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1. Introduction

We present some topics of modular representation theory of finite groups, based on
functorial methods, and motivated by Broué’s abelian defect group conjecture.

In the first three sections, we review some classical material. In §2, we define
various types of equivalence for symmetric algebras induced by tensoring with com-
plexes of bimodules, following some discussion of general adjunction properties of
such functors. In §3, we give some basic properties of group algebras: blocks, normal
p′-subgroups and the case of TI Sylowp-subgroups. Finally, in §4, we deal more
specifically with (direct summands of) permutation modules, where the Brauer functor
allows us to transfer local information.

In §5, we discuss Rickard equivalences in block theory. After a detailed ex-
ample, we consider Broué’s abelian defect conjecture and its refinements (splendid-
ness, equivariance with respect top′-automorphism groups, central extensions by
p-groups). In §5.3, we come to a crucial result: a splendid complex induces a stable
equivalence if and only if it induces (via the Brauer functor) local Rickard equivalences
(from this point, we consider only principal blocks).

The results in §6 and §7 are new. We use the results of §5.3 in §6.2 to construct
stable equivalences between a principal block with defect groupZ/pa×Z/pb and the
principal block of the normalizer of a defect group (in the case where(a, b) �= (1,1),
we need theZ∗p-theorem which, forp odd, depends on the classification of finite simple
groups). We use here a new construction of stable equivalences given by complexes.
In §6.3, we go one step further to lift these stable equivalences to Rickard equivalences
when, in addition,p = 2 (thus solving Broué’s conjecture for principal blocks with
defect groupZ/2 × Z/2). In §6.4, we construct stable equivalences for principal
blocks with defect group elementary abelian of order 8.

§7 is devoted to the study of a locally determined category ofp-permutation mod-
ules with additional structure. We explain how this can be used to glue local Rickard
equivalences into a stable equivalence: as a consequence, we prove that Broué’s
abelian defect group conjecture would follow (inductively) from the possibility of
lifting stable equivalences to Rickard equivalences. This requires additional structure
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on the Rickard complexes. The construction of §6.2 appears as a special case. Our
belief is that these methods reduce Broué’s conjecture to a problem of “representation
theory of algebras” where the groups will not be useful anymore, namely the problem
of lifting certain stable equivalences to Rickard equivalences.

In the appendix, we explain some aspects of the theory for nonprincipal blocks
[Rou3].

This article is based on, and extends, a set of five lectures given at the Sympo-
sium on the Modular Representation Theory of Finite Groups, University of Virginia,
Charlottesville, in May 1998.

I thank J. Alperin, S. Bouc, M. Broué, N. Kunugi and J. Rickard for their useful
discussions. This paper owes a lot to M. Collins for his persistent encouragement and
for his suggestions of improvement.

2. Symmetric algebras, functors and equivalences

In this section, we explain what standard concepts of category theory become for
module categories of symmetric algebras. §2.2 is largely inspired by Broué’s notes
[Br3], where more details are to be found.

In §2.3, we define various notions of equivalences and gather various properties.

2.1. Notation and conventions

Let O be a noetherian local commutative ring (all rings are with identity) with residue
field k. All O-algebras considered will be free and finitely generated overO. LetA
anO-algebra.

All A-modules considered will be left modules, finitely generated over the un-
derlying coefficient ringO. Complexes ofA-modules will always be bounded. We
identify the categoryA-mod ofA-modules with the full subcategory of complexes of
A-modules concentrated in degree 0.

We denote byA◦ the algebra opposite toA. It is A as anO-module, but the
multiplication ofa andb in A◦ is ba. Note that a leftA-module is the same as a right
A◦-module and ifB is aB-algebra, an(A,B)-bimodule is an(A⊗O B

◦)-module.
Similarly, ifG is a group, we define the groupG◦ opposite toG, with the same set

of elements asG but with multiplication ofg andh given byhg. The group algebra
OG◦ of G◦ is the algebra(OG)◦.

We will often write ⊗ for ⊗O . For M an A-module, we denote byM∗ the
A◦-module HomO(M,O).

By the(A,A)-bimoduleA, we mean the regular bimodule given by left and right
multiplication.
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2.2. Functors and adjunctions

2.2.1. Basic adjunction. LetA andB be twoO-algebras andM an(A,B)-bimodule.
We have an isomorphism ofO-modules

γM(V,U) : HomA(M ⊗B V,U) ∼→ HomB(V,HomA(M,U))

f �→ (v �→ (m �→ f (m⊗ v)))
with inverse (m⊗ v �→ g(v)(m)) ←� g

for anyA-moduleU andB-moduleV .
Denote by� and� respectively the functors

� = M ⊗B − : B-mod→ A-mod and� = HomA(M,−) : A-mod→ B-mod.

We have an isomorphism functorial inU andV :

HomA(�(V ), U)
∼→ HomB(V,�(U)).

We say that the functor� is left adjoint to the functor� (or� is right adjoint to
� or (�,�) is anadjoint pair) when there is such an isomorphism.

2.2.2. Projective modules.LetU andV be twoA-modules. Consider theO-linear
map

τU,V : HomA(U,A)⊗A V −→ HomA(U, V )

f ⊗ v �→ (u �→ f (u)v)

If U or V is projective, thenτU,V is an isomorphism: the result is clear when one of
the modules isA, thus when it isAn and finally when it is any direct summand ofAn.

We have a converse to this property: ifτU,V is an isomorphism for everyV , then
U is projective. More precisely, we have

Proposition 2.1. LetS be a simpleA-module with a projective coverPS . ThenτU,S
is non-zero if and only ifU has a direct summand isomorphic toPS .

Proof. Note thatτPS,S �= 0; henceτU,S �= 0 if PS is a direct summand ofU .
Let f : PS → S be an essential map : this is a surjective morphism whose restric-

tion to a proper submodule ofPS is not surjective anymore. We have a commutative
diagram

HomA(U, PS)
HomA(U,f ) �� HomA(U, S)

HomA(U,A)⊗A PS

τU,PS 

��

1⊗f
�� HomA(U,A)⊗A S

τU,S

��

�� 0 .
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If τU,S �= 0, then HomA(U, f ) is non-zero. Therefore there isg : U → PS whose
composite withf is non-zero, and thus surjective. Sincef is essential, it follows that
g is surjective and splits sincePS is projective.

WhenO is henselian (e.g. complete), then allA-modules have projective covers.

Let M be an(A,B)-bimodule. LetU be anA-module andV aB-module. By
§2.2.1, we have an isomorphism of(A,A)-bimodules

HomB◦(M,HomO(V ,U))
∼→ HomO(M ⊗B V,U).

This induces an isomorphism

HomA⊗B◦(M,HomO(V ,U))
∼→ HomA(M ⊗B V,U).

If U andV are free overO andM is projective (or flat) as aB◦-module, then we
deduce, for alli,

ExtiA⊗B◦(M,HomO(V ,U))
∼→ ExtiA(M ⊗B V,U).

Note that we have similar statements relating HomA⊗B◦ with HomB◦ , by consid-
eringM as a(B◦, A◦)-bimodule.

Lemma 2.2. AssumeO = k is a field and assume the centers of the endomorphism
rings of the simpleA-modules and the simpleB-modules are separable extensions
of k. LetM be an(A,B)-bimodule.

ThenM is a projective(A,B)-bimodule if and only ifM ⊗B V is a projective
A-module for everyB-moduleV andU ⊗A M is a projectiveB◦-module for every
A◦-moduleU .

Proof. The hypothesis ensures that the largest semi-simple quotients ofA andB are
products of central simple algebras over separable extensions ofk. Now the tensor
product overk of two such simple algebras is a semi-simple algebra. It follows
that givenS a simpleA-module andT a simpleB◦-module, the(A ⊗ B◦)-module
Homk(T

∗, S) 
 S⊗T is semi-simple (note that every simple(A⊗B◦)-module occurs
as a direct summand of such a module for someS, T ). In particular,M is projective
if and only if ExtiA⊗B◦(M, S ⊗ T ) = 0 for all i > 0 andS, T simple.

AssumeM ⊗B V is a projectiveA-module for everyB-moduleV andU ⊗A M is
a projectiveB◦-module for everyA◦-moduleU .

The caseV = B shows thatM is projective as anA-module. Hence, fori > 0,
we have

ExtiA⊗B◦(M, S ⊗ T ) 
 ExtiB◦(S ⊗A M, T ) = 0.

It follows thatM is projective.
The converse is clear.
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2.2.3. Symmetric algebras.AssumeA is asymmetric algebra, i.e., is endowed with
anO-linear mapt = tA : A→ O which is a trace (t (aa′) = t (a′a)) and such that the
morphism of(A,A)-bimodules

t̂ : A ∼→ HomO(A,O)

a �→ (a′ �→ t (aa′))

is an isomorphism.
This last isomorphism is equivalent to the requirement that, given anO-basis{ai}

of A, there is another basis{a′i} such thatt (aia′j ) = δij .
WhenO is a field, the algebraA is in particular self-injective, i.e., the injective

modules are the projective modules.
Given anA-moduleU , we have an isomorphism of rightA-modules

t̂U : HomA(U,A)
∼→ U∗ = HomO(U,O)

f �→ tf

with inverse (x �→
∑
i

a′iu(aix)) ←� u.

Lemma 2.3. LetM be an(A⊗ B◦)-module, projective as aB◦-module, andV be a
B-module. Then we have an isomorphism ofA◦-modules

τM,A⊗V : HomA⊗B◦(M,A⊗ B◦)⊗A⊗B◦ (A⊗ V ) ∼→ HomA⊗B◦(M,A⊗ V ).
Proof. We have a commutative diagram

HomA⊗B◦ (M,A⊗ B◦)⊗A⊗B◦ (A⊗ V )
τM,A⊗V

��

f⊗(a⊗x)�→(tA⊗1)(f a)⊗x �� HomB◦ (M,B◦)⊗B◦ V
τResB◦ M,V

��
HomA⊗B◦ (M,A⊗ V )

f �→(tA⊗1)f
�� HomB◦ (M, V )

where the horizontal maps are isomorphisms. SinceτResB◦ M,V is an isomorphism,
we are done.

2.2.4. Exact bimodules.AssumingA symmetric andM projective as anA-module,
we have constructed isomorphisms of functors

� = HomA(M,−) ∼→ HomA(M,A)⊗A − ∼→M∗ ⊗A −.
In particular, the functorM ⊗B − is left adjoint toM∗ ⊗A−. If in additionM is
projective as a rightB-module andB is symmetric, thenM ⊗B− is right adjoint to
M∗ ⊗A−.

We say thatM is anexact(A,B)-bimodule if it is projective as anA-module and
as a rightB-module (i.e., if the functors HomA(M,−) and HomB◦(M,−) are exact).
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Proposition 2.4. If A andB are symmetricO-algebras andM is an exact(A,B)-
bimodule, then the functorM ⊗B− is left and right adjoint toM∗ ⊗A−.

Note thatM can be projective as anA-module and as a rightB-module without
being projective as an(A ⊗ B◦)-module. In the special case whereA = B and
M = A is the regular bimodule, thenM is indeed projective as a right and as a left
A-module, but is not projective as an(A⊗A◦)-module in general: whenO is a field,
A is projective as an(A⊗A◦)-module if and only ifA is semi-simple separable (i.e.,
A is a product of matrix algebras over separable field extensions ofO), cf. Lemma 2.2.

2.2.5. Units and counits. Since� is left adjoint to�, we have an isomorphism
Hom(� ◦ �, IA) ∼→ Hom(�,�), whereIA is the identity functor ofA-mod. The
morphismε : � ◦� → IA corresponding to the identity morphism� → � is called
thecounit. Using the isomorphism Hom(�,�) ∼→ Hom(IB,� ◦ �), we obtain the
unit η : IB → � ◦�.

Note that the functor� is an equivalence of categoriesB-mod→ A-mod if and
only if η andε are isomorphisms, and then� is an inverse to�.

In terms of morphisms of bimodules, the counit is the morphism of(A,A)-
bimodules

εM : M ⊗B M∗ → A, m⊗ x �→ t̂−1
ResA M

(x)(m)

and the unit is the morphism of(B, B)-bimodules

ηM : B → M∗ ⊗A M, b �→ (t̂ResA M ⊗ 1)τ−1
ResA M,ResA M

(b · 1M).

2.2.6. Complexes.LetC be a complex ofA-modules. We denote bydC its differen-
tial, with degreei partdiC : Ci → Ci+1.

LetC∗ the complex ofA◦-modules given by

(C∗)i = (C−i )∗ and diC∗ = (−1)i+1(d−i−1
C )∗.

