
1 32 1 1

51 1 1 1

We have

X2 = 0 → P(2) → C2 → 0.

The cohomology is H−1(X2) = Ω−1(C2) = 11/2.

Remark 6.1. Note that [51, §6.3] provides a direct proof of Broué’s equivariant conjecture for
blocks with Klein four defect groups, and it is easily seen that the equivalence constructed is
perverse. The existence of derived equivalences for blocks with Klein four defect groups is due
to Linckelmann [33, Corollary 1.5].
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6.2. Defect 2 × 2 × 2

6.2.1. The group PSL2(8)

Let G = PSL2(8). A splendid Rickard equivalence has been constructed in [49, §2.3, Ex-
ample 2]. It is not perverse, but we show below that there is a composition of two perverse
equivalences in that case. The method used here is similar to that developed by Okuyama [41].

Let P be a Sylow 2-subgroup of G and N = NG(P ). We have P � Z3
2 and N/P � Z7. There

are two non-trivial simple F2N -modules, T2 and T3. The labelling is chosen so that

P(1) =
1
2
3
1

, P(2) =
2

233
11123

2

, P(3) =
3

11123
223

3

.

Let S2 be the 6-dimensional irreducible F2G-module and S3 the 12-dimensional one. We have

P(S1) =

S1
S2

S3
1S3

S2
2

S3
1S3
S2
S1

, P(S2) =

S2

S3
1

S3
2

S6
1S3

S3
2

S3
1S3
S2

, P(S3) =

S3
S2
S1
S2
S1
S2
S3

.

The Green correspondents are

C2 = 3
2
, C3 =

2
23
3

.

Consider A′′ an F2-algebra with a perverse equivalence with B0(G) with perversity function
(0,1,0). The images of the simple A′′-modules under the corresponding stable equivalence are

C′′
1 = S1, C′′

2 = Ω−1
(

S3
1 ⊕ S3
S2

)
, C′′

3 = S3

while the (non-simple) image under the derived equivalence is

X′′
2 = 0 → P(2) → C′′

2 → 0.

Consider A′ an F2-algebra with a perverse equivalence with kN with perversity function
(0,2,3). The images of the simple A′-modules under the corresponding stable equivalence are

C′
1 = 1, C′

2 = ResG
N C′′

2 , C′
3 = C3

while the images under the derived equivalence are

X′
2 = 0 →P(3) →P(3) →P(2) → C3 → 0,

X′
3 = 0 →P(2) →P(23) → C′

2.

The composite equivalence

A′′-stab (0,1,0)−−−−→B0(F2G)-stab Res−−→F2N -stab (0,2,3)−1−−−−−→A′-stab
∼ ∼ ∼
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sends simple modules to simple modules, hence comes from a Morita equivalence between A′′
and A′ [34, Theorem 2.1]. Hence, we may assume that A′′ = A′, and the composition

Db
(
B0(F2G)

)
(0,1,0)−1−−−−−→∼ Db

(
A′) (0,2,3)−−−−→∼ Db(F2N)

lifts the stable equivalence induced by restriction. Thus there is a composition of two perverse
equivalences

B0(F2G)
(0,1,0)←−−−− A′ (0,2,3)−−−−→ F2N,

where the algebra A′ is acted on by Z3, and the equivalences are compatible with the action of
Z3 = Out(PSL2(8)).

6.2.2. The Ree groups
Let G = 2G2(q) where q = 32n+1. Note that 2G2(3) � PSL2(8) � Z3. There is a splendid

Morita equivalence between B0(G) and B0(
2G2(3)) [41, Example 3.3]. Therefore we obtain

from Section 6.2.1 a derived equivalence as a composition of two perverse equivalences.

6.2.3. The Janko group J1
Let G = J1. In this case, a splendid Rickard equivalence has been constructed by Gollan and

Okuyama [25] and we recall their construction, with a more direct proof.

6.2.3.1. Simple modules. There are four simple modules over F2 in the principal block of G, of
dimensions 1, 20, 76 and 112. We label the simple modules S1, . . . , S4 by increasing dimension.

