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1. Introduction

We present some topics of modular representation theory of finite groups, based on
functorial methods, and motivated by Broué’s abelian defect group conjecture.

In the first three sections, we review some classical material. In 82, we define
various types of equivalence for symmetric algebras induced by tensoring with com-
plexes of bimodules, following some discussion of general adjunction properties of
such functors. In 83, we give some basic properties of group algebras: blocks, normal
p’-subgroups and the case of Tl Sylgwsubgroups. Finally, in 84, we deal more
specifically with (direct summands of) permutation modules, where the Brauer functor
allows us to transfer local information.

In 85, we discuss Rickard equivalences in block theory. After a detailed ex-
ample, we consider Broué’s abelian defect conjecture and its refinements (splendid-
ness, equivariance with respect p6-automorphism groups, central extensions by
p-groups). In 85.3, we come to a crucial result: a splendid complex induces a stable
equivalence ifand only ifitinduces (via the Brauer functor) local Rickard equivalences
(from this point, we consider only principal blocks).

The results in 86 and 87 are new. We use the results of §5.3 in 86.2 to construct
stable equivalences between a principal block with defect gfgus x Z/p” and the
principal block of the normalizer of a defect group (in the case wherg) £ (1, 1),
we need theZ;-theoremwhich, fop odd, depends on the classification of finite simple
groups). We use here a new construction of stable equivalences given by complexes.
In 86.3, we go one step further to lift these stable equivalences to Rickard equivalences
when, in additionp = 2 (thus solving Broué’s conjecture for principal blocks with
defect groupZ/2 x 7/2). In 86.4, we construct stable equivalences for principal
blocks with defect group elementary abelian of order 8.

87 is devoted to the study of a locally determined categopy-pérmutation mod-
ules with additional structure. We explain how this can be used to glue local Rickard
equivalences into a stable equivalence: as a consequence, we prove that Broué’s
abelian defect group conjecture would follow (inductively) from the possibility of
lifting stable equivalences to Rickard equivalences. This requires additional structure
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on the Rickard complexes. The construction of §6.2 appears as a special case. Our
belief is that these methods reduce Broué’s conjecture to a problem of “representation
theory of algebras” where the groups will not be useful anymore, namely the problem
of lifting certain stable equivalences to Rickard equivalences.

In the appendix, we explain some aspects of the theory for nonprincipal blocks
[Rou3].

This article is based on, and extends, a set of five lectures given at the Sympo-
sium on the Modular Representation Theory of Finite Groups, University of Virginia,
Charlottesville, in May 1998.

| thank J. Alperin, S. Bouc, M. Broué, N. Kunugi and J. Rickard for their useful
discussions. This paper owes a lot to M. Collins for his persistent encouragement and
for his suggestions of improvement.

2. Symmetric algebras, functors and equivalences

In this section, we explain what standard concepts of category theory become for
module categories of symmetric algebras. §2.2 is largely inspired by Broué’s notes
[Br3], where more details are to be found.

In §2.3, we define various notions of equivalences and gather various properties.

2.1. Notation and conventions

Let @ be a noetherian local commutative ring (all rings are with identity) with residue
field k. All @-algebras considered will be free and finitely generated Gveket A
an(@-algebra.

All' A-modules considered will be left modules, finitely generated over the un-
derlying coefficient ring9. Complexes ofA-modules will always be bounded. We
identify the categoryA-mod of A-modules with the full subcategory of complexes of
A-modules concentrated in degree 0.

We denote byA° the algebra opposite td. It is A as an@-module, but the
multiplication ofa andb in A° is ba. Note that a leftA-module is the same as a right
A°-module and ifB is a B-algebra, arn{A, B)-bimodule is an A ® ¢ B°)-module.

Similarly, if G is a group, we define the grodp’ opposite taG, with the same set
of elements a& but with multiplication ofg andh given byhg. The group algebra
OG° of G° is the algebrd®G)°.

We will often write ® for ®¢9. For M an A-module, we denote by/* the
A°-module Hony (M, O).

By the (A, A)-bimoduleA, we mean the regular bimodule given by left and right
multiplication.
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2.2. Functors and adjunctions

2.2.1. Basic adjunction. Let A andB be two@-algebras and an(A, B)-bimodule.
We have an isomorphism df-modules
ym(V,U) : Homg(M ®p V,U) = Homg(V, Homu (M, U))
f= e (me f(m®v)))
with inverse (m ® v — g(v)(m)) <1 g

for any A-moduleU and B-moduleV .
Denote by® andW respectively the functors

®=MQ®p—: B-mod— A-mod and¥ = Homuy (M, —) : A-mod— B-mod.
We have an isomorphism functorial thandV':
Homy (®(V), U) = Homg(V, ¥ (U)).

We say that the functaob is left adjointto the functord (or W is right adjointto
@ or (¥, W) is anadjoint pair) when there is such an isomorphism.

2.2.2. Projective modules.Let U andV be twoA-modules. Consider th@-linear
map

y.v : Homa (U, A) ®4 V. —> Homy (U, V)
f®v = (u f(u)v)

If U or V is projective, therty vy is an isomorphism: the result is clear when one of
the modules ist, thus when itisA” and finally when it is any direct summand 4F.

We have a converse to this propertyzif v is an isomorphism for every, then
U is projective. More precisely, we have

Proposition 2.1. Let S be a simpleA-module with a projective covePs. Thenty s
is non-zero if and only it/ has a direct summand isomorphic &g.

Proof. Note thatrp, s # 0; hencery s # O if Ps is a direct summand df .

Let f : Ps — S be an essential map : this is a surjective morphism whose restric-
tion to a proper submodule df is not surjective anymore. We have a commutative
diagram

Homy (U, f)
Homyu (U, Ps) Homy (U, §)

TUA,PsTZ TTU,S

Homy (U, A) ®4 Ps T Homyu (U, A) ®4 S ——0.
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If ty.s # 0, then Homy (U, f) is non-zero. Therefore theregs: U — Ps whose
composite withf is non-zero, and thus surjective. Sintés essential, it follows that
g is surjective and splits sincR is projective. O

Wheno is henselian (e.g. complete), then aimodules have projective covers.

Let M be an(A, B)-bimodule. LetU be anA-module andV a B-module. By
§2.2.1, we have an isomorphism@f, A)-bimodules

Homg. (M, Home (V, U)) = Home (M ®p V, U).
This induces an isomorphism
Homyg g (M, Home (V, U)) = Homsy (M ®p V, U).

If U andV are free over andM is projective (or flat) as #°-module, then we
deduce, for all,

Ext) g e (M, Homg (V, U)) = Exty(M ®p V, U).