LetD be a complex ofA◦-modules. We denote byC ⊗A D the complex given by

(C ⊗A D)i =
⊕
r+s=i

Cr ⊗Ds and diC⊗AD =
∑
r+s=i

drC ⊗ 1+ (−1)r1⊗ dsD.

(Let us recall that all our complexes are bounded).
A complexC of (A,B)-bimodules gives rise to a functorC⊗B− from the category

Cb(B) of complexes ofB-modules to the categoryCb(A) of complexes ofA-modules.
The results of §2.2.1–2.2.5 generalize to complexes. Given a complexC of (A,B)-

bimodules which are projective asA-modules, there is a canonical morphismεC :
C ⊗B C∗ → A and a canonical morphismηC : B → C∗ ⊗A C, which are units and
counits of the adjoint pair(C ⊗B−, C∗ ⊗A−).
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2.3. Equivalences

LetA andB be two symmetricO-algebras. We define three types of equivalence. The
usual Morita equivalences are a special case of Rickard equivalences. The Rickard
equivalences are in turn a special case of the even weaker type of stable equivalences.

2.3.1. Morita. LetM be an exact(A,B)-bimodule.
The following assertions are equivalent.

(i) We have isomorphisms

M ⊗B M∗ 
 A as(A,A)-bimodules,

M∗ ⊗A M 
 B as(B, B)-bimodules.

(ii) The morphismsεM andηM∗ are isomorphisms of(A,A)-bimodules andηM ,
εM∗ are isomorphisms of(B, B)-bimodules

ηM∗ : A ∼→M ⊗B M∗, εM : M ⊗B M∗ ∼→ A,

ηM : B ∼→M∗ ⊗A M, εM∗ : M∗ ⊗A M ∼→ B.

When these conditions are satisfied, we say thatM induces aMorita equivalence
betweenA andB. This is equivalent to the requirement thatM⊗B− is an equivalence
betweenA-mod andB-mod.

2.3.2. Rickard. We now takeC a complex of exact(A,B)-bimodules.
The following assertions are equivalent.

(i) We have isomorphisms

C ⊗B C∗ 
 A⊕ Z1 as complexes of(A,A)-bimodules

C∗ ⊗A C 
 B ⊕ Z2 as complexes of(B, B)-bimodules

whereA andB are viewed as complexes concentrated in degree 0 andZ1 and
Z2 are homotopy equivalent to 0.

(ii) The morphismsηC ,ηC∗ (resp.εC andεC∗ ) are split injections (resp. surjections)
with cokernel (resp. kernel) homotopy equivalent to 0.

When these conditions are satisfied, we say thatC induces aRickard equivalence
betweenA andB or thatC is aRickard complex. These conditions are equivalent to
the requirement thatC ⊗B− is an equivalence between the homotopy categories of
complexes ofB-modules andA-modules.

Note that ifC = C1 ⊕ C2 with C2 homotopy equivalent to 0, thenC induces a
Rickard equivalence if and only ifC1 induces a Rickard equivalence.
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2.3.3. Stable. The following assertions are equivalent.

(i) We have isomorphisms

C ⊗B C∗ 
 A⊕ Z′1 as complexes of(A,A)-bimodules

C∗ ⊗A C 
 B ⊕ Z′2 as complexes of(B, B)-bimodules

whereZ′1 andZ′2 are homotopy equivalent to complexes of projective bimodules.

(ii) The morphismsηC ,ηC∗ (resp.εC andεC∗ ) are split injections (resp. surjections)
with cokernel (resp. kernel) homotopy equivalent to a complex of projective
bimodules.

When these conditions are satisfied, we say thatC induces astable equivalencebe-
tweenA andB.

Actually, we want a slightly more general definition:D induces a stable equiva-
lence wheneverD⊕A⊗O B satisfies the equivalent conditions above; then, whenO
is a field,D = 0 induces a stable equivalence between any two semisimple separable
O-algebras.

Note that ifC = C1⊕C2 withC2 homotopy equivalent to a complex of projective
bimodules, thenC induces a stable equivalence if and only ifC1 induces a stable
equivalence.

The situation more commonly considered, after Broué, is the case whereC = M
is a complex with only one term in degree 0.

In that case, we can restate the equivalences as follows:

(i) We have isomorphisms

M ⊗B M∗ ⊕ projective 
 A⊕ projective

M∗ ⊗A M ⊕ projective 
 B ⊕ projective.

(ii) The morphismsηM , ηM∗ , εM and εM∗ are split with projective kernels and
cokernels.

This implies thatM⊗B− induces an equivalence between theO-stable categories
of B-modules andA-modules. TheO-stable category ofA-modules is the quotient
of A-mod by the full subcategory ofO-projectiveA-modules (direct summands of
modulesA ⊗O U for someO-moduleU ). Under separability assumptions (e.g.,O
is a field and centers of endomorphism algebras of simple modules are separable
extensions ofO), the conditions are equivalent to the fact thatM ⊗B− induces an
equivalence of stable categories.

Note that ifM = M1⊕M2 withM2 projective, thenM induces a stable equivalence
if and only ifM1 induces a stable equivalence.
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Note thatM ⊗B V is projective or zero if and only ifV is projective or zero and
thatM ⊗B V is the direct sum of an indecomposable non-projective module with a
projective module ifV is indecomposable non-projective.

The following result shows that (forO henselian), whenM has no projective direct
summand, it sends a simple module to an indecomposable module.

Proposition 2.5. AssumeO is a field. LetS be a simpleA-module with a projective
coverPS andT a simpleB-module with a projective coverPT . ThenPS is a direct
summand ofM ⊗B T if and only ifPS ⊗ P ∗T is a direct summand ofM.

Proof. We have a commutative diagram

HomA⊗B◦ (M,A⊗ B◦)⊗A⊗B◦ HomO(T , S)
τM,HomO (T ,S) �� HomA⊗B◦ (M,HomO(T , S))


 γT (M,S)
−1

��

HomA⊗B◦ (M,A⊗ B◦)⊗A⊗B◦ HomO(T ,A)⊗A S



��

τM,HomO (T ,A)
⊗1

��
HomA⊗B◦ (M,HomO(T ,A))⊗A S


γ−1
T
(M,A)⊗1

��
HomA(M ⊗B T ,A)⊗A S τM⊗BT,S

�� HomA(M ⊗B T , S)

where the top vertical map is induced by the product

HomO(T ,A)⊗A S → HomO(T , S).

We apply Lemma 2.3 toM andT ∗: the mapτM,HomO(T ,A) is an isomorphism.
Consequently,τM,HomO(T ,S) is non-zero if and only ifτM⊗BT ,S is non-zero and the
proposition follows from Proposition 2.1.

2.3.4. Composition. LetA′ be a symmetricO-algebra,M an exact(A,B)-bimodule
andN an exact(B,A′)-bimodule. IfM andN induce Morita equivalences, then
M ⊗B N induces a Morita equivalence betweenA andA′. Rickard equivalences and
stable equivalences can be similarly composed.

2.3.5. Comparison. If M induces a Morita equivalence, then it induces a Rickard
equivalence. IfC induces a Rickard equivalence, then it induces a stable equivalence.

Let M be an exact(A,B)-bimodule inducing a stable equivalence. AssumeA

andB have no projective direct summands as bimodules. ThenM induces a Morita
equivalence if and only ifM⊗B S is simple for every simpleB-moduleS (for then we
know thatB is a direct summand ofM∗⊗AM andM∗⊗AM⊗B S is indecomposable
for every simpleB-moduleS, soM∗ ⊗A M 
 B. We haveM ⊗B M∗ 
 A ⊕ Z,
whenceM ⊗B M∗ ⊗A Z = 0; thusZ = 0).
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Let C be a complex of exact(A,B)-bimodules. Assume that all terms ofC are
projective butCr and thatCr induces a stable equivalence. ThenC induces a stable
equivalence.

Let �A⊗A◦ be the kernel of the multiplication mapA ⊗ A → A. This is an
(A,A)-bimodule inducing a self-stable equivalence ofA.

For U an A-module, we denote by�AU (or �U ) an A-module without
O-projective direct summand such that�A⊗A◦ ⊗A U = �U ⊕ O-projective. Let
f : PU → U be a surjective map withPU anO-projectiveA-module. Iff splits as a
morphism ofO-modules, then kerf ⊕O-projective
 �U ⊕O-projective.

We define inductively�nU as�(�n−1U) fornpositive. Similarly, using�−1
A⊗A◦ =

�∗A⊗A◦ , we define�−1U and�−nU for n positive. Finally,�0U = U .
ForM an exact(A,B)-bimodule, the(A,B)-bimodule(A ⊗ A◦) ⊗A M is pro-

jective. Hence

�A⊗A◦ ⊗A M ⊕ projective
 �A⊗B◦M ⊕ projective.

LetM be an exact(A,B)-bimodule. Then

�nA⊗A◦A⊗A M ⊕ projective
 �nA⊗B◦M ⊕ projective.

So, ifM induces a stable equivalence, then�nA⊗B◦M also induces a stable equivalence.

The next proposition explains how to construct a Rickard equivalence from a Morita
equivalence by truncating a projective resolution of the bimodule.

Proposition 2.6. LetM be an exact(A,B)-bimodule. LetC be an complex of exact
(A,B)-bimodules with homology only in degree0, isomorphic toM, with zero terms
outside{0, . . . , r − 1, r} and with projective terms in degrees0, . . . , r − 1 wherer is
an integer.

If M induces a Morita equivalence, thenC induces a Rickard equivalence.

Proof. Assume firstr is non-positive. We have

Cr ⊕ projective
 �−rA⊗B◦M ⊕ projective;
thereforeCr induces a stable equivalence. SinceCi is projective fori �= r, it follows
that C induces a stable equivalence. In particular, the kernel ofεC is homotopy
equivalent to a complex of projective modulesZ.

The homology ofC is projective overB; thus the homology ofC ⊗B C∗ is
isomorphic toH 0(C)⊗B H 0(C)∗ (in degree 0). SinceH 0(C) 
 M induces a Morita
equivalence, it follows thatC ⊗B C∗ has homology only in degree 0, isomorphic to
A. More precisely, the kernel ofεC has zero homology.

The complexZ is a (bounded) complex of projective modules with zero homology,
whence it is homotopy equivalent to 0.

Similarly, one shows that the kernel ofεC∗ is homotopy equivalent to 0.
The case wherer is positive follows from the negative case by replacingA,B,M,

C andr byB, A,M∗, C∗ and−r.
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2.3.6. Extension of scalars.LetO′ be a commutativeO-algebra. LetA′ = O′⊗OA,
B ′ = O′ ⊗O B: these are symmetricO′-algebras.

An isomorphismA ∼→ B gives rise to an isomorphismA′ ∼→ B ′ by extending
scalars fromO to O′. More generally, given an(A,B)-bimoduleM inducing a
Morita equivalence betweenA andB, the(A′, B ′)-bimoduleA′ ⊗AM⊗B B ′ induces
a Morita equivalence betweenA′ andB ′. We have similar statements for Rickard and
stable equivalence.

3. Some steps in block theory

3.1. The group algebra

Let us start gathering some properties that do not involve blocks. We take special
care to provide explicit isomorphisms when studying the TI case in §3.1.5. This way,
we avoid use of the Krull–Schmidt Theorem and we can work over a non-complete
ring O.

3.1.1. Symmetric algebra structure. We have anO-linear trace on the group algebra

t : OG→ O, g �→ δ1g for g ∈ G.
Since t (g′g−1) = δgg′ , the form is symmetrizing. The basis dual to{g}g∈G is
{g−1}g∈G.

3.1.2. Let H be a subgroup ofG andM = OG the exact(OH,OG)-bimodule
where the actions are given by multiplication. The functor ResG

H = M ⊗OG− is the
restriction functor fromOG-mod toOH -mod. It is an exact functor.

We have an isomorphism̂t : OG ∼→M∗, whereOG is the(OG,OH)-bimodule
with actions given by multiplication. The corresponding functor IndG

H = M∗ ⊗OH−
is the induction functor fromOH -mod toOG-mod. It is also an exact functor and
IndGH is left and right adjoint to ResGH .

3.1.3. The counitεM∗ is the surjective morphism given by multiplication

εM∗ : OG⊗OH OG→ OG, g ⊗ g′ �→ gg′.