Let P be a Sylow 2-subgroup of G, and write N = NG(P ). We have N � Z3
2 � (Z7 � Z3).

There are three non-trivial F2N -modules: T2 of dimension 2, and T3 and T4 of dimension 3. The
labelling is chosen so that

P(1) =
1
3
4
1

, P(2) =
2

33
44
2

, P(3) =
3

344
1234

3

, P(4) =
4

1234
334

4

.

Let H = PSL2(8).3. There are four simple modules over F2 in the principal block of H , of
dimensions 1, 2, 6 and 12. We denote by S′

2 the 12-dimensional one, by S′
3 the 6-dimensional

one and by S′
4 the 2-dimensional one.

6.2.3.2. The equivalence. The construction of Section 3.3.1 extends to the case of P � Z3
2

(see [51, §6.4]). Let Q be subgroup of P of order 2 (there is a unique N -conjugacy class of such
subgroups). We have CG(Q)/Q � A5, while CN(Q)/Q � A4. We define E = {V4,1,V4,2} to be
the set of non-trivial simple modules of the principal block of kCG(Q)/Q, and we construct as
in Section 3.3.1 (see [51, §6.4]) a complex that induces a splendid standard stable equivalence
F : F2B0(G)-stab ∼−→ F2N -stab. Let Ci = F(Si). Let P2 be the projective cover of the non-trivial
simple F2(CH (Q)/Q)-module and let M = IndH

CH (Q) ResCH (Q)/Q

CH (Q) P2.
We have

C2 � ResH
N S′

2 and C4 � 0 → M → V → 0

where V = 244
233

.
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Let A be an F2-algebra equipped with a standard perverse equivalence Db(A)
∼−→

Db(F2B0(G)), corresponding to the perversity function (0,0,1,0). Let L be the largest submod-
ule of P(S3) containing S3 as a submodule and such that L/S3 has no composition factor S3.
Then, ResG

N(Ω−1L) � ResH
N S′

3 in F2N -stab. Furthermore, ResQ S′
3 is projective, and hence

F(Ω−1L) � S′
3.

Let A′ be an F2-algebra equipped with a standard perverse equivalence Db(A′) ∼−→
Db(F2B0(H)), corresponding to the perversity function (0,0,0,1). Let L′ be the largest sub-
module of P(S′

4) containing S′
4 as a submodule and such that L′/S′

4 has no composition factor S′
4.

Then, L′′ = ResH
N Ω−1(L′) is an indecomposable module of dimension 72. There is an exact se-

quence

0 → M →P(23344) ⊕ V → L′′ → 0

showing that C4 � L′′ in F2N -stab.
We have a diagram of standard stable equivalences

A-stab
(0,0,1,0)

∼ F2B0(G)-stab
F

∼

F2B0(H)-stab
Res

∼

A′-stab
(0,0,0,1)

∼

kN-stab

The set of images of simple A-modules in kN-stab coincide with that of simple A′-modules. It
follows that the composite equivalence A-stab → A′-stab comes from a Morita equivalence [34,
Theorem 2.1]. So, we have obtained a composition of two perverse equivalences

kB0(G)
(0,0,1,0)←−−−−− A

(0,0,0,1)−−−−−→ kB0(H).

6.3. PSL2(�
n)

Let G = PSL2(�
n) for some integer n � 1 and � a prime. Let G̃ = Aut(G). Okuyama [42] has

constructed a sequence of derived equivalences as in Section 4.2.6. The sets Ir used by Okuyama
are invariant under Out(G). It follows that there is a complex C of kB0(N�(G, G̃))-modules
whose restriction to G × NG(P )opp is a two-sided tilting complex. It actually induces a splendid
Rickard equivalence. This derived equivalence between principal blocks of G and NG(P ) ex-
tends to a derived equivalence between principal blocks of G′ and NG′(P ), for any G � G′ � G̃,
and that extended equivalence is a splendid Rickard equivalence if � � [G′ : G].

Note that the equivalences defined by Okuyama are not perverse in general. It is not known if
they are compositions of perverse equivalences.
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