Note that we have similar statements relating Hgyp- with Homp., by consid-
eringM as a(B°, A°)-bimodule.

Lemma 2.2. Assume&9 = k is a field and assume the centers of the endomorphism
rings of the simpleA-modules and the simplB-modules are separable extensions
of k. LetM be an(A, B)-bimodule.

ThenM is a projective(A, B)-bimodule if and only itM ®p V is a projective
A-module for evenB-moduleV andU ®4 M is a projectiveB°-module for every
A°-moduleU.

Proof. The hypothesis ensures that the largest semi-simple quotiedtswod B are
products of central simple algebras over separable extensidnséw the tensor
product overk of two such simple algebras is a semi-simple algebra. It follows
that givenS a simpleA-module andl’ a simpleB°-module, the(A ® B°)-module
Homy (T*, S) ~ ST is semi-simple (note that every simglé® B°)-module occurs
as a direct summand of such a module for sém&). In particular,M is projective
if and only if Exf'A®Bo(M, S®T)=0foralli > 0andS, T simple.

AssumeM ®p V is a projectiveA-module for everyB-moduleV andU ®4 M is
a projectiveB°-module for everyA°-moduleU .

The case/ = B shows thatVM is projective as am-module. Hence, foi > 0,
we have

Ext), (M, S ® T) ~ Extho (S ®4 M, T) = 0.

It follows that M is projective.
The converse is clear. O
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2.2.3. Symmetric algebras.AssumeA is asymmetric algebra.e., is endowed with
an@-linear map =14 : A — @ whichis a trace#(aa’) = t(a’a)) and such that the
morphism of(A, A)-bimodules
t:A S Homp(A, O)
a — (@~ t@aa))
is an isomorphism.
This last isomorphism is equivalent to the requirement that, givef-aasis{a; }
of A, there is another basfa;} such that (a,'aj") = 8ij.
When0 is a field, the algebrad is in particular self-injective, i.e., the injective
modules are the projective modules.
Given anA-moduleU, we have an isomorphism of right-modules
fy : Homu (U, A) = U* = Homg (U, 9)
f e tf
with inverse (x — Zal{u(a,-x)) <~ u.
i

Lemma 2.3. Let M be an(A ® B°)-module, projective as &°-module, andV be a
B-module. Then we have an isomorphisni&fmodules

™™, AoV : HOMygpe (M, A ® B°) ®agpe (AQ® V) = Homugp (M, AQ V).

Proof. We have a commutative diagram

f®@®x)— (1A ®1)(fa)®x

Homygpo (M, A® B°) ®agB° (AQ V) Hompo (M, B°) @ go V
TM,A@;vl lTResBo M,V
Homygpo (M, A® V) Hompgo (M, V)
® Frota®D i

where the horizontal maps are isomorphisms. Sinmgg,. »,v is an isomorphism,
we are done. O

2.2.4. Exact bimodules. AssumingA symmetric andV projective as am-module,
we have constructed isomorphisms of functors

W =Homy (M, —) = Homy (M, A) @4 — = M* ®4 —.

In particular, the functo ®p — is left adjoint toM* ® 4 —. If in addition M is
projective as a righB-module andB is symmetric, therlM ® p — is right adjoint to
M* XaA—.

We say thatV is anexact(A, B)-bimodule if it is projective as ad-module and
as a rightB-module (i.e., if the functors Hog(M, —) and Horg. (M, —) are exact).
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Proposition 2.4. If A and B are symmetria9-algebras andM is an exact(A, B)-
bimodule, then the functa¥ ® g — is left and right adjoint toM* ® 4 —.

Note thatM can be projective as afi-module and as a righ8-module without
being projective as andA ® B°)-module. In the special case whede= B and
M = A is the regular bimodule, theM is indeed projective as a right and as a left
A-module, but is not projective as 84 ® A°)-module in general: whe@ is a field,
A is projective as aA ® A°)-module if and only ifA is semi-simple separable (i.e.,
Ais a product of matrix algebras over separable field extensiofi}, @f. Lemma 2.2.

2.2.5. Units and counits. Since @ is left adjoint to W, we have an isomorphism
Hom(® o W, I,) = Hom(¥, ¥), wherel, is the identity functor ofA-mod. The
morphisme : ® o ¥ — 14 corresponding to the identity morphisin— W is called
the counit Using the isomorphism Ho(d, ®) = Hom(/g, ¥ o ®), we obtain the
unity : Ip — Vo .

Note that the functo® is an equivalence of categori@smod — A-mod if and
only if n ande are isomorphisms, and thdnis an inverse tab.

In terms of morphisms of bimodules, the counit is the morphisn{AfA)-
bimodules

em M ®p M* > A, m®x > fnde 1 (x)(m)
and the unit is the morphism ¢B, B)-bimodules

B — M*®4 M, br> (fres, m ® DTres, 11 res, 1(? * 1n)-

2.2.6. Complexes.Let C be a complex ofi-modules. We denote hi its differen-
tial, with degree partd.. : C' — C'*1,
Let C* the complex ofA°-modules given by

(C* = (C™H* and d.. = (—D)"dH*.
Let D be a complex oA°-modules. We denote by ® 4 D the complex given by

(C®sD)'= @ C"®D" anddlg,p= Y dp®1+(-1)'1@d),.
r+s=i r+s=i

(Let us recall that all our complexes are bounded).

A complexC of (A, B)-bimodules gives rise to a functér® z— from the category
C”(B) of complexes oB-modules to the category’ (A) of complexes oft-modules.

Theresults of §2.2.1-2.2.5 generalize to complexes. Given a co@igiiA, B)-
bimodules which are projective asmodules, there is a canonical morphisg :
C ®p C* — A and a canonical morphismr : B — C* ® 4 C, which are units and
counits of the adjoint paifC ® 5 —, C* ®4 —).
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2.3. Equivalences

Let A andB be two symmetri@-algebras. We define three types of equivalence. The
usual Morita equivalences are a special case of Rickard equivalences. The Rickard
equivalences are in turn a special case of the even weaker type of stable equivalences.

2.3.1. Morita. Let M be an exactA, B)-bimodule.
The following assertions are equivalent.

(i) We have isomorphisms

M ®p M* ~ A as(A, A)-bimodules

M*®4 M >~ B as(B, B)-bimodules

(i) The morphismsey, andny+ are isomorphisms ofA, A)-bimodules andyyy,
e+ are isomorphisms afB, B)-bimodules

UM*ZA;M(@BM*, 8MIM®BM*:>A,
nMiB;M*®AM, ey  M* @4 M > B.

When these conditions are satisfied, we say Mainduces aMorita equivalence
betweem andB. This is equivalent to the requirement thétR s — is an equivalence
betweenA-mod andB-mod.