Assume[G : H ] is invertible inO. Then

OG→ OG⊗OH OG, g �→ 1

[G : H ]g
∑

x∈G/H
x ⊗ x−1

is a splitting to the surjection, i.e., the morphism of functorsε : IndGH ResGH → 1G is
a split surjection.
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Now let U and V be two OG-modules. ThenU is a direct summand of
IndGH ResGH U . So

Ext1OG(U, V ) ≤ Ext1OG(IndGH ResGH U, V ) 
 Ext1OH (ResGH U,ResGH V ),

where the isomorphism comes from the fact that IndG
H is an exact functor which is a

left adjoint to the exact functor ResGH .

As a special case, let us take forH a Sylowp-subgroup ofG and forO a fieldk
of characteristicp.

If H is trivial, we deduce that all Ext1-groups are zero inkG-mod. So we obtain
Maschke’s theorem.

Proposition 3.1. If k is a field and|G| is invertible ink, thenkG is semi-simple.

More generally the “homological complexity” ofkG-mod is measured by a Sylow
p-subgroupP :

• kG has finite representation type (i.e., there are only finitely many isomorphism
classes of indecomposable modules) if and only ifkP has finite representation
type; this is known to happen exactly whenP is cyclic.

• kG is tame (i.e., indecomposable modules are in some sense classifiable) if
and only ifkP is tame; that happens exactly whenp = 2 andP is a dihedral,
semidihedral or generalized quaternion group.

Note that in all other caseskG is wild. So instead of pursuing the unreasonable task
of describingkG-mod completely, we will try to compare it with module categories
of smaller groups.

3.1.4. Mackey’s formula. Composition of an induction functor followed by a restric-
tion functor is described by Mackey’s formula as a sum of compositions of a restriction
functor followed by an induction functor.

Let H andH ′ be two subgroups ofG. ThenOG = ⊕
g∈H ′\G/H OH ′gH is a

decomposition as(OH ′,OH)-bimodules.
LetK = H ′ ∩ gHg−1. Then we have an isomorphism of(OH ′,OH)-bimodules

OH ′ ⊗OK (OH)
g ∼→OH ′gH, x ⊗ y �→ xgy

where(OH)g = OH as a rightOH -module and the action ofa ∈ OK is given by
left multiplication byg−1ag.

So we have constructed an isomorphism of(OH ′,OH)-bimodules

OG ∼→
⊕

g∈H ′\G/H
OH ′ ⊗O(H ′∩gHg−1) (OH)

g.
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In terms of functors, this is the usual Mackey’s formula

ResGH ′ ◦ IndGH
∼→

⊕
g∈H ′\G/H

IndH
′

H ′∩gHg−1 ◦ResgHg
−1

H ′∩gHg−1 ◦ g∗

whereg∗ : OH -mod→ O(gHg−1)-mod is restriction via the isomorphism

gHg−1→ H, x �→ g−1xg.

3.1.5. TI Sylowp-subgroups. We will see here our first comparison result.

Let us assume thatG has trivial intersection (TI) Sylowp-subgroups: given two
distinct Sylowp-subgroupsP andQ, thenP ∩Q = {1}.

Let P be a Sylowp-subgroup ofG andH = NG(P ). We denote byZp the
localization ofZ at the primep. Let N be the(ZpG,ZpH)-bimoduleZpG. Then
N∗ = ZpG (the identification is made viât ).

We have a split exact sequence of(ZpH,ZpH)-bimodules (cf. §3.1.4)

0→ ZpH → ZpG→
⊕
g

ZpH ⊗ZpK (ZpH)
g → 0,

whereg ∈ H \ G/H , g /∈ H andK = H ∩ gHg−1 and where the first map is the
inclusion.

Forg ∈ G, g /∈ H , we haveP ∩gPg−1 = {1}; thusK is ap′-group. It follows that
ZpH is a projective(ZpH,ZpK)-bimodule and(ZpH)g a projective(ZpK,ZpH)-
bimodule, whenceZpH ⊗ZpK (ZpH)

g is a projective(ZpH,ZpH)-bimodule.
Since the counit

ηN : ZpH → N∗ ⊗ZpG N = ZpG

is the inclusion, we have a split exact sequence of(ZpH,ZpH)-bimodules

0→ ZpH
ηN−→ N∗ ⊗ZpG N → Z→ 0,

whereZ is projective.
Since[G : H ] is invertible inZp, the surjectionεN : N ⊗ZpH N

∗ → ZpG splits.
LetZ′ be its kernel.

The composition

N∗ ηN⊗1−→ N∗ ⊗ZpG N ⊗ZpH N
∗ 1⊗εN−→ N∗

is the identity. So

N∗ ⊗ZpG Z
′ = ker(1⊗ εN) 
 coker(ηN ⊗ 1) = Z ⊗ZpH N

∗,

whence

N ⊗ZpH N
∗ ⊗ZpG Z

′ 
 N ⊗ZpH Z ⊗ZpH N
∗.
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As ZpG is a direct summand ofN ⊗ZpH N
∗, it follows thatZ′ is a direct summand of

N ⊗ZpH Z⊗ZpH N
∗. That last module is projective sinceZ is projective: this shows

the projectivity ofZ′.
We have obtained the following isomorphisms

N ⊗ZpH N
∗ 
 ZpG⊕ projective (as(ZpG,ZpG)-bimodules)

N∗ ⊗ZpG N 
 ZpH ⊕ projective (as(ZpH,ZpH)-bimodules).

So we have

Proposition 3.2. The bimoduleZpG induces a stable equivalence betweenZpG and
ZpH .

3.2. Blocks

The representation theory ofOG reduces naturally to the study of the representations
of the blocks ofOG. Some blocks can have a much simpler structure than others.
Furthermore, most interesting equivalences arise between blocks, not between the
whole group algebras.

3.2.1. A block idempotentb of OG is a primitive idempotent of the centerZ(OG)
of OG: b2 = b �= 0 and there do not exist idempotentsb1 andb2 of Z(OG) with
b1b2 = 0 andb = b1 + b2. Let B be the set of block idempotents ofOG. Then we
have

Z(OG) =
⊕
b∈B

bZ(OG).

This is the unique decomposition ofZ(OG) as a direct sum of local rings. Note that
1=∑

b b.
We now have the block decomposition of the group algebra

OG =
⊕
b

bOG.

This is the unique decomposition ofOGas a direct sum of indecomposableO-algebras
or, equivalently, the unique decomposition ofOG as a direct sum of indecomposable
(OG,OG)-bimodules. The (non-unitary) subalgebrasbOG of OG are theblocksof
OG.

We now have a decompositionOG-mod = ⊕
b bOG-mod: everyOG-module

M splits asM = ⊕
b bM wherebM = bOG ⊗OG M. In particular, a non-zero

indecomposable module belongs to a unique block. Theprincipal blockof OG is the
block containing the trivialOG-module.
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Assume|G| is invertible inO. Thene1 = 1
|G|

∑
g∈G g is the principal block

idempotent ande1OG 
 O. If in addition O is a field, then the blocks are simple
algebras.

3.2.2. Normalp′-subgroups. Let H = Op′(G), the largest normal subgroup ofG
whose order is prime top ande = 1

|H |
∑
h∈H h. Thene is an idempotent ofZ(ZpG).

Let Ḡ = G/H . We have an isomorphism

eZpG
∼→ ZpḠ, eg �→ gH.

We have comparedZpḠwith a direct summandeZpG (i.e., a sum of blocks) ofZpG.
This is compatible with blocks.

Hypothesis 1. For the remainder of the article, we assume that the residue fieldk of
O has characteristicp.

The isomorphismeOG ∼→OḠ induces a bijection between the set of block idem-
potents ofOḠ and the set of those block idempotentsb of OG such thatbe = b. We
then have an isomorphism between the corresponding blocks ofOG andOḠ. For
example, we obtain an isomorphism between the principal blocks ofOG andOḠ.

Note that the discussion above remains unchanged if we take forH any normal
subgroup ofG with order prime top.

As a special case, assumeG is p-nilpotent, i.e.,G = H � P whereP is a Sylow
p-subgroup. Then we have an isomorphism betweenOP and the principal block of
OG.

3.2.3. Blockwise version of the TI equivalence.We go back to the assumption of
§3.1.5 thatG has TI Sylowp-subgroups andp divides the order ofG. Let f be a
block idempotent ofOH (recall thatH = NG(P ) whereP is a Sylowp-subgroup
of G). There is a unique block idempotente of OG such thateNf = eOGf is not a
projective(OG,OH)-bimodule.

Then

Proposition 3.3. The bimoduleeOGf induces a stable equivalence betweeneOG
andfOH .

Note that the blocks ofOG which do not correspond to blocks ofOH are stably
equivalent to 0.

In general,eOG andfOH are not Morita equivalent (i.e., you cannot get rid of
the projective “remainder”), although they might be in some exceptional cases. Let
us give two such cases.

Assumep = 3,G = S4 ande is the principal block idempotent ofZpG. Then
P 
 Z/3 andH 
 S3. By §3.2.2, we have an isomorphismeZpG 
 ZpH .

Assume nowp = 3,G = S5 ande is the principal block idempotent. We have
P 
 Z/3,H 
 S3× Z/2 andfZpH 
 ZpS3. One can check thateZpG is Morita
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equivalent tofZpH , but the algebras are not isomorphic (they have differentZp-
ranks!); there is a direct summandM of eZpGf inducing such a Morita equivalence.

3.2.4. The TI case suggests that isomorphisms or Morita equivalences are too narrow
concepts in order to compare blocks. On the other hand, it is difficult to deduce
much numerical information from the existence of a stable equivalence although it is
expected that the number of non-projective simple modules will be invariant whenO
is a field (Auslander’s conjecture).

4. The Brauer functor

The Brauer functor is a fundamental tool to pass from global to local data.

4.1.p-permutation modules

4.1.1. Let Q be ap-subgroup ofG. We denote by BrQ the Brauer functorBrQ :
OG-mod→ kNG(Q)-mod, defined as follows.

ForU anOG-module, define

BrQ(U) = UQ
/(( ∑

P<Q

TrQP U
P
)
+ pUQ

)
,

where the trace map TrQP : UP → UQ between fixed point sets is given by
v �→∑

g∈Q/P gU , and wherep is the maximal ideal ofO.
We will also consider the extension of BrQ to the category of complexes of

OG-modules.

4.1.2. Let� be aG-set andO� the corresponding permutationOG-module. Then
the inclusionO(�Q) ↪→ (O�)Q induces an isomorphismk(�Q) ∼→ BrQ(O�).

Let H be a subgroup ofG. Then(G/H)Q �= ∅ if and only ifQ is conjugate to
a subgroup ofH . So BrQ(IndGH O) �= 0 if and only ifQ is conjugate to a subgroup
of H .

Let V be aONG(Q)/Q-module. We have (by adjunction) a morphism

ResNG(Q)/QNG(Q)
V → (IndGNG(Q) ResNG(Q)/QNG(Q)

V )Q

and hence, by composition, a morphism

ResNG(Q)/QNG(Q)
V → BrQ IndGNG(Q) ResNG(Q)/QNG(Q)

V .

This gives a morphism of endofunctors ofONG(Q)/Q-mod

1ONG(Q)/Q-mod→ BrQ IndGNG(Q) ResNG(Q)/QNG(Q)
.

Furthermore, this is an isomorphism when applied to projectiveONG(Q)/Q-modules.
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4.1.3. The Brauer functor is of particular interest when applied top-permutation
modules(direct summands of permutation modules).

If U is an indecomposablep-permutationOG-module, then there is a minimal
subgroupP of G such that the surjectionOG ⊗OP OG ⊗OG U → U splits. This
is ap-subgroup ofG, called avertexof U . It is unique up to conjugation. It is also
characterized (up to conjugation) as the minimal subgroup ofG such thatU is a direct
summand of a module induced fromP or as the maximal subgroup ofG such that
BrP (U) �= 0.

4.2. The Brauer morphism

ForH a group, we define a subgroup
H of H ×H ◦ by
H = {(x, x−1)| x ∈ H }.
LetQ be ap-subgroup ofG. The surjection

brQ : (OG)
Q→ Br
Q(OG) = kCG(Q)
is theBrauer morphism. This is a morphism of((OG)
Q, (OG)
Q)-bimodules, and
hence a morphism of algebras. It restricts to a (not necessarily surjective) morphism

brQ : Z(OG)→ Z(kCG(Q)).

Let z ∈ Z(OG). Then multiplication byz defines an endomorphism of any
OG-moduleU and the corresponding endomorphism of BrQ(U) is multiplication by
brQ(z).

For example, ifb is an idempotent ofZ(OG), then we can consider the
bOG-modulebU = bOG⊗OG U . We have

BrQ(bU) = brQ(b) · BrQ(U).