2.3.2. Rickard. We now takeC a complex of exactA, B)-bimodules.
The following assertions are equivalent.

(i) We have isomorphisms

C ®p C* ~ A ® Z1 as complexes ofA, A)-bimodules

C*®4 C ~ B & Z as complexes ofB, B)-bimodules

whereA and B are viewed as complexes concentrated in degree Zarahd
Z» are homotopy equivalent to 0.

(i) The morphismsyc, nc+ (resp.ec andec+) are splitinjections (resp. surjections)
with cokernel (resp. kernel) homotopy equivalent to 0.

When these conditions are satisfied, we say thabduces aRickard equivalence
betweenA and B or thatC is aRickard complexThese conditions are equivalent to
the requirement thaf ® g — is an equivalence between the homotopy categories of
complexes oB-modules andA-modules.

Note that ifC = C1 & C2 with C2 homotopy equivalent to 0, thefi induces a
Rickard equivalence if and only @1 induces a Rickard equivalence.



Block theory via stable and Rickard equivalences 107

2.3.3. Stable. The following assertions are equivalent.

(i) We have isomorphisms

C ®p C* >~ A @ Z} as complexes ofA, A)-bimodules

C*®4 C ~ B @ Z, as complexes ofB, B)-bimodules

whereZ; andZ; are homotopy equivalent to complexes of projective bimodules.

(i) The morphisms)c, nc+ (resp.ec ands+) are splitinjections (resp. surjections)
with cokernel (resp. kernel) homotopy equivalent to a complex of projective
bimodules.

When these conditions are satisfied, we say ¢hatduces astable equivalencbe-
tweenA andB.

Actually, we want a slightly more general definitio® induces a stable equiva-
lence wheneveb & A ®¢ B satisfies the equivalent conditions above; then, when
is a field,D = 0 induces a stable equivalence between any two semisimple separable
-algebras.

Note that ifC = C1 & C2 with C2 homotopy equivalent to a complex of projective
bimodules, therC induces a stable equivalence if and onlyCif induces a stable
equivalence.

The situation more commonly considered, after Broué, is the case Wheré/
is a complex with only one term in degree O.
In that case, we can restate the equivalences as follows:

(i) We have isomorphisms

M ®p M* & projective ~ A @ projective

M* ®4 M & projective >~ B & projective

(i) The morphismsnys, na+, ey @andey+ are split with projective kernels and
cokernels.

This implies that¥ ® p— induces an equivalence between ¢hestable categories
of B-modules andd-modules. Th&9-stable category of-modules is the quotient
of A-mod by the full subcategory a?-projective A-modules (direct summands of
modulesA ®g U for some®@-moduleU). Under separability assumptions (e.g.,
is a field and centers of endomorphism algebras of simple modules are separable
extensions of9), the conditions are equivalent to the fact that® 5 — induces an
equivalence of stable categories.

Note thatifM = M1® M> with M2 projective, therM induces a stable equivalence
if and only if My induces a stable equivalence.
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Note thatM ®p V is projective or zero if and only iV is projective or zero and
that M ®p V is the direct sum of an indecomposable non-projective module with a
projective module ifV is indecomposable non-projective.

The following result shows that (fé? henselian), whe has no projective direct
summand, it sends a simple module to an indecomposable module.

Proposition 2.5. Assum&? is a field. LetS be a simpleA-module with a projective
cover P and T a simpleB-module with a projective covePy. ThenPs is a direct
summand oM ®p T if and only if Ps ® P} is a direct summand a¥/.

Proof. We have a commutative diagram

TM ,Homg (T, S)
Homygpe (M, A® B°) ® agpe HOMg (T, §) ——————— = Homy g go (M, Homg (T, S))

Homygpo (M, A ® B°) @ agpe HOMe (T, A) ®4 S
™™, Homg (T, A)®1 ~ | yrM,85)~1
Homygpo (M, Homg (T, A)) @4 S

vrtA@1 |~

Homg (M @p T, A) ®4 S Homy (M @5 T, S)
TMQpBT.S

where the top vertical map is induced by the product
Homgy (T, A) ®4 S — Homg (T, S).

We apply Lemma 2.3 td/ and7*: the mapty Home (T,4) IS an isomorphism.
Consequentlyzy Home (1,5) IS Non-zero if and only ifryg, 7,5 iS Non-zero and the
proposition follows from Proposition 2.1. O

2.3.4. Composition. Let A’ be a symmetri®-algebraM an exac{ A, B)-bimodule
and N an exact(B, A’)-bimodule. If M and N induce Morita equivalences, then
M ®p N induces a Morita equivalence betweérmandA’. Rickard equivalences and
stable equivalences can be similarly composed.

2.3.5. Comparison. If M induces a Morita equivalence, then it induces a Rickard
equivalence. I induces a Rickard equivalence, then itinduces a stable equivalence.
Let M be an exact{A, B)-bimodule inducing a stable equivalence. Assume
and B have no projective direct summands as bimodules. THManduces a Morita
equivalence ifand only iM ® S is simple for every simpl&-modulesS (for then we
know thatB is a direct summand dff * @ 4 M andM™* ® 4 M ®p S is indecomposable
for every simpleB-moduleS, soM* ®4 M ~ B. We haveM Q@ M* ~ A @ Z,
whenceM ®p M* ® 4 Z = 0; thusZ = 0).
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Let C be a complex of exadtA, B)-bimodules. Assume that all terms 6fare
projective butC” and thatC” induces a stable equivalence. Th@mnduces a stable
equivalence.

Let Qagae be the kernel of the multiplication map ® A — A. This is an
(A, A)-bimodule inducing a self-stable equivalencedof

For U an A-module, we denote by2,U (or QU) an A-module without
O-projective direct summand such thaygs> ®4 U = QU & O-projective. Let
f : Py — U be a surjective map witl®y an@-projectiveA-module. If f splits as a
morphism of@®-modules, then kef & @-projective~ QU @ O@-projective.

We define inductivelf2" U as2 (Q"~1U) for n positive. Similarly, using?gé,Ao =
Q% o 40 We defineQ~tU andQ U for n positive. Finally,Q°U = U.

For M an exact(A, B)-bimodule, the(A, B)-bimodule(A ® A°) ® 4 M is pro-
jective. Hence

Qagae @4 M & projective~ QagpeM @ projective
Let M be an exactA, B)-bimodule. Then
Qi oacA ®a M @ projectivex~ Q) o »o M & projective.
So, if M induces a stable equivalence, t§&f, .. M alsoinduces a stable equivalence.

The next proposition explains how to construct a Rickard equivalence from a Morita
equivalence by truncating a projective resolution of the bimodule.

Proposition 2.6. Let M be an exactA, B)-bimodule. LetC be an complex of exact
(A, B)-bimodules with homology only in degrégisomorphic toM, with zero terms
outside{0, ..., r — 1, r} and with projective terms in degre6s. . ., r — 1 wherer is
an integer.

If M induces a Morita equivalence, théhinduces a Rickard equivalence.

Proof. Assume first is non-positive. We have

C" @ projectivex~ Q¢ ..M @ projective

thereforeC” induces a stable equivalence. Siit’es projective fori # r, it follows
that C induces a stable equivalence. In particular, the kernelcofs homotopy
equivalent to a complex of projective modulés

The homology ofC is projective overB; thus the homology ofC ®p C* is
isomorphic toH%(C) ® g H2(C)* (in degree 0). Sinc&°(C) ~ M induces a Morita
equivalence, it follows thaf ® 5 C* has homology only in degree 0, isomorphic to
A. More precisely, the kernel @t has zero homology.

The compleXZ is a (bounded) complex of projective modules with zero homology,
whence it is homotopy equivalent to O.

Similarly, one shows that the kernel of+ is homotopy equivalent to 0.

The case whereis positive follows from the negative case by replacings, M,
C andr by B, A, M*, C* and—r. O
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2.3.6. Extension of scalars.Let @’ be a commutativé-algebra. Le’ = O’ ®¢ A,
B’ = 0’ ® B: these are symmetri@’-algebras.

An isomorphismA = B gives rise to an isomorphism’ = B’ by extending
scalars from@ to @’. More generally, given aiA, B)-bimodule M inducing a
Morita equivalence betweenhandB, the(A’, B')-bimoduleA’ ® 4 M ® g B’ induces
a Morita equivalence betweeti andB’. We have similar statements for Rickard and
stable equivalence.

3. Some steps in block theory

3.1. The group algebra

Let us start gathering some properties that do not involve blocks. We take special
care to provide explicit isomorphisms when studying the Tl case in §3.1.5. This way,
we avoid use of the Krull-Schmidt Theorem and we can work over a hon-complete
ring O.

3.1.1. Symmetric algebra structure. We have ar®-linear trace on the group algebra
t:0G — 0, g+ b1, forg e G.

Sincer(g’g ™l = 8¢¢» the form is symmetrizing. The basis dual {@}cc is
(g7 Ngeq-

3.1.2. Let H be a subgroup oG and M = OG the exact(® H, ©® G)-bimodule
where the actions are given by multiplication. The functor‘,},?%M Qe — is the
restriction functor from®@G-mod to® H-mod. It is an exact functor.

We have an isomorphism: OG = M*, where®G is the (O G, @ H)-bimodule
with actions given by multiplication. The corresponding functorgr‘nd M*Qoy—
is the induction functor from® H-mod to @ G-mod. It is also an exact functor and
Ind%, is left and right adjoint to Rés.

3.1.3. The counitsy+ is the surjective morphism given by multiplication
em+ : OG ®on OG — O0G, g®g¢ +— gg'.

Assume[G : H] is invertible in@. Then

1

-1
- g Z x®x
(G- H] xeG/H

0G - 0G ®ouy 0G, g—

is a splitting to the surjection, i.e., the morphism of functorslndg Re§ — 1gis
a split surjection.
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Now let U and V be two @G-modules. ThenU is a direct summand of
Ind$, Reg; U. So

Exth (U, V) < Exty 5 (Ind% Res, U, V) ~ Ext,,; (Res: U, Reg: V),

where the isomorphism comes from the fact thafjrisl an exact functor which is a
left adjoint to the exact functor Rgs

As a special case, let us take fra Sylow p-subgroup ofG and for@ a fieldk
of characteristig.

If H is trivial, we deduce that all EXtgroups are zero ihG-mod. So we obtain
Maschke’s theorem.

Proposition 3.1. If k is a field and G| is invertible ink, thenkG is semi-simple.

More generally the “homological complexity” éG-mod is measured by a Sylow
p-subgroupP:

* kG has finite representation type (i.e., there are only finitely many isomorphism
classes of indecomposable modules) if and onkyFfhas finite representation
type; this is known to happen exactly wherns cyclic.

* kG is tame (i.e., indecomposable modules are in some sense classifiable) if
and only ifk P is tame; that happens exactly whgn= 2 andP is a dihedral,
semidihedral or generalized quaternion group.

Note that in all other casds’ is wild. So instead of pursuing the unreasonable task
of describingkG-mod completely, we will try to compare it with module categories
of smaller groups.

3.1.4. Mackey’s formula. Composition of an induction functor followed by a restric-
tion functor is described by Mackey’s formula as a sum of compositions of a restriction
functor followed by an induction functor.

Let H and H' be two subgroups ofi. ThenOG = P
decomposition a6 H’, @ H)-bimodules.

Let K = H' N gHg™ . Then we have an isomorphism@ H’', © H)-bimodules

geH\G/H (DH/gH |S a

OH ®okx (OH) = OH'gH, x ® y > xgy

where(OH)$ = OH as a right9 H-module and the action ef € OK is given by
left multiplication byg~tag.
So we have constructed an isomorphisni@#’, @ H)-bimodules

(9G :> @ (DH/ ®(9(H/mgHg—l) ((9H)g
geH\G/H
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In terms of functors, this is the usual Mackey’s formula

G ~ H Hg™t *
Regj oindf > O Indfj, ,, 10Red S, iog
geH'\G/H

whereg* : @ H-mod — @ (gHg1)-mod is restriction via the isomorphism

gHg_1 - H, x— g_lxg.

3.1.5. Tl Sylow p-subgroups. We will see here our first comparison result.

Let us assume that has trivial intersection (Tl) Sylow-subgroups: given two
distinct Sylowp-subgroupsP andQ, thenP N Q = {1}.

Let P be a Sylowp-subgroup ofG and H = Ng(P). We denote byZ, the
localization ofZ at the primep. Let N be the(Z,G, Z, H)-bimoduleZ,G. Then
N* =Z,G (the identification is made vig).

We have a split exact sequence(@f, H, Z, H)-bimodules (cf. §3.1.4)

0— Z,H — 7,G > @ Z,H ®z,x (Z,H)* — 0,
8

whereg € H\ G/H, g ¢ H andK = H N gHg~! and where the first map is the
inclusion.

Forg € G,g ¢ H,wehavePNgPg~! = {1}; thusk is ap’-group. Itfollows that
ZpH is a projective(Z, H, Z, K )-bimodule andZ, H)¢ a projective(Z,K , Z, H)-
bimodule, whenc&, H ®z,k (Z,H)?* is a projective(Z, H, Z, H)-bimodule.