If b is the principal block idempotent ofOG, then brQ(b) is the principal block
idempotent ofkCG(Q).

4.3. Defect of blocks

It is now time to turn to defect groups of blocks!
Let e be a block idempotent ofOG. A defect groupof eOG is a subgroupD ofG

such that
D is a vertex of theO(G × G◦)-moduleeOG — i.e., this is a subgroup
of G minimal with respect to the property that the multiplication map

eOG⊗OD OG→ eOG

splits. This is also a subgroup ofG maximal with respect to the property that
brD(e) �= 0.

If eOG is the principal block, thenD is a Sylowp-subgroup.
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We can now refine the discussion of §3.1.3: the complexity ofekG is accounted
for by D (ekG is semi-simple (and then simple) if and only ifD = 1, has finite
representation type if and only ifD is cyclic, etc.).

The following conditions for a block are equivalent:

(i) D = 1;

(ii) eOG is a projective(OG,OG)-bimodule;

(iii) eOG is stably equivalent to 0.

WhenO = k, this is furthermore equivalent to the fact thatekG is a simple algebra.
Defining the (numerical) defect ofeOG to be logp |D|, we see that the blocks

fulfilling those conditions are the blocks with defect 0.

5. Rickard equivalences

From here on, we will consider the usual setting for modular representation theory.

Hypothesis 2. We assumeO is a discrete valuation ring containing all|I |-th roots of
unity, for all the finite groupsI to be considered.

5.1. An example:A5 in characteristic 2

Let G be the alternating groupA5, p = 2 andD be a Sylow 2-subgroup ofG
(D 
 Z/2× Z/2). LetH = NG(D): we haveH 
 A4. LetE be a cyclic subgroup
of order 3 ofH . ThenH = D � E. The algebraOH is indecomposable.

Lete be the principal block idempotent ofOG. Then(1−e)OG is a block of defect
zero — it is actually a 5-dimensional matrix algebra overO. The Sylow 2-subgroups
ofG are TI; thus we know from §3.2.3 that the bimoduleM = eOG induces a stable
equivalence betweenA = eOG andB = OH .

The non-trivial simpleB-modules lift toB-modules free overO, whereas the non-
trivial simpleA-modulesV1 andV2 do not lift to O-freeA-modules; in particular,
A andB are not Morita equivalent (the algebrask ⊗ A andk ⊗ B are not Morita
equivalent either: they have distinct Cartan matrices).

The moduleM∗ ⊗A Vi = ResGH Vi is an indecomposable two-dimensionalB-
module: letSi be its unique simple submodule. ThenS1 andS2 are the non-trivial
simpleB-modules.

Lemma 5.1. A projective cover ofM is

PM = PkA ⊗ P ∗kB ⊕ PV1 ⊗ P ∗S1
⊕ PV2 ⊗ P ∗S2

,

where we denote byPL a projective cover of the moduleL.
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Proof. Let V be a simpleA-module andS a simpleB-module. We have an isomor-
phism of(B, B)-bimodules (§2.2.1)

Homk(V
∗ ⊗A M, S∗) 
 HomA(M,Homk(V

∗, S∗)),

whence

HomB◦(V
∗ ⊗AM, S∗) 
 HomA⊗B◦(M,Homk(V

∗, S∗)) 
 HomA⊗B◦(M, V ⊗ S∗).
Finally,

HomB◦(V
∗ ⊗A M, S∗) 
 HomB(S,M

∗ ⊗A V ).

Let f : PM → M be a surjection and letδ be its restriction toR = PV1 ⊗ P ∗S1
⊕

PV2 ⊗ P ∗S2
.

LetC be the complex

C = 0→ R
δ−→ M → 0,

whereM is in degree 0.
As shown by Rickard, we have

Proposition 5.2. The complexC induces a Rickard equivalence betweenA andB.

Proof. Let us consider the double complex

0

��

0

��
0 �� R ⊗B M∗ δ⊗1 ��

1⊗δ∗
��

M ⊗B M∗
1⊗δ∗

��

�� 0

0 �� R ⊗B R∗
δ⊗1

��

��

M ⊗B R∗

��

�� 0

0 0 .

We have

R ⊗B M∗ 
 M ⊗B R∗ 

⊕
i,j

PVi ⊗ P ∗Vj ,

R ⊗B R∗ 

⊕
i

PVi ⊗ P ∗Vi ⊕
⊕
i,j

PVi ⊗ P ∗Vj

andM ⊗B M∗ 
 A⊕
⊕
i �=j

PVi ⊗ P ∗Vj .
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We have a split surjectionf ⊗1 : PM ⊗B R∗ → M⊗B R∗. Since(PM/R)⊗B R∗
andM ⊗B R∗ have no common non-zero direct summand, it follows that the map
δ ⊗ 1 : R ⊗B R∗ → M ⊗B R∗ is still a split surjection.

Similarly, 1⊗ δ∗ : R ⊗B M∗ → R ⊗B R∗ is a split injection.
Let us consider now the complexC ⊗B C∗, i.e., the total complex associated to

the double complex above,

C⊗B C∗ = 0→ R⊗BM∗ δ⊗1−1⊗δ∗−→ M⊗BM∗⊕R⊗B R∗ 1⊗δ∗+δ⊗1−→ M⊗B R∗ → 0.

This complex is homotopy equivalent to its 0-th homology and

H 0(C ⊗B C∗)⊕ R ⊗B M∗ ⊕M ⊗B R∗ 
 R ⊗B R∗ ⊕M ⊗B M∗.
It follows thatH 0(C ⊗B C∗) 
 A; thusC ⊗B C∗ is homotopy equivalent toA.

A similar proof shows thatC∗ ⊗A C is homotopy equivalent toB.

This means that we have been able to get rid of the projective “remainder” by
suitably modifyingM intoC. In order to achieve this, we had to move from modules
to complexes of modules — more precisely, to the homotopy category of complexes
of modules.

5.2. Broué’s conjecture

We present here the abelian defect conjecture of Broué and its expected compatibilities
with p′-outer automorphism groups and central extensions byp-groups.

5.2.1. Let us now fix our objects of study.

Hypothesis 3. From now on, we assume Hypothesis 2 and we denote byG a finite
group, bye a block idempotent ofOG and byD a defect group ofeOG. We put
H = NG(D) and we denote byf the block idempotent ofOH corresponding toe
(it is the unique block idempotent with the property thateOG is a direct summand of
IndG×G

◦
H×H ◦ fOH ). We putA = eOG andB = fOH .

Following Rickard, we say that a complexC of (eOG, fOH)-bimodules issplen-
did if its components arep-permutation modules whose indecomposable summands
have vertices contained in
D (note that the components are then exact bimodules).
The relevance of this definition will appear in §5.3.

We can now state

Conjecture 5.3(Broué). AssumeD is abelian. TheneOG andfOH are splendidly
Rickard equivalent.

Some remarks.

• See the Appendix for comments on the notion of splendidness.

• It is unclear whether there should be a more natural equivalence.



120 Raphaël Rouquier

• Not every equivalence is splendid.

• The form of the conjecture given here is a refinement due to Rickard.

• The conjecture is known to fail whenD is not abelian, even if the Sylowp-
subgroups ofG are TI, as in the caseG = Sz(8) andp = 2. It remains an
open problem to find an extension of the conjecture to blocks with non-abelian
defect groups.

Whene andf are principal block idempotents, then it is conjectured that there is
a splendid Rickard complexC with C⊗fOH O 
 O. Such an equivalence is called a
normalized equivalence. For example, the construction of §5.1 gives a positive answer
for G = A5, p = 2 ande the principal block idempotent.

5.2.2. Let us try to give the current status of the conjecture.
The conjecture holds for

• D cyclic [Ri1, Li1, Rou2] andD 
 Z/2×Z/2 ([Ri4, Li2, Li3, Rou3] and §6.3
for principal blocks)

• G p-solvable [Da1, Pu1, HaLi]

• G a connected reductive algebraic group overFq andp dividesq−1 butp does
not divide the order of the Weyl group [Pu2]

• G a symmetric group andD 
 Z/p × Z/p [Ch1]

• several more cases whereG a symmetric group, e.g., whenD 
 (Z/p)r with
r ≤ 5 [Ri2] and [ChKe]

• G = GLn(q), p � q andD hasp-rank 2 [HiMi, Tu] and [BoRou],

for the principal blocks of

• G = 2G2(q) andp = 2 [Ok1]

• G = Sp4(q), q ≡ 2,5 (mod 9) andp = 3 [Ok1]

• G = PSU3(q
2), q ≡ 2,5 (mod 9) andp = 3 [KoKu1]

• G = PSL3(q), q ≡ 4,7 (mod 9) andp = 3 [Ku]

• G = A7, A8,M11,M22,M23, PSL3(4) andHS, p = 3 [Ok1]

• G = J2 andG = Sp4(4) andp = 5 [Holl]

• G = J1 andp = 2 [GoOk]

• any groupG with D 
 Z/3× Z/3 [KoKu2]

• G = PSL2(p
n) ([Ch2] for n = 2, [Rou1] forpn = 8 and [Ok2] in general)
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• G = GL4(q) andG = GL5(q), q ≡ 2,5 (mod 9) andp = 3 [KoMi]

• G = SU3(q
2), p > 3 andp|q + 1 [KuWa],

and for the non-principal blocks of

• G = ON andp = 3 [KoKuWa]

• G = HS andp = 3 [Holm, KoKuWa]

• G = 2.J2 andp = 5 [Holl]

• G = SL2(p
2) [Holl].

5.2.3. We now consider automorphisms.

Hypothesis 3′. Hypothesis 3 holds and we letX be a finite group containingG
as a normal subgroup andY = NX(D). We assume thate is X-invariant. Then
X/G = Y/H , and we assume that this groupF is ap′-group. We put
 = {(g, h) ∈
X × Y ◦ | (gG, hH ◦) ∈ 
F }.

Then it is conjectured that there is a complexC of O
-modules whose restriction
to eOG ⊗ (fOH)◦ is a splendid Rickard complex. By Marcus [Ma] (or [Rou2,
Lemma 2.8]), the complex IndX×Y

◦

 C is then a splendid Rickard complex.

Remark 5.4. If F is not ap′-group, the same proof shows only that IndX×Y ◦

 C will

induce an equivalence between the derived categories ofeOX andfOY .

Let us state some simple facts related to the extension problem.
LetM be an indecomposable direct summand of the(eOG ⊗ (fOH)◦)-module

eOGf with vertex
D andM ′ with eOGf = M ⊕M ′. Then the indecomposable
summands ofM ′ have vertices strictly contained in
D. The action of
 on OX
restricts to an action oneOGf extending the natural action ofG×H ◦. It follows that
M andM ′ extend uniquely toO
-modulesM̃ andM̃ ′ with eOGf 
 M̃ ⊕ M̃ ′.

Let M be anO
-module. Iff : PM → M is a projective cover ofM, then
Res
G×H ◦ f is a projective cover of Res
G×H ◦M (if Res
G×H ◦ kerf has a projective
direct summand, then so does kerf ).

5.2.4. Finally, we come to central extensions.

Hypothesis 3′′. Hypothesis 3′ holds and we consider̃X a finite group with a normal
p-subgroupP such thatX̃/P = X. LetG̃ be the inverse image ofG in X̃. We assume
P is central inG̃. The block idempotente of OG lifts to a block idempotent̃e of OG̃
(Hensel’s lemma inZ(OG̃)). Let Ỹ (resp.H̃ ) be the inverse image ofY (resp.H ) in
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X̃. Let f̃ be the block idempotent ofOH̃ lifting f . Let 
̃ be the inverse image of

in X̃ × Ỹ ◦. Note that
P is normal in
̃.

We have a commutative diagram:

1

��

1

��
P

��

P

��
1 �� G̃ ��

��

X̃ ��

��

F �� 1

1 �� G ��

��

X ��

��

F �� 1

1 1.

It is conjectured that there exists a complexC̃ of O(
̃/
P )-modules that are
projective forOG̃ andOH̃ ◦ such that ResG×H ◦(C̃ ⊗P×P ◦ O) is a splendid Rickard
complex.

By [Rou2, Lemma 2.11], the complex Res
̃/
P

G̃×H̃ ◦ C̃ is then a splendid Rickard

complex for(ẽOG̃, f̃OH̃ ) and IndX̃×Ỹ
◦


̃
Res̃
/
P


̃
C̃ a splendid Rickard complex for

(ẽOX̃, f̃OỸ ).

Remark 5.5. This refined conjecture holds whenD is cyclic orD 
 (Z/2)2.