Since the counit

NN : ZPH — N* ®ZPG N = ZPG
is the inclusion, we have a split exact sequence/giH, Z, H)-bimodules

O—>Z,,Hﬂ>N*®ZpgN—>Z—>O,

whereZ is projective.

Since[G : H] is invertible inZ,,, the surjectiorzy : N ®z,u N* — ZpG splits.
Let Z’ be its kernel.

The composition

nN®1 1®e
N* 25 N*®z,6 N ®z,u N* — N*

is the identity. So
N* ®ZPG Z' =ker(l®ey) =~ cokelny ® 1) = Z ®Z17H N*,
whence

N ®z,H N* ®z,G 7 ~ N ®z,H Z ®z,H N*.
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AsZ,G is a direct summand a¥ ®z,u N*, it follows thatZ’ is a direct summand of
N ®z,n Z ®z,n N*. That last module is projective sinéeis projective: this shows
the projectivity ofZ’.

We have obtained the following isomorphisms

N ®z,u N* =~ 7Z,G & projective (asZ,G, Z,G)-bimodules)

N*®z,6c N = 7Z,H & projective (asZ, H, Z, H)-bimodules)

So we have

Proposition 3.2. The bimoduléZ, G induces a stable equivalence betwegiG and
ZpH.

3.2. Blocks

The representation theory 6fG reduces naturally to the study of the representations

of the blocks of@G. Some blocks can have a much simpler structure than others.
Furthermore, most interesting equivalences arise between blocks, not between the
whole group algebras.

3.2.1. A block idempotend of OG is a primitive idempotent of the centén©G)

of OG: b%2 = b # 0 and there do not exist idempotedtsandb, of Z(OG) with

b1b2 = 0 andb = by + bo. Let B be the set of block idempotents @iG. Then we
have

Z(OG) = @bzwc).
beB

This is the unigue decomposition @{©@G) as a direct sum of local rings. Note that

1=be.

We now have the block decomposition of the group algebra

0G = @b@G.
b

Thisis the unique decomposition@iG as a direct sum of indecomposablealgebras
or, equivalently, the unique decomposition®€ as a direct sum of indecomposable
(0G, OG)-bimodules. The (non-unitary) subalgebte&3G of O G are theblocksof
0G.

We now have a decompositiafG-mod = &, b0 G-mod: every®G-module
M splits asM = @, bM wherebM = bOG ®pc M. In particular, a non-zero
indecomposable module belongs to a unique block. grivesipal blockof O G is the
block containing the triviat9 G-module.
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Assume|G]| is invertible in®. Thene; = ﬁ dec g is the principal block
idempotent and10G ~ . If in addition @ is a field, then the blocks are simple
algebras.

3.2.2. Normal p’-subgroups. Let H = 0,/(G), the largest normal subgroup 6f
whose (Brder is prime tp ande = I_Igl Y nem h- Thene is an idempotent of (Z, G).
Let G = G/H. We have an isomorphism

eZpG = ZPG, eg— gH.

We have compared, G with a direct summaneZ, G (i.e., a sum of blocks) o, G.
This is compatible with blocks.

Hypothesis 1. For the remainder of the article, we assume that the residuekffid
O has characteristip.

The isomorphisne® G = O G induces a bijection between the set of block idem-
potents of9 G and the set of those block idempotehtsf @G such thabe = b. We
then have an isomorphism between the corresponding blocksGoand 9G. For
example, we obtain an isomorphism between the principal blocksband9G.

Note that the discussion above remains unchanged if we tak@ famy normal
subgroup ofG with order prime top.

As a special case, assur@ds p-nilpotent, i.e.G = H x P whereP is a Sylow
p-subgroup. Then we have an isomorphism betw@éhand the principal block of
0G.

3.2.3. Blockwise version of the Tl equivalenceWe go back to the assumption of
83.1.5 thatG has Tl Sylowp-subgroups ang divides the order of5. Let f be a
block idempotent of9 H (recall thatH = Ng(P) whereP is a Sylow p-subgroup
of G). There is a unique block idempotenbf O G such thabNf = e©Gf is not a
projective(O G, © H)-bimodule.

Then

Proposition 3.3. The bimodule@Gf induces a stable equivalence betweenG
and fOH.

Note that the blocks o® G which do not correspond to blocks 6fH are stably
equivalent to 0.

In generale®G and f @ H are not Morita equivalent (i.e., you cannot get rid of
the projective “remainder”), although they might be in some exceptional cases. Let
us give two such cases.

Assumep = 3, G = G4 ande is the principal block idempotent &,G. Then
P ~7/3 andH ~ G3. By 83.2.2, we have an isomorphisi#,G ~ Z,H .

Assume nowp = 3, G = G5 ande is the principal block idempotent. We have
P~7/3,H>~63xZ/2andfZ,H ~ 7Z,&3. One can check thatZ,G is Morita
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equivalent tofZ, H, but the algebras are not isomorphic (they have diffezgnt
ranks!); there is a direct summam of eZ, G f inducing such a Morita equivalence.

3.2.4. TheTI case suggests thatisomorphisms or Morita equivalences are too narrow
concepts in order to compare blocks. On the other hand, it is difficult to deduce
much numerical information from the existence of a stable equivalence although it is
expected that the number of non-projective simple modules will be invariant @hen

is a field (Auslander’s conjecture).

4. The Brauer functor

The Brauer functor is a fundamental tool to pass from global to local data.

4.1. p-permutation modules

4.1.1. Let Q be ap-subgroup ofG. We denote by By the Brauer functorBry :
O G-mod— kNg(0Q)-mod, defined as follows.
ForU an®@G-module, define

Bro) =U2/(( 3 T8 u”) +pu?),

P<Q

where the trace map fr : UP — U2 between fixed point sets is given by
V> deQ/P gU, and where is the maximal ideal 0.

We will also consider the extension of grto the category of complexes of
OG-modules.

4.1.2. LetQ be aG-set and92 the corresponding permutatiéhG-module. Then
the inclusion® (22) — (9)¢ induces an isomorphisi(2) = Bry(0Q).

Let H be a subgroup ofs. Then(G/H)? # ¢ if and only if Q is conjugate to
a subgroup off. So BrQ(Indf, 0) # 0 if and only if Q is conjugate to a subgroup
of H.

Let V be aONgs(Q)/Q-module. We have (by adjunction) a morphism

(0)/0 G 6(0)/0 0
Resv, o)V = (Indy, o) Res o)~ V)

and hence, by composition, a morphism

c(Q)/0 G c(Q)/0
Reé\jG(Q) V—>BrQIndNG(Q)Ree‘,XG(Q) V.