5.3. Splendid stable equivalences and local Rickard equivalences

The following result, which is a variation on a classical theme, is a cornerstone to
our approach. It is the generalization from the case of local Morita equivalences to
the case of local Rickard equivalences of [Br2, Theorem 6.3]. The first implication
is due to Rickard and was the motivation for the introduction of the special class
of spendid complexes. Given a global splendid stable equivalence, we obtain local
Rickard equivalences. The second half shows that in order to check that a global
splendid complex induces a stable equivalence, it suffices to check that the associated
local complexes induce Rickard equivalences. This follows quickly from a result of
Bouc.

From now on (except in the Appendix), we will consider only principal blocks.
For the general case as well as for more details, see the Appendix and [Rou3].

Hypothesis 4. Hypothesis 3 holds and we assume furthermore thane is the principal
block idempotent ofOG.
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Now,D is a Sylowp-subgroup ofG.
We take a subgroupK ofG containingD and controlling the fusion ofp-subgroups

in G (i.e., forP ≤ D andg ∈ G such thatgPg−1 ≤ D, then there existsh ∈ K and
z ∈ CG(P ) such thatg = hz). By Burnside’s lemma, whenD is abelian, we can take
K = H = NG(D).

Let us denote byb the principal block idempotent ofOK. ForQ ≤ D, we denote
also byeQ (resp.bQ) the principal block idempotent ofkCG(Q) (resp.kCK(Q)).

Theorem 5.6. LetC be a splendid complex of(eOG, bOK)-bimodules. The follow-
ing assertions are equivalent.

(i) C induces a stable equivalence betweeneOG andbOK.

(ii) For every non-trivial subgroupQ ofD, the complexBr
Q(C) induces a Rickard
equivalence betweeneQkCG(Q) andbQkCK(Q).

(ii ′) For every subgroupQ of orderp inD, the complexBr
Q(C) induces a Rickard
equivalence betweeneQkCG(Q) andbQkCK(Q).

Proof. Let us recall the results of Rickard [Ri4, proof of Theorem 4.1].

• The components of the complexC ⊗OK C
∗ are relatively
D-projective.

• ForQ ≤ D, we have an isomorphism of complexes of(kCG(Q), kCK(Q))-
bimodules

Br
Q(C ⊗OK C
∗) 
 CQ ⊗kCK(Q) C∗Q

whereCQ = Br
Q(C) is a splendid complex of(eQkCG(Q), fQkCH (Q))-
bimodules. More precisely, letXQ be the cone of the adjunction morphism
CQ ⊗kCK(Q) C∗Q → eQkCG(Q). ThenXQ 
 Br
Q(X), whereX is the cone
of the adjunction morphismC ⊗OK C

∗ → eOG.

By [Bou, Proposition 7.9] (cf. [Rou3] for the extension fromk to O), a complex
Z is homotopy equivalent to a complex of projective modules if and only if, for every
non-trivial subgroupQ of D, the complex Br
Q(Z) is homotopy equivalent to 0
(using that BrP (Z) = 0 if P is not contained in
D up to conjugacy).

We have a similar statement concerningC∗ ⊗OG C and the equivalence between
(i) and (ii) follows.

The implication (ii′) ⇒ (ii) follows by induction from (ii)⇒ (i) and from the
isomorphism

BrQ(BrP (V )) 
 BrQ(V )

whenP � Q.
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6. Blocks with defect groupZ/pa × Z/pb

In this section we assume that Hypothesis 4 holds. We recall thatA = eOG and
B = fOH .

6.1. Cyclic defect groups

In this section, we recall the construction of splendid Rickard complexes for principal
blocks with cyclic defect groups. Let us assume in §6.1 thatD cyclic.

6.1.1. Let π : PeOGf → eOGf be a projective cover ofeOGf .
In [Rou1, Theorem 4.1], we have constructed a direct summandN of PeOGf with

the following property. Letφ be the restriction ofπ to N andC = 0 → N
φ−→

eOGf → 0, whereeOGf is in degree 0. ThenC induces a normalized splendid
Rickard equivalence betweeneOG andfOH .

Assume now Hypothesis 3′ of §5.2.3. We have [Ma, §5.5]:

Lemma 6.1. The complexC extends to a complex ofO
-modules.

Proof. Let us decompose theO
-moduleeOGf aseOGf = M ⊕M ′ withM ′ pro-
jective andM without projective direct summand. By §5.2.3, the module Res


G×H ◦M
has no projective direct summand. LetPM be a projective cover ofM. Then
Res
G×H ◦ PM is a projective cover of Res
G×H ◦M. The direct summandN ofPeOGf 

Res
G×H ◦(PM ⊕M ′) arises asP0 ⊕ Res
G×H ◦M ′, whereP0 is a direct summand of
Res
G×H ◦ PM . The construction ofPM , using the Brauer tree, shows it is invariant
under
, whence there is a direct summandN0 of PM with Res
G×H ◦ N0 
 P0.

6.1.2. We assume finally Hypothesis 3′′ of §5.2.4.
There is a projectiveO(
̃/
P )-moduleÑ such thatO ⊗O(P×P ◦) Ñ = N . The

composition ofφ : N → eOGf with the canonical map̃N → N factors through
the canonical map̃eOG̃f̃ → eOGf asφ̃ : Ñ → ẽOG̃f̃ . This last map liftsφ, i.e.,
φ = 1⊗ φ̃. By restriction, we obtain a morphism̃φ : Ñ → ẽOG̃f̃ of O
̃-modules.

We now define the complex ofO
̃-modules

C̃ = 0→ Ñ
φ̃−→ ẽOG̃f̃ → 0

whereẽG̃f̃ is in degree 0. ThenO ⊗O(P×P ◦) C̃ 
 C.
So by §5.2.4, we have

Theorem 6.2. The complexRes̃

G̃×H̃ ◦ C̃ induces a normalized splendid Rickard equiv-

alence betweeñeOG̃ and ẽOH̃ .
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6.2. Blocks with abelian defect group of rank 2

6.2.1. In this subsection, assume thatD is elementary abelian of orderp2.
LetP be a subgroup of orderp ofD. We haveNG(P )/CG(P ) = NH(P )/CH (P );

this is ap′-group.
We are in the setting of §6.1.2. We add an index ?P to an object ? from this section

to avoid confusion. We haveGP = CG(P )/P ,HP = CH(P )/P , XP = NG(P )/P ,
YP = NH(P )/P , G̃P = CG(P ), H̃P = CH(P ), X̃P = NG(P ) andỸP = NH(P ).
We nevertheless denote byeP andfP the principal block idempotents ofOCG(P )
andOCH(P ). We have
̃P = NG×H ◦(
P ). We have a projectiveO(
̃P /
P)-
moduleÑP and a map̃φP : ÑP → ePOCG(P )fP with the property that the complex

C̃P = 0 → ÑP
φ̃P−→ ePOCG(P )fP → 0 induces a Rickard equivalence between

ePOCG(P ) andfPOCH(P ).

LetVP = IndG×H
◦


̃P
Res̃
P /
P


̃P
ÑP , where we denote by Res
̃P /
P


̃P
the restriction

through the canonical mapO
̃P → O(
̃P /
P), also called inflation. The morphism

ePOCG(P )fP → ResG×H
◦


̃P
eOGf

(coming from the inclusionePOCG(P )fP → OG) induces by adjunction a morphism

αP : IndG×H
◦


̃P
ePOCG(P )fP → eOGf

and Br
P (αP ) is an isomorphism. LetψP = αP IndG×H
◦


̃P
(φ̃P ) : VP → eOGf .

Let

C = 0→
⊕
P

VP

∑
P ψP−→ eOGf → 0

whereP runs over the subgroups of orderp ofD up toH -conjugacy (the termeOGf
is in degree 0).

Theorem 6.3. The complexC induces a normalized splendid stable equivalence be-
tweeneOG andfOH .

Proof. The complexC is splendid sinceVP is a sum ofp-permutation modules with
vertex
P andeOGf is a p-permutation module induced from
D. Let P be a
subgroup of orderp ofD. ForQ a subgroup of orderp ofD, we have Br
P (VQ) = 0
unless
Q is (G×H ◦)-conjugate to
P , i.e.,Q isH -conjugate toP . Now we have
Br
P (ψP ) = φ̃P (cf. §4.1.2).

It follows that Br
P (C) 
 k ⊗ C̃P induces a Rickard equivalence between
eP kCG(P ) andfP kCH (P ).

SinceC is splendid, the theorem follows now from Theorem 5.6, (ii′)⇒ (i).

Remark 6.4. A similar construction works for nonprincipal blocks (cf. the Appendix
and [Rou3]).
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6.2.2. In this subsection, assume thatD is abelian and hasp-rank 2.
Let Q be a subgroup of orderp of D. We haveD = (D ∩ Z(CH (Q))) ×

[D,CH (Q)]. LetP = D∩Z(CH (Q)). ThenQ ≤ P ≤ D,D/P is cyclic andCG(P )
controls fusion ofp-subgroups inCG(Q). This impliesCG(Q) = Op′CG(Q)·CG(P ),
by theZ∗p-theorem (given a finite groupG and ap-subgroupP such thatCG(P )
controls fusion ofp-subgroups inG, thenG = Op′G · CG(P )). This implies also
NG(Q) = Op′CG(Q) ·NG(P ).

WhenP = D (the only possible case whenp = 2), the results above are easy
sinceCG(Q) is p-nilpotent by Burnside’s Theorem. LeteQ andfQ be the principal
block idempotents ofOCG(Q) andOCH(Q). The construction of §3.2.2 provides an

extension of Res̃
P /
P

̃P /
Q

ÑP to an(eQ⊗fQ)O(
̃Q/
Q)-moduleÑQ andφ̃P lifts to a

morphismφ̃Q : ÑQ→ eQOCG(Q)fQ. Now, we continue as in §6.2.1 and construct
VQ, αQ andψQ.

We put

C = 0→
⊕
Q

VQ

∑
Q ψQ−→ eOGf → 0

whereQ runs over the subgroups of orderp inD up toH -conjugacy (the termeOGf
is in degree 0).

The same proof as in Theorem 6.3 leads to the following result.

Theorem 6.5. The complexC induces a normalized splendid stable equivalence be-
tweeneOG andfOH .

Remark 6.6. WhenNG(D)/CG(D) acts freely onD − {1}, then this result is due to
Puig [Pu3, Corollary 6.7]. This is always the case whenp = 2.

6.3. Blocks with Klein four defect groups

6.3.1. In this part we will make more explicit the constructions of §6.2 for the case
D = Z/2× Z/2, where some simplifications occur. Then we will show how to con-
struct a Rickard equivalence from the stable equivalence. The reason why the method
does not apply for any otherD of rank 2 is that there are too many indecomposable
kD-modules (the type is wild).

Throughout §6.3, we assumeD is elementary abelian of order 4.

6.3.2. Stable equivalence.LetP be a subgroup of order 2 ofD. The complexCP of
§6.2.1 (i.e., the complexC of §6.1.1 constructed for the groupCG(P )/P ) has homol-
ogy only in degree 0: this homology is a direct summand ofēPO(CG(P )/P )f̄P and it
induces a Morita equivalence betweenēPO(CG(P )/P ) andf̄PO(CH (P )/P ) (here,
ēP andf̄P are the principal block idempotents ofO(CG(P )/P ) andO(CH (P )/P )).
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The complexC̃P inducing a Rickard equivalence betweenePOCG(P )andfPOCH(P )
then has homology only in degree 0, i.e., there is a direct summand ofePOCG(P )fP
inducing a Morita equivalence betweenePOCG(P ) andfPOCH(P ).

Finally, the complexC constructed in §6.2.1 has homology only in degree 0: this is
a bimoduleN isomorphic to a direct summand ofeOGf . LetM be a direct summand
of N such thatN = M ⊕ projective andM has no projective direct summand. Then
M induces a stable equivalence betweenA = eOG andB = fOH .

Let us state this as

Proposition 6.7. There is a direct summand ofeOGf inducing a normalized splendid
stable equivalence betweeneOG andfOH .

6.3.3. The following result now solves Conjecture 5.3 forD 
 Z/2× Z/2.

Theorem 6.8. There is a normalized splendid Rickard equivalence betweeneOG and
fOH induced by a complexC such thatC−1 is projective,C0 = M andCi = 0 for
i �= 0,−1.

Remark 6.9. For non-principal blocks, see the Appendix and [Rou3]. The existence
of a Rickard equivalence was established by Linckelmann in [Li2, Corollary 1.5], but
no equivalence was constructed.