This gives a morphism of endofunctors@iNg (Q)/Q-mod

G 0)/0
LoNg(0)/0-mod = Bro Ind§y_ ) Reqé(9)/€.

Furthermore, this is anisomorphismwhen applied to proje@ivg (Q)/ Q-modules.
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4.1.3. The Brauer functor is of particular interest when appliebtpermutation
moduleqdirect summands of permutation modules).

If U is an indecomposablg-permutation® G-module, then there is a minimal
subgroupP of G such that the surjectio®G ®¢p OG ®pc U — U splits. This
is a p-subgroup ofG, called avertexof U. It is unique up to conjugation. It is also
characterized (up to conjugation) as the minimal subgrodp stfich thatJ is a direct
summand of a module induced fromor as the maximal subgroup 6f such that
Brp(U) # 0.

4.2. The Brauer morphism

For H a group, we define a subgrowpH of H x H° by AH = {(x,x 1) x € H}.
Let Q be ap-subgroup ofG. The surjection

bro : (0G)*? — Brag(0G) = kCq(Q)

is theBrauer morphismThis is a morphism of(0 G)22, (9G)*2)-bimodules, and
hence a morphism of algebras. It restricts to a (not necessarily surjective) morphism

brg : Z(OG) — Z(kCs(Q)).

Let z € Z(0G). Then multiplication byz defines an endomorphism of any
O G-moduleU and the corresponding endomorphism opBY) is multiplication by

er(Z).
For example, ifb is an idempotent ofZ(®G), then we can consider the
bOG-modulebU = bOG ®pg U. We have

Bro(bU) = bro(b) - Bro(U).

If b is the principal block idempotent @G, then b () is the principal block
idempotent ok Cg (Q).

4.3. Defect of blocks

It is now time to turn to defect groups of blocks!

Lete be a block idempotent @ G. A defect groumf e@G is a subgrouD of G
such thatA D is a vertex of the9 (G x G°)-modulee®G — i.e., this is a subgroup
of G minimal with respect to the property that the multiplication map

eOG ®op OG — eOG

splits. This is also a subgroup @ maximal with respect to the property that

brp(e) # 0.
If e@G is the principal block, the® is a Sylowp-subgroup.
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We can now refine the discussion of 83.1.3: the complexiykdf is accounted
for by D (ekG is semi-simple (and then simple) if and onlylif = 1, has finite
representation type if and only ¥ is cyclic, etc.).

The following conditions for a block are equivalent:

(i) D=1;
(i) eOG is a projective® G, ©G)-bimodule;
(iii) eOG is stably equivalent to O.

When@ = k, this is furthermore equivalent to the fact thaG is a simple algebra.
Defining the (numerical) defect @O G to be log, |D|, we see that the blocks
fulfilling those conditions are the blocks with defect 0.

5. Rickard equivalences

From here on, we will consider the usual setting for modular representation theory.

Hypothesis 2. We assum@ is a discrete valuation ring containing all-th roots of
unity, for all the finite groupd to be considered.

5.1. An example: A5 in characteristic 2

Let G be the alternating grougs, p = 2 and D be a Sylow 2-subgroup off
(D~7Z/2x7/2). LetH = Ng(D): we haveH =~ A4. Let E be a cyclic subgroup
of order 30ofH. ThenH = D x E. The algebra9 H is indecomposable.

Lete be the principal block idempotent 8fG. Then(1—e)9G is a block of defect
zero — it is actually a 5-dimensional matrix algebra oerThe Sylow 2-subgroups
of G are TI; thus we know from §3.2.3 that the bimodiMe= ¢ G induces a stable
equivalence betweett = ¢®OG andB = OH.

The non-trivial simpleB-modules lift toB-modules free ove®?, whereas the non-
trivial simple A-modulesV; and V> do not lift to @-free A-modules; in particular,
A and B are not Morita equivalent (the algebras® A andk ® B are not Morita
equivalent either: they have distinct Cartan matrices).

The moduleM* ®, V; = Re§ V; is an indecomposable two-dimensiori
module: letS; be its unique simple submodule. Th&pand S, are the non-trivial
simple B-modules.

Lemma 5.1. A projective cover oM is
Py = Py, ® P}, ® Py, ® Pg, ® Py, ® Pg,

where we denote b¥; a projective cover of the module
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Proof. Let V be a simpleA-module andS a simpleB-module. We have an isomor-
phism of(B, B)-bimodules (82.2.1)
Homy (V* @4 M, S*) ~ Homy (M, Homg (V*, S$*)),
whence
Hompo (V*®4 M, $*) ~ Homygpe (M, Homg (V*, §%)) ~ Homygpe (M, V ® ).
Finally,
Hompo (V* @4 M, S*) =~ Homg (S, M* ®4 V). I

Let f : Py — M be a surjection and létbe its restriction t(R = Py, ® P;l ®
PV2 X P;Z'

Let C be the complex

C=0->R- M0,

whereM is in degree 0.
As shown by Rickard, we have

Proposition 5.2. The complexC induces a Rickard equivalence betwetand B.

Proof. Let us consider the double complex

0 0

0—=Rep M* 25 M@y M* —>=0

1®s* 1®8*

04>R®BR*WM®BR*4>O

We have
R®p M* =~ M ®p R* =~ P Py, ® P},

i,j

Resr = Dryerie@rior,
i ij

andM ®p M* = A® P Py, ® Py
i#]



Block theory via stable and Rickard equivalences 119

We have a split surjectiofi®1: Py ® g R* — M ®p R*. Since(Py/R) ®p R*
andM ®p R* have no common non-zero direct summand, it follows that the map
J®1: R®p R* > M ®p R* is still a split surjection.

Similarly, 1® * : R®p M* — R ®p R* is a split injection.

Let us consider now the compl&x®p C*, i.e., the total complex associated to
the double complex above,

R+ 180 181

CRpC*=0— RogM* T %" Moz M* O R M®pR* — 0.

This complex is homotopy equivalent to its 0-th homology and
HY CQpCHORRIM ®M R R* ~RQp R*® M Q5 M*.

It follows that HO(C ®@ 3 C*) ~ A; thusC ®3p C* is homotopy equivalent td.
A similar proof shows thaf* ® 4 C is homotopy equivalent t&. O

This means that we have been able to get rid of the projective “remainder” by
suitably modifyingM into C. In order to achieve this, we had to move from modules
to complexes of modules — more precisely, to the homotopy category of complexes
of modules.

5.2. Broué’s conjecture

We present here the abelian defect conjecture of Broué and its expected compatibilities
with p’-outer automorphism groups and central extensiong-gyoups.

5.2.1. Let us now fix our objects of study.

Hypothesis 3. From now on, we assume Hypothesis 2 and we denot@ byfinite
group, bye a block idempotent 089G and by D a defect group o¢©®G. We put
H = Ng(D) and we denote by the block idempotent o® H corresponding te
(it is the unique block idempotent with the property théG is a direct summand of
Ind$X%", fOH). We putA = e9G andB = fOH.

Following Rickard, we say that a compléxof (e© G, f© H)-bimodules isplen-
did if its components ar@-permutation modules whose indecomposable summands
have vertices contained in D (note that the components are then exact bimodules).
The relevance of this definition will appear in 85.3.

We can now state

Conjecture 5.3(Broué). AssumeD is abelian. Ther©G and f O H are splendidly
Rickard equivalent.

Some remarks.
» See the Appendix for comments on the notion of splendidness.

« Itis unclear whether there should be a more natural equivalence.
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« Not every equivalence is splendid.
» The form of the conjecture given here is a refinement due to Rickard.

* The conjecture is known to fail wheb is not abelian, even if the Sylow-
subgroups ofG are Tl, as in the casé = Sz@8) andp = 2. It remains an
open problem to find an extension of the conjecture to blocks with non-abelian
defect groups.

Whene and f are principal block idempotents, then it is conjectured that there is
a splendid Rickard comple& with C @ ro g @ >~ @. Such an equivalence is called a
normalized equivalencd-or example, the construction of 85.1 gives a positive answer
for G = As, p = 2 ande the principal block idempotent.

5.2.2. Letus try to give the current status of the conjecture.
The conjecture holds for

D cyclic [Ri1, Li1, Rou2] andD ~ Z/2 x 7Z,/2 ([Ri4, Li2, Li3, Rou3] and §6.3
for principal blocks)

e G p-solvable [Dal, Pul, HalLi]

* G aconnected reductive algebraic group dvgandp dividesqg — 1 butp does
not divide the order of the Weyl group [PuZ2]

e G asymmetric group anfd ~ Z/p x Z/p [Ch1]

 several more cases whefea symmetric group, e.g., whed >~ (Z/p)" with
r < 5[Ri2] and [ChKe]

G = GL,(g), p t ¢ and D hasp-rank 2 [HiMi, Tu] and [BoRou],
for the principal blocks of

* G =2Ga(g) andp = 2 [Ok1]

* G=5m(g), g =2,5(mod9 andp = 3 [Ok1]

« G =PSUs(¢?), g =2,5(mod 9 andp = 3 [KoKu1]

* G=PSls(g),g=4,7(mod 9 andp = 3 [Ku]

o G = A7, Ag, M11, M2, M3, PSla(4) andH S, p = 3 [Ok1]

* G = JyandG = Sy(4) andp = 5 [Holl]

* G =Jiandp = 2 [GoOK]

e any groupG with D ~ 7 /3 x 7Z/3 [KoKu2]

* G = PSbL(p") ([Ch2] forn = 2, [Roul] for p™ = 8 and [Ok2] in general)
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* G = Gl4(g) andG = GLs(g),g = 2,5 (mod 9 andp = 3 [KoMi]
e G =SUs(¢?), p > 3andp|g + 1 [KuWa],
and for the non-principal blocks of
* G = ON andp = 3 [KoKuWa]
* G = HS andp = 3 [Holm, KoKuWa]
e G=2Jandp = 5[Holl]

« G = SLy(p?) [Holl].

5.2.3. We now consider automorphisms.

Hypothesis 3. Hypothesis 3 holds and we l&f be a finite group containing:
as a normal subgroup arld = Nx (D). We assume that is X-invariant. Then
X/G = Y/H, and we assume that this grofips a p’-group. We putA = {(g, h) €
X x Y° | (gG,hH®) € AF).

Then it is conjectured that there is a compienf @ A-modules whose restriction
to eOG ® (fOH)® is a splendid Rickard complex. By Marcus [Ma] (or [RouZ2,
Lemma 2.8]), the complex Irﬁ:i‘y C is then a splendid Rickard complex.

Remark 5.4. If F is not ap’-group, the same proof shows only thatiﬁtro C will
induce an equivalence between the derived categorie® Efand f OY .

Let us state some simple facts related to the extension problem.

Let M be an indecomposable direct summand of @G & (f© H)°)-module
eOGf with vertexAD and M’ with e9Gf = M @ M’. Then the indecomposable
summands of\f’ have vertices strictly contained inD. The action ofA on O X
restricts to an action a9 G f extending the natural action 6f x H°. It follows that
M andM’ extend uniquely t@ A-modulesM andM’ with eOGf ~ M & M'.

Let M be an®@A-module. If f : Pyy — M is a projective cover oM, then
Res, . f is a projective cover of Rés .. M (if Res;, . ker f has a projective
direct summand, then so does kor

5.2.4. Finally, we come to central extensions.

Hypothesis 3. Hypothesis 3holds and we conside¥ a finite group with a normal
p-subgroupP suchthatX /P = X. LetG be the inverse image @f in X. We assume
P is central inG. The block idempotent of OG lifts to a block idempoten# of OG
(Hensel's lemmairZ (9G)). LetY (resp. H) be the inverse image of (resp. H) in
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X. Let f be the block idempotent @ A lifting f. Let A be the inverse image af
in X x Y°. Note thatA P is normal inA.

We have a commutative diagram:

1 1
P——P
1 G X F 1
1 G X F 1
1 1

It is conjectured that there exists a comp@xof O(A/AP)-modules that are
projective forO G and @ H° such that Resx - (C ® px po ) is a splendid Rickard
complex.

By [Rou2, Lemma 2.11], the complex %@; C is then a splendid Rickard

complex for(¢®G, fOH) and Indgxyo Reéi/AP C a splendid Rickard complex for
(60X, fOY).
Remark 5.5. This refined conjecture holds whéhnis cyclic or D ~ (Z/2)2.

5.3. Splendid stable equivalences and local Rickard equivalences

The following result, which is a variation on a classical theme, is a cornerstone to
our approach. It is the generalization from the case of local Morita equivalences to
the case of local Rickard equivalences of [Br2, Theorem 6.3]. The first implication
is due to Rickard and was the motivation for the introduction of the special class
of spendid complexes. Given a global splendid stable equivalence, we obtain local
Rickard equivalences. The second half shows that in order to check that a global
splendid complex induces a stable equivalence, it suffices to check that the associated
local complexes induce Rickard equivalences. This follows quickly from a result of
Bouc.

From now on (except in the Appendix), we will consider only principal blocks.
For the general case as well as for more details, see the Appendix and [Rou3].

Hypothesis 4. Hypothesis 3 holds and we assume furthermore ¢harhe principal
block idempotent 0f9G.
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Now, D is a Sylowp-subgroup ofG.