The rest of this section is devoted to the proof of this theorem.
The groupE = H/CG(D) is ap′-subgroup of the automorphism group ofD,

whence it is the trivial group or a cyclic group of order 3.
There is a normalized Morita equivalence betweenB andB ′ = OD � E (cf.

for example [Rou2, Proposition 2.15]). LetW be a(B, B ′)-bimodule inducing such
an equivalence. LetL = M ⊗B W : this is an indecomposable(A,B ′)-bimodule
inducing a stable equivalence.

Note thatL⊗B ′ O 
 O.

6.3.4. The nilpotent case.AssumeE = 1. ThenL induces a Morita equivalence
betweenA andB ′ (cf. §2.3.5), whenceC = M induces a Morita equivalence and
hence a Rickard equivalence betweenA andB.

6.3.5. TheA4-case. Let us now consider the case|E| = 3. ThenD � E 
 A4.
Let S be a non-trivial simpleB ′-module. We have

HomA(L⊗B ′ S, k) 
 HomB ′(S, L
∗ ⊗A k) = HomB ′(S, k) = 0.

Let V1 be a simple quotient ofL⊗B ′ S (this is not the trivial module).
We have an isomorphism HomB ′(L∗ ⊗A V1, k) 
 HomA(V1, k) = 0, and sim-

ilarly HomB ′(k, L∗ ⊗A V1) = 0. It follows thatk is not a composition factor of
L∗⊗A V1 (this module has no projective direct summand and hence has Loewy length
at most 2). Consequently,L∗⊗AV1 has a unique simple quotientS1. LetS2 be a simple
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B ′-module not isomorphic tok orS1. ThenL∗⊗AV1 = S1 orL∗⊗AV1 is an extension
of S1 by S2.

Furthermore, we have HomA(V1, L ⊗B ′ S2) 
 HomB ′(L∗ ⊗A V1, S2) = 0 and
HomA(k, L⊗B ′ S2) = 0. So there is a simple submoduleV2 of L⊗B ′ S2 that is not
isomorphic tok or V1.

If L∗⊗AV1 = S1, then we haveL∗⊗AV2 = S2, soL⊗B ′− send simple modules to
simple modules, whenceL induces a Morita equivalence betweenA andB ′ (cf. 2.3.5).
So in this case a solution to Theorem 6.8 is provided byC = M.

AssumeL∗ ⊗A V1 is an extension ofS1 by S2. ThenL∗ ⊗A V2 is an extension of
S2 by S1. Now we are in a situation similar to 5.1: a projective cover ofL is

PL = PkA ⊗ P ∗kB ⊕ PV1 ⊗ P ∗S2
⊕ PV2 ⊗ P ∗S1

.

Let δ be the restriction of a surjective mapPL → L toR = PV1 ⊗ P ∗S1
⊕ PV2 ⊗ P ∗S2

andC′ be the complex

C′ = 0→ R
δ−→ L→ 0

with L in degree 0.
The same proof as that of Proposition 5.2 shows thatC′ induces a Rickard equiv-

alence betweenA andB ′. So

C = C′ ⊗B ′ W ∗ = 0→ R ⊗B ′ W ∗ → M → 0

provides a solution to Theorem 6.8.

6.3.6. As in §6.1.1 and 6.1.2, one checks that the construction can be done compatibly
withp′-outer automorphism groups and central extensions byp-groups, as conjectured
in §5.2.3 and 5.2.4.

6.4. Blocks with defectZ/2 × Z/2 × Z/2

In this subsection, we assume that Hypothesis 4 holds withD 
 Z/2× Z/2× Z/2.
LetM be the unique indecomposable direct summand ofeOGf with vertex
D.
A construction similar to that in §6.2.1 (using now §6.3 instead of §6.1) provides,

for every subgroupP of order 2 ofD, a relatively
P -projectivep-permutation
(eOG⊗ (fOH)◦)-moduleVP and a mapψP : VP → M. Consider now the complex

C = 0→
⊕
P

VP

∑
P ψP−→ M → 0

whereP runs over the subgroups of order 2 ofD up toH -conjugacy (the termM is
in degree 0).

A proof analogous to that of Theorem 6.3 shows

Theorem 6.10. The complexC induces a normalized splendid stable equivalence
betweeneOG andfOH .
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Note that we have a block of wild type (unlike the case whereD has order 4) and
we do not know how to lift this to a Rickard equivalence (without using a case by
case proof based on the classification of finite simple groups with 2-Sylow subgroups
elementary abelian of order at most 8).

7. Local constructions

In this section, we develop a formalism for gluing Rickard complexes and apply it
here only to principal blocks. In §5.3, we constructed local Rickard equivalences
from a global stable equivalence, using the Brauer functor. Here, we try to pro-
vide some converse, namely the construction of a global stable equivalence from a
suitable family of local Rickard equivalences. This generalizes the construction
of §6.2.

A more detailed study is being conducted in [Rou3] (cf. also the Appendix), where
various categories of “sheaves” over the poset ofp-subgroups will be considered,
giving rise for example to a local construction of the stable category of all modules or
of p-permutation modules.

Our approach here consists of constructing locally a “subcategory” of the category
of p-permutation modules.

7.1. GluingG-sets

LetG be a finite group andk a field of characteristicp > 0.
LetT = TG be the category ofp-subgroups ofG, with maps the inclusions. There

is an action ofG by conjugation onT .
Let F be aG-stable full subcategory ofT .

7.1.1. We define the categoryE(F ) = EG(F ) as the full subcategory of the category
E of G-sets of objects whose point-stabilizers are inF .

GivenX, Y in E(F ), then a morphismf : X→ Y is an isomorphism if and only
if, for everyP in F , the morphismf P : XP → YP is an isomorphism.

7.1.2. Sheaves.Assume now thatF is closed above (i.e., ifP is in F andQ is a
p-subgroup containingP , thenQ is in F ).

Let us denote byL(F ) the category ofG-equivariant presheaves of (finite) sets
overF , i.e., the category ofG-equivariant contravariant functorsF → sets.

Its objects are families� = (�P , φ(Q,R), [g, S])P,Q,R,S,g whereP,Q,R, S
run over the objects ofF with Q ⊆ R andg overG. Here,�P is a set,φ(Q,R) is
a map from�R to �Q and[g, S] is an isomorphism�S

∼→ �gS . Furthermore, the
following conditions should be fulfilled:

(i) φ(R,R) = 1�R ;
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(ii) φ(Q,R)φ(R, S) = φ(Q, S);
(iii) [g, hP ][h, P ] = [gh, P ];
(iv) we have a commutative diagram

�Q
φ(P,Q) ��

[g,Q]

��

�P

[g,P ]

��
�gQ

φ(gP,gQ)

�� �gP .

Note that the maps[g, P ] for g ∈ NG(P ) give a structure of aNG(P )-set to�P :
we have a functor ?P : L(F )→ NG(P )sets.

We say that� is asheafif, for H a subgroup ofG andP an object ofF normal
in H , then

φ(P,H) is an isomorphism�H
∼→ (�P )

H if H is ap-group

and(�P )
H = 0 otherwise.

We denote byS(F ) the full subcategory ofL(F ) consisting of sheaves.
For a sheaf�, the groupP acts trivially on�P and the maps�(P,Q) are inclu-

sions, since every map inF is a composition of normal inclusions.

7.1.3. Some functors.Let G be a full subcategory ofF closed above.
We denote by ResFG the restriction functorL(F )→ L(G).

We need to construct also a left adjoint IndF
G from L(G) to L(F ).

For � ∈ L(G), andP ∈ F , the set�′P = (IndF
G �)P is the direct limit of

the restriction of� to the full subcategory ofG of objects containingP : this is the
quotient of

∐
Q∈G,P⊆Q �Q by the (coarsest) equivalence relation that identifiesx and

φ(R,Q)(x) for x ∈ �Q andR ↪→ Q in G. We denote byλP,Q the canonical map
�Q→ �′P for P ⊆ Q.

The equivalence relation admits the following easier description when� ∈ S(G):
we haveλP,Q(a) = λP,Q′(a′) if and only if there existsR ∈ G andb ∈ �R with
Q ⊆ R andQ′ ⊆ R such thata = φ(Q,R)(b) anda′ = φ(Q′, R)(b).

To prove this claim, it is enough to consider the case where there isS normal in
Q and inQ′ with φ(S,Q)(a) = φ(S,Q′)(a′). Let us denote byc this element of

�
Q
S ∩�Q

′
S = �RS (we putR = 〈Q,Q′〉). Since� is a sheaf, this shows thatR is ap-

group and that there isb ∈ �R such thatc = φ(S,R)(b). Nowφ(S,Q)φ(Q,R)(b) =
φ(S,Q)(a). Sinceφ(S,Q) is an inclusion, we obtaina = φ(Q,R). Similarly,
a′ = φ(Q,R′)(b).
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There is a morphism of functors IndF
G ResFG → 1 making the following diagram

commutative

(IndF
G ResFG �)P �� �P

∐
Q∈G,P⊆Q �Q

{φ(P,Q)}Q

�������������

����

and a morphism of functors 1→ ResFG IndF
G given by

�Q
λQ,Q−→ (ResFG IndF

G �)Q.

They make IndFG a left adjoint of ResFG .

The functor ResFG clearly restricts to a functorS(F )→ S(G).

Lemma 7.1. The functorIndF
G restricts to a functor fromS(G) to S(F ).

Proof. Let � ∈ S(G) and�′ = IndF
G �. Let P ∈ F andx ∈ �′P . LetQ ∈ G be

maximal such thatx = λP,Q(a) for some elementa ∈ �Q. Let g ∈ NG(P ) such
thatg(x) = x. ThenλP,gQ([g,Q](a)) = λP,Q(a). It follows that there isR in G
containingQ andQg andb ∈ �R such thatφ(Q,R)(b) = a andφ(gQ,R)(b) =
[g,Q](a).

The maximality ofQ shows thatR = Q = Qg, whenceg ∈ NG(Q) anda ∈
(�Q)

〈g,Q〉. So 〈g,Q〉 is a p-group anda is in the image ofφ(Q, 〈g,Q〉). The
maximality ofQ shows thatg ∈ Q.

Since�′P is a direct limit over a transitive system of injections, the mapλP,Q :
�Q→ �′P is injective. It follows that�′ is a sheaf.

Remark 7.2.

• The adjunction between Res and Ind restricts also to sheaves.

• The adjunction morphism 1→ ResFG IndF
G between functors fromS(G) to itself

is an isomorphism.

• For� in S(G) andP ∈ F , the point-stabilizers of theNG(P )-set(IndF
G �)P

are inG.

Let X ∈ E . Let �P = XP and, forP ⊆ Q, let φ(P,Q) be the inclusion
XQ ↪→ XP . We define[g, P ] : XP → X

gP byx �→ gx. Then(�P , φ(Q,R), [g, S])
is an element ofS(T ). This gives a functor Br: E → S(T ) which is canonically
inverse to ?1 : S(T )→ E .

Let Br(F ) be the restriction of ResT
F Br to E(F ).

Theorem 7.3. The functorBr(F ) is an equivalence of categoriesE(F ) ∼→S(F )with
inverse?1 · IndT

F .
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Proof. To simplify notation, we putA = Br(F ) andB =?1 · IndT
F . We know

already thatB is left adjoint toA and that the adjunction morphism 1→ AB is an
isomorphism.

Now the counit of adjunctionBA→ 1 becomes an isomorphism after composing
with A since the compositeA → ABA → A is the identity and the first map is
already known to be an isomorphism. This means that, givenX in E(F ), the counit
BA(X)→ X becomes an isomorphism after taking fixed points by a subgroup inF .
SinceBA(X) andX are inE(F ), it follows that the counit is an isomorphism (cf.
§7.1.1).

Of special interest is the case whereF consists of the non-trivialp-subgroups ofG:
Theorem 7.3 says that the categoryE(F ) of G-sets whose stabilizers are non-trivial
p-groups is “locally determined”.

7.1.4. LetF be aG-stable full subcategory ofT andF̄ be the closure ofF , i.e., the
full subcategory ofT with objects thep-subgroups that contain some object ofF .

We defineS(F ) as the full subcategory ofS(F̄ ) with objects the� such that
�P = ∅ forP �∈ F . Then Br(F̄ ) restricts to an equivalence Br(F ) : E(F )→ S(F ).

7.2.p-permutation modules

7.2.1. Let Ẽ(F ) be the Karoubian envelope ofE(F ): this is the category obtained
from E(F ) by k-linearizing and then adding images of idempotents. Its objects are
pairs(X, e) whereX is an object ofE(F ) ande is an idempotent of thek-algebra of
the monoid End(X).

The space Hom((X, e), (X′, e′)) is the subspacee′(kHom(X,X′))e of kHom(X,X′).
Similarly, we have a categorỹS(F ) obtained fromS(F ) by k-linearizing and then
adding images of idempotents as above.

The functor Br(F ) gives rise to a functor̃E(F )→ S̃(F ). From Theorem 7.3 we
can deduce

Corollary 7.4. The functorBr(F ) is an equivalencẽE(F ) ∼→ S̃(F ).

We have a faithful functorρ : Ẽ(T ) → kG-perm,(�, e) �→ k�e. If � is free,
then we have an isomorphism

HomẼ(T )((�, e), (�
′, e′)) ∼→ HomkG-perm(k�e, k�

′e′).

The categoryẼ(T ) consists of certainp-permutation modules with additional
structure and the maps between them are those which can be “constructed” from maps
betweenG-sets. A complex of objects of̃E(T ) will be called ageometricalcomplex
for kG.
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7.2.2. GivenX, Y ∈ Ẽ such that theG-set underlyingX is free, we have an isomor-
phism

HomẼ (X, Y )
∼→ HomkG(ρ(X), ρ(Y )).

Consequently, every projectivekG-module arises asρ(X) for someX ∈ Ẽ with
an underlyingG-set free.

7.2.3. LetF be aG-stable full subcategory ofTG closed above. LetQ be a maximal
p-subgroup ofG outsideF . Let F ′ be the full subcategory ofTG with objects those
of F together with the conjugates ofQ. LetH be the full subcategory ofTNG(Q) with
objects thosep-subgroups ofNG(Q) containingQ.

Let us construct a categoryC. Its objects are families(�, V, {φR}Q<R) where
� ∈ S(F ), V ∈ ENG(Q)(H) andφR : �R → V is a map of sets satisfying

(i) givenS in F containingR, we haveφS = φRφ(R, S),
(ii) given h ∈ NG(Q), we have a commutative diagram

�R

[h,R]
��

φR �� V

h

��
�hR

φhR

�� V ,

and

(iii) given R a p-subgroup withQ � R andQ �= R, we have an isomorphism
φR : �R ∼→ V R.

A morphism(�, V, {φR}Q≤R)→ (�′, V ′, {φ′R}Q≤R) is a pair(�, f ) consisting
of a morphism� : � → �′ and a mapf : V → V ′ such that, for allR containing
Q, the following diagram is commutative

�R
φR ��

�R
��

V

f

��
�′R

φ′R
�� V ′ .

Lemma 7.5. The functorS(F ′)→ C given by� �→ (ResF
′

F �,�Q, {φ(Q,R)}) is
an equivalence.

Let us give a useful application of this lemma. LetX ∈ S̃(F ′)andY ∈ ẼNG(Q)(H)

with ResHH−{Q} BrXQ
∼→ ResHH−{Q} Br Y . Then there isX′ ∈ S̃(F ′) with

ResF
′

F X′ ∼→ ResF
′

F X andX′Q
∼→ Y .
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7.3. Geometric stable and Rickard equivalences

7.3.1. We assume Hypotheses 4 (the blocks are principal) and 3′ of §5.2.3 (cf. the
Appendix and [Rou3] for nonprincipal blocks). Assume furthermore thatD is abelian.

Denote byF the full subcategory ofp-subgroups of
 contained in
D up to
conjugacy.

We may refine Broué’s conjecture 5.3:

Conjecture 7.6. There is a complexC in Ẽ
(F ) such thatRes
G×H ◦ ρ(C) is a Rickard
complex forA⊗ B◦.

Note that ifC is such a complex, then Res

G×H ◦ ρ(C) is a splendid Rickard com-

plex, i.e., a Rickard complex ofp-permutationk(G × H ◦)-modules with vertices
contained in
D. So Conjecture 7.6 indeed implies Broué’s conjecture.

7.3.2. Let us assume Hypothesis 3′′. We denote byD̃ the inverse image ofD in X̃.
Let F̃ be the full subcategory ofp-subgroups of̃
 containing
P and contained in

D̃ up to conjugacy.

One can ask the following question about(X̃, P,G):

Question 7.7. LetC be a complex iñE
̃(F̃ ) such that Res
G×H ◦ k
⊗k
̃ρ(C) induces
a stable equivalence betweenA andB.

Is there a complexC′ in Ẽ
̃(F̃ ) such that

(i) Res
G×H ◦ k
⊗k
̃ ρ(C′) induces a Rickard equivalence betweenA andB, and

(ii) ResF̃
F̃ −{
P } BrC′ 
 ResF̃

F̃ −{
P } BrC?

This question has a positive answer when|D| = p (more generally, forD cyclic)
or whenD is a Klein four group.

Let us justify this claim, for a particular choice ofC (when this will be used in
the application of Theorem 7.8, it will be possible to ensure thatC is of that type).
We assumeC is concentrated in degree 0 andM = ρ(C0) is a direct summand of
kX̃, as ak
̃-module. Then it follows from §6.1 and §6.3 that there is a projective
k(
̃/
P )-moduleR′ and a morphism

f : R = Res̃
/
P

̃

R′ → M

such that the complex 0→ R
f−→ M → 0 induces a Rickard equivalence between

the principal blocks ofG̃ andH̃ . By §7.2.2, there is an objectV in Ẽ
̃/
P and a

morphismα : V → C0 with ρ(α) = f . NowC′ = 0→ V
α−→ C0 → 0 answers

Question 7.7.
Note that whenD is not abelian, there are stable equivalences that do not lift to

Rickard equivalences (that happens for the principal block ofG = Sz(8) for p = 2).
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7.3.3. We can now state our main result.

Theorem 7.8. Assume Question7.7has a positive answer for(NX(Q),Q,CG(Q)/Q)
for all non-trivial subgroupsQ ofD. Then there is a complexC in Ẽ
(F ) such that
Res
G×H ◦ ρ(C) induces a stable equivalence betweeneOG andfOH .

We recover the existence of stable equivalences forD 
 Z/p × Z/p (§6.2) and
for D elementary abelian of order 8 (§6.4).

This result readily implies

Corollary 7.9. Assume Question7.7 has a positive answer for

(NX(Q),Q,CG(Q)/Q)

for all subgroupsQ ofD. Then Conjecture7.6 holds for(X,G).

7.3.4. Proof of Theorem7.8. Let G be a full subcategory ofF − {1} closed under
conjugation and such that, givenQ in G andR in F withQ ≤ R, thenR is in G. We
will construct by induction on|G| a complexXG in S̃
(G) such that

k(C̄G(Q)× C̄H (Q)◦)⊗k(CG(Q)×CH (Q)◦) ResN
(
Q)CG(Q)×CH (Q)◦ ρ
(
(XG)
Q

)

is a Rickard complex for the principal blocks ofC̄G(Q) = CG(Q)/Q andC̄H (Q) =
CH(Q)/Q, for allQ ≤ D with 
Q ∈ G.

Assume we have a complexXG satisfying the induction hypothesis and letQ �= 1
be a maximal subgroup ofD with 
Q /∈ G. Let G′ = G ∪ {(
Q)x}x∈
.

Let Y = IndG′
G XG. LetZ = Y
Q, an object ofẼN
(
Q)(H), whereH is the full

subcategory ofTN
(
Q) of p-subgroups containing
Q and contained in
D up to
conjugacy.

For everyp-subgroupR of D strictly containingQ, we have Br
R ρ(Z) 

ρ

(
(XG)
R

)
, whence Br
R/
Q C induces a Rickard equivalence between the prin-

cipal blocks ofC̄G(R) andC̄H (R), where

C = ResN
(
Q)/(Q×Q
◦)

C̄G(Q)×C̄H (Q)◦ kN
(
Q)/(Q×Q◦)⊗kN
(
Q) ρ(Z).
By Theorem 5.6, it follows thatC induces a stable equivalence between the principal
blocks ofC̄G(Q) andC̄H (Q).

Since we are assuming a positive answer to Question 7.7 by hypothesis for
(NX(Q),Q,CG(Q)/Q), it follows that there exists a complexZ′ in ẼN
(
Q)(H)

and an isomorphism

ResHH−{
Q} BrZ′ ∼→ ResHH−{
Q} BrZ

such that ResN
(
Q)/(Q×Q
◦)

C̄G(Q)×C̄H (Q)◦ kN
(
Q)/(Q×Q◦)⊗kN
(
Q)ρ(Z′) induces a Rickard

equivalence between the principal blocks ofC̄G(Q) andC̄H (Q).
By §7.2.3, there is a complexY ′ in S̃
(G

′) with Y ′
Q
∼→ Z′ andY ′R

∼→ (XG)R for
R ∈ G. NowXG′ = Y ′ satisfies the required properties.
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Appendix

Our aim here is to present some of the main points of the work in progress of [Rou3].
It completes the results described previously, mainly by extending most of these to
nonprincipal blocks.

We will be working in the Appendix with Hypothesis 3 unless otherwise stated.

A.1. Splendid equivalences

A.1.1. Previous constructions.As explained by Broué in [Br1], a Rickard equiva-
lence betweenA andB induces a perfect isometry between the blocks — a character
correspondence with signs satisfying certain arithmetical properties. Now, Broué in-
troduced also in [Br1] the class of isotypies, which consist of a compatible system
(for the generalized decomposition maps) of perfect isometries for local subgroups.
In [Ri4], Rickard proved that, by adding the assumption of splendidness to a Rickard
equivalence, one then gets such an isotypie. Actually, Rickard proves more. Namely,
he shows how to get Rickard equivalences for local subgroups (this is Theorem 5.6,
(i)⇒ (ii)). Unfortunately, Rickard’s construction was done only for principal blocks.
Later, Harris [Ha] showed that, ifH is a subgroup ofG, then Rickard’s definition of
splendidness still provides Rickard equivalences for local subgroups (i.e., Theorem
5.6,(i)⇒ (ii) holds for nonprincipal blocks and without the assumption thatK controls
fusion ofp-subgroups inG). As for a general definition of splendidness, this has been
given by Linckelmann in [Li5].

In order to define splendid equivalences (or even isotypies), one needs an equiva-
lence between the Brauer categories of the two blocks (we will recall later what they
are). One needs also an identification of the defect groups of the blocks. Then Linck-
elmann’s definition of splendidness is relative to a choice of source idempotents for
the blocks, which makes it difficult to check on examples.

For principal blocks, the situation is simpler because of Brauer’s third main theorem
and because the assumption on the Brauer categories means that the groups have
the same fusion ofp-subgroups. More generally, Harris pointed out that it is still
enough to assume some relative projectivity on the terms of the complex, provided
one of the groups controls the fusion ofp-subgroups in the other group — but this
is not a very satisfactory assumption, being non-symmetric and involving more than
just information about the Brauer categories of the blocks. There, one trick (due to
Rickard) is needed, namely, that a complex of exact(A,B)-bimodulesC induces a
Rickard equivalence if and only if one of the two isomorphisms in §2.3.2, (i) holds.

A.1.2. A new approach. What is not natural in the previous approaches is the iden-
tificationa priori of the defect groups of the blocks, as pointed out by Broué.

LetD be a defect group ofA andD′ a defect group ofB. LetC be an indecom-
posable complex ofp-permutation(A,B)-bimodules inducing a stable equivalence.
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One shows that there is an isomorphismφ : D ∼→ D′ such that the terms ofC are
projective relatively to
φ(D) = {(x, φ(x))|x ∈ D}. Now let (D, eD) be a maximal
e-subpair. There is an equivalenceF : Br(e) ∼→ Br(f ) with the following property:

Given a subpair(Q, bQ) ≤ (D, bD), the complexeQ Br
φ(Q)(C) induces a Rickard
equivalence betweeneQkCG(Q) andfQ′kCH (Q′), where(Q′, fQ′) = F(Q, eQ).

This is the generalization of Theorem 5.6, (i)⇒ (ii).
We recall that the Brauer category Br(e) of eOG has for objects thee-subpairs and

Hom((Q, eQ), (R, eR)) is the set of homorphismsQ→ R which are the composition
of conjugationQ → Qg, x �→ g−1xg followed by an inclusionQg ⊆ R, for some
g ∈ G such thatg−1eQg = eR.

One can say much more about the vertices of the indecomposable terms inC.
One constructs a theory of vertex-subpairs for indecomposable modules. Then one
shows that the vertex-subpairs of the terms have the form(
φ(Q), eQ⊗fφ(Q)), where
(Q, eQ) ≤ (D, eD) and(φ(Q), fφ(Q)) = F(Q, eQ). This last property finally tells
us that the complex is splendid in the sense of Linckelmann.

Now, what should be a splendid complex? It depends on the data! As long as
there has been no chosen isomorphismφ : D ∼→D′ between defect groups of the two
blocks, this should be any indecomposable complex ofp-permutation modules (this
makes it easy to check that the known examples of Rickard complexes are splendid).
Once such an isomorphism is chosen, we should ask that the terms are projective
relative to
φD. If furthermore maximal subpairs(D, eD) and(D′, fD′) are chosen,
one should put the more precise assumption on the vertex-subpairs.

All of this is compatible with the previous definitions of Rickard, Harris and Lin-
ckelmann. This should also be seen as a special (but more explicit) case of the theory
of basic equivalences of Puig [Pu4].

A.2. Nilpotent blocks,p-rank 2 and Puig’s finiteness conjecture

Let P be an abelianp-group. We know that given an indecomposable bimoduleM

inducing a stable equivalence betweenekG andkP , there is an integern such that
�nM induces a Rickard equivalence (it is crucial, here, to assumeP is abelian). This
follows from Dade’s classification of endotrivial modules for abelianp-groups [Da2]
(we use the fact thatM∗⊗ekG V is endotrivial ifV is simple). A difficulty arises when
n is negative: starting from a geometrical complex giving the stable equivalence, we
cannot, in general, get a geometrical complex giving a Rickard equivalence. Note that
whenP is cyclic, we can always taken = 0 or n = 1, so we assume nowP is not
cyclic.

Now take forM an indecomposablep-permutation module. Assume the block
ekG is self-dual. Then “the” simpleekG-moduleV is self-dual; henceM∗ ⊗ekG V
is also self-dual. SinceM∗ ⊗ekG V 
 �−nk, it follows that�2nk 
 k. AsP is not
cyclic, this forcesn = 0, so thatM already induces a Morita equivalence.
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Let us explain how the problem should be solved in general. We work over a semi-
local ringO = Zp[ζ ] whereζ is a suitable root of unity. The complex conjugation
induces an automorphism ofO and the semi-linear anti-automorphism ofOG given
by ag �→ āg−1 for a ∈ O and g ∈ G stabilizes all the blocks ofOG. Now,
the extension of the theory to the base ringO should provide the conclusion that
M is always a Morita equivalence! Note that similar considerations should solve
some cases of Puig’s finiteness conjecture. Examples are blocks with defect group
Z/2× Z/2 and (non-abelian defect) nilpotent blocks, where the problem is to show
that the endopermutation module involved has finite order in the Dade group.

This would give a proof of Conjecture 7.6 for nilpotent blocks with abelian defect
and would show that there are stable equivalences for blocks with abelian defect groups
and nilpotent local structure: the existence of such stable equivalences is due to Puig
[Pu3], who shows how to glue endopermutation modules — this was a important
source of inspiration for this work on local constructions.

When the defect groups are abelian withp-rank 2, we obtain a geometrical stable
equivalence betweenA andB (here, the problem of “negativen” does not arise, since
the local blocks arep-central extensions of blocks with cyclic defect). We then get a
splendid Rickard equivalence for blocks with defect groupZ/2×Z/2 (without using
complex conjugation, it is not clear that this comes from a geometrical complex). Let
us explain this last result more precisely.

AssumeD 
 Z/2× Z/2. LetM be the unique indecomposable direct summand
of eOGf with vertex
D. LetE = NG(D, eD)/CG(D), where(D, eD) is a maximal
e-subpair.

If |E| = 1, then there is an integern such that�nM induces a Morita equiv-
alence betweeneOG andfOH . This can be realized using a Rickard complex of
p-permutation modules, by truncating a projective resolution (or a relatively injective
resolution) ofM (note that by the discussion above, we should haven = 0).

If |E| = 3, then there is an integern and a direct summandR of a projective
cover of�nM such that the complex 0→ R → �nM → 0 induces a Rickard
equivalence. As above, this can be realized by a Rickard complex ofp-permutation
modules (although, again, we should already haven = 0).

In order to be able to construct stable equivalences for blocks with defect group
Z/2×Z/2×Z/2 by gluing local Rickard equivalences coming from the construction
above, we would needn = 0.

For nilpotent blocks with non-abelian defect groups, we have a Morita equivalence
betweenA andkD, as shown by Puig, but this cannot be realized, in general, by a
complex ofp-permutation modules. A common generalization of this case and of
the abelian defect case is the case where the hyperfocal subgroup of the defect group
(as defined by Puig in [Pu5]) is abelian: it is tempting to ask whether there is still a
Rickard equivalence betweenA andB. Such an equivalence would not be splendid
in general, but should be basic in the sense of Puig [Pu4].
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A.3. Further categories of sheaves

A.3.1. Stable category ofp-permutation modules. In order to construct global com-
plexes ofp-permutation modules by gluing local complexes, we can look for a local
description of the category ofp-permutation modules. The projective modules will
not be (directly) reflected locally, so we should rather look for a local description of
the stable category ofp-permutationkG-modules, defined as the quotient category of
the category ofp-permutation modules by the full subcategory of projective modules.

This can be achieved as follows: ap-permutation module gives rise, via the Brauer
functor, to a family ofp-permutation modules forkNG(Q)/Q, whereQ runs over the
non-trivial p-subgroups ofG, together with certain isomorphisms. Conversely, the
data of a compatible family ofkNG(Q)/Q-modules comes from ap-permutationkG-
module, unique up to a unique isomorphism in the stable category. To make all of this
precise, one needs first to check various natural properties of the Brauer functor and
then to define a category of “sheaves” ofp-permutation modules over thep-subgroups
complex, where the transitions maps account for isomorphisms BrQ BrP V

∼→BrQ V
whenP �Q.

We can use this construction to glue a compatible family of complexes ofp-
permutation modules for variouskNG(Q)/Q (Q �= 1). What we get is not quite
a complex ofp-permutation modules, but only a gradedp-permutationkG-module
with an endomorphismd of degree 1 such thatd2 is a projective map — it is not clear
how to get a genuine complex (i.e., withd2 = 0) from such a complex.

This construction has nevertheless some interesting and useful consequences. It
permits to get direct sum decompositions of certain full subcategories of the stable
category ofp-permutation modules defined by conditions on vertex-subpairs.}

A.3.2. Complexes of geometrical origin.The idea we pursue here, following a sug-
gestion ofAlperin, is to study a category of complexes that behaves like the complexes
of chains of a finite simplicial complex acted upon byG — we want nevertheless to
replace the assumption that the terms are permutation modules by the fact that they are
p-permutation modules. We introduce a category where the objects arep-permutation
modulesM with additional structure, namely, compatible splittings of the canonical
morphismsMP → BrP M for everyp-subgroupM.

The induction and restriction functors can be extended to this category, and the in-
duction is left adjoint to the restriction. Something new happens nevertheless, namely
the Brauer functor has now a left adjoint ! One can consider (fairly complicated)
categories of presheaves of objects of such categories, over thep-subgroup complex.

Nevertheless, one can deal with an easier subcategory. This category can be given
the structure of an exact category, by deciding that the exact sequences are those se-
quences that are split exact when we only keep thep-permutation modules underlying
the objects. It turns out that the full subcategory of projective objects for this structure
of exact category is related to the categoryẼ of §7.2.
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A.4. p-extensions

A.4.1. Inductive approach to Broué’s conjecture. In the inductive approach to
Broué’s conjecture described in §7.3 the problem is to give a positive answer to Ques-
tion 7.7. Let us recall that inductive approach.

First start with defect 0, then proceed by induction on the order of the defect group:

• Construct liftings of Rickard equivalences throughp-central extensions (in order
to go from a Rickard equivalence between blocks ofCG(P )/P andCH(P )/P ,
which exists by the induction hypothesis, to one between blocks ofCG(P ) and
CH(P ) for P �= 1).

• Use outer automorphism equivariance to extend the Rickard equivalence (in
order to obtain a Rickard equivalence between blocks ofNG(P ) andNH(P )).

• Gluing: construct a global stable equivalence from the compatible system of
local Rickard equivalences.

• Lift the stable equivalence to a derived equivalence.

The introduction of geometrical complexes in §7 was needed in order to achieve the
gluing step.

We want to explain two facts here. First, the lifting problem through centralp-
extensions can be handleda priori. Then, in order to lift the stable equivalence to
a Rickard equivalence, one need not worry about geometrical complexes, as long as
the lifting is of a particular type. So, in order to solve Conjecture 7.6, it is enough
to give a positive answer to a weaker form of Question 7.7. Note that this works as
well for non-principal blocks. It is not necessary to worry aboutp-central extensions.
More precisely, a positive answer to the question can be deduced from the case where
the centralp-subgroupP of Hypothesis 3′′ is trivial and one can forget about the
geometrical complexes and even work directly with stable equivalences induced by
bimodules.

A.4.2. Let us review first the general problem ofp-extensions. We assume Hypoth-
esis 3′′ but, to simplify, we assumeX = G, i.e., we forget about automorphisms.

Consider a Rickard complexC of (eOG, fOH)-bimodules. Under what condition
does there exist a Rickard complexC̃ of (ẽOG̃, f̃OH̃ )-bimodules with
P acting
trivially, such thatO(G×H ◦)⊗O(G̃×H̃ ◦)C̃ 
 C? As pointed out in §5.2.4, it is enough

to construct a complex̃C of (ẽOG̃, f̃OH̃ )-bimodules with
P acting trivially, and
such thatO(G×H ◦)⊗O(G̃×H̃ ◦) C̃ 
 C.

The problem of lifting fromOG to OG̃ is similar to the one of lifting fromkG to
OG : in both cases, we obtain an algebra as a quotient of the other algebra by an ideal
I generated by central elements contained in the radical (the set ofx − 1 for x ∈ P
in the first case, the radical ofO in the second case) and the algebra is complete for
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the toplogy defined by that ideal. We can then apply lifting methods, similar to that
of Rickard [Ri3]. The only problem is to lift the individual terms of the complex to
modules that are free as leftOP -modules and are acted on trivially by
P . Once
this is done, we lift the differentiald of the complexC to get a graded endomorphism
d̃. The squarẽd2 is not zero, but it so moduloI . Thanks to the vanishing of the
module of homomorphisms fromC to C[2] in the homotopy category of complexes
of (eOG, fOH)-bimodules, we can changẽd to get a new liftingd̃1 of d such that
d̃2

1 is zero moduloI2. We go on and, sinceIn = 0 for n large enough, we eventually
get a genuine differential and the complexC̃ is constructed.

Note that this strategy works even ifP is a normal but non-centralp-subgroup.

When the complexC is splendid and the inverse image ofD in G̃ is abelian, one
shows that it is always possible to lift the individual terms of the complex. Here, we
consider the case whereH = NG(D) but this applies as well to the case where we
consider any other finite groupH and any block idempotentf of OH . Then we only
requireC to be a complex ofp-permutation modules and we use the results of §A.1.2.

A.4.3. Let us come to a more concrete problem. Suppose we are given a complex
C of (eOG, fOH)-bimodules inducing a stable equivalence and a complexC̃ of
(ẽOG̃, f̃OH̃ )-bimodules with
P acting trivially, such that

O(G×H ◦)⊗O(G̃×H̃ ◦) C̃ 
 C.
Consider a (bounded) complex of exact(eOG, fOH)-bimodules all of whose

non-zero terms are projective, except for the one of smallest degreed,M = Cd . Then
M induces a stable equivalence betweeneOG andfOH .

Suppose there is a complexZ of projective(eOG, fOH)-bimodules and a mor-
phismψ : Z → M (whereM is seen as a complex concentrated in degreed) whose
cone is a Rickard complex. This means we have been able to lift the stable equivalence
induced byM to a Rickard equivalence in a particular way. Then one gets a complex
Z′ of projective(eOG, fOH)-bimodules and a morphismψ ′ : Z′ → C whose cone
is a Rickard complex. Now, there is a complexZ̃′ of exact(ẽOG̃, f̃OH̃ )-bimodules
with
P acting trivially and a map̃ψ ′ : Z̃′ → C̃ such that 1⊗ ψ̃ ′ = ψ ′. The coneC̃′
of ψ̃ ′ is now a Rickard complex of(ẽOG̃, f̃OH̃ )-bimodules with
P acting trivially.

Finally, if C̃ comes from a geometrical complex as in Question 7.7, then we will
be able to find another geometrical complex giving rise toC̃′. This means that it is
enough to lift, in a particular way, certain stable equivalences betweeneOG andfOH
to Rickard equivalences in order to solve Question 7.7 — in general, all of this should
be done in a way compatible with the action ofX/G.
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