We take a subgroufi of G containingD and controlling the fusion gf-subgroups
in G (i.e., forP < D andg € G such thag Pg~! < D, then there existé € K and
z € Cg(P) such thag = hz). By Burnside’s lemma, wheb is abelian, we can take
K = H = Ng(D).

Let us denote by the principal block idempotent @K . For O < D, we denote
also byeg (resp.b) the principal block idempotent &C¢ (Q) (resp.kCk (Q)).

Theorem 5.6. Let C be a splendid complex ¢¢O@ G, b© K)-bimodules. The follow-
ing assertions are equivalent.

(i) C induces a stable equivalence betweé&G andbO K.

(if) Forevery non-trivial subgrou@ of D, the compleBr o (C) induces a Rickard
equivalence betweerykCq (Q) andbgkCk (Q).

(i") Forevery subgrou@ of orderp in D, the compleBr o (C) induces a Rickard
equivalence betweerykCq (Q) andbgkCk (Q).

Proof. Let us recall the results of Rickard [Ri4, proof of Theorem 4.1].

« The components of the compléx®ox C* are relativelyA D-projective.

e For O < D, we have an isomorphism of complexes(®€s(Q), kCg (Q))-
bimodules

Brag(C ®ox C*) =~ Cg ®rck(0) Cp

whereCgp = Brag(C) is a splendid complex ofegkCq(Q), fokCr(Q))-
bimodules. More precisely, leX, be the cone of the adjunction morphism
Co ®rck(0) C*Q — epkCg(Q). ThenX g =~ Brap(X), whereX is the cone
of the adjunction morphisf@ ®gx C* — ¢OG.

By [Bou, Proposition 7.9] (cf. [Rou3] for the extension franto @), a complex
Z is homotopy equivalent to a complex of projective modules if and only if, for every
non-trivial subgroupQ of D, the complex Bio(Z) is homotopy equivalent to O
(using that Bp (Z) = 0 if P is not contained im\ D up to conjugacy).

We have a similar statement concerntfif®ys C and the equivalence between
(i) and (ii) follows.

The implication (if) = (ii) follows by induction from (ii) = (i) and from the
isomorphism

BI’Q(BFP(V)) ~ BI’Q(V)
whenP < Q. O
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6. Blocks with defect groupZ/ p® x Z./ p

In this section we assume that Hypothesis 4 holds. We recall4hat e9G and
B = fOH.

6.1. Cyclic defect groups

In this section, we recall the construction of splendid Rickard complexes for principal
blocks with cyclic defect groups. Let us assume in §86.1 thayclic.

6.1.1. Letn : P.ogr — eOGf be aprojective cover afOGf.
In [Roul, Theorem 4.1], we have constructed a direct summantiP.o s with

the following property. Lew be the restriction ofr to N andC = 0 — N N
eOGf — 0, wheree®Gf is in degree 0. Thed induces a normalized splendid
Rickard equivalence betwee® G and fO H.

Assume now Hypothesis 8f §5.2.3. We have [Ma, 85.5]:

Lemma 6.1. The complexC extends to a complex 6fA-modules.

Proof. Let us decompose the@A-modulee©Gf aseOGf = M & M’ with M’ pro-
jective andM without projective direct summand. By 85.2.3, the moduleg:;e;ﬁ M
has no projective direct summand. LBj, be a projective cover oM. Then
Res, . Pu isaprojective cover of R€s . M. The directsummandl of PG s =

Reg:, o (Pu ® M) arises as? & Reg;, ;o M/, wherePq is a direct summand of
Re%xHo Py. The construction oy, using the Brauer tree, shows it is invariant
underA, whence there is a direct summangd of Py, with Re%xHo Nog~ Py. O

6.1.2. We assume finally Hypothesis$ 8f §5.2.4.

There is a projectivé (A /A P)-moduleN such that¥ ®(9(Pxpo) N = N. The
composition ofp : N — e@Gf with the canonical ma;N — N factors through
the canonical mapOG f — eOGf as¢ : N — e(9Gf This last map liftsp, i.e.,
¢ = 1® ¢. By restriction, we obtain a morphisgh: N — ¢9G f of @ A-modules.

We now define the complex @f A-modules

F =0 N -2 2067 >0

whereéG f is in degree 0. The® ®o(px pe) C = C.
So by 85.2.4, we have

Theorem 6.2. The compleRe%xﬁo C induces a normalized splendid Rickard equiv-
alence betweed9G andéO H.
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6.2. Blocks with abelian defect group of rank 2

6.2.1. In this subsection, assume thatis elementary abelian of order.

Let P be asubgroup of orderof D. We haveNg (P)/Cg(P) = Ny (P)/Cy(P);
this is ap’-group.

We are in the setting of 86.1.2. We add an indgx@an object ? from this section
to avoid confusion. We havé p = Cg(P)/P,Hp = Cy(P)/P,Xp = Ng(P)/P,
Yp = Ny(P)/P,Gp = Cg(P), Hp = Cy(P), Xp = Ng(P) andYp = Ny (P).
We nevertheless denote by and fp the principal block idempotents @ Cq (P)
and OCH(P). We haveAp = Ngxue(AP). We have a projectivé (Ap/AP)-
moduleNp and amapp : Np — epOCg(P) fp With the property that the complex

Cp =0— Np L epOCqs(P) fp — 0induces a Rickard equivalence between
epOCg(P) andfp(DCH(P)

LetVp = IndGXH Reé”/AP Np, where we denote by R%%MP the restriction

through the canonlcal ma(?)Ap — O(Ap/AP),alsocalled mflatlon. The morphism
epOCG(P) fp — Re&A:HO eOGf
(coming fromthe inclusioap O Cg (P) fp — OG)induces by adjunction a morphism
ap : |ndg:”’° epOCG(P) fp — eOGf

and Bra p(ap) is an isomorphism. Letp = ap Ind(gXHo(d;p) 1 Vp — eOG.
P
Let

C=O—>@szil>ppe(9Gf—>0
P

whereP runs over the subgroups of ordepf D up to H-conjugacy (the terrm@® G f
is in degree 0).

Theorem 6.3. The complexC induces a normalized splendid stable equivalence be-
tweene®G and fOH.

Proof. The complexC is splendid sinc&p is a sum ofp-permutation modules with
vertex AP ande@Gf is a p-permutation module induced fromD. Let P be a
subgroup of ordep of D. For Q a subgroup of ordeg of D, we have BRp(Vg) =0
unlessAQ is (G x H°)-conjugate taA P, i.e., Q is H-conjugate taP. Now we have
BrAP(WP) = ¢p (Cf §412) _

It follows that Brap(C) >~ k ® Cp induces a Rickard equivalence between
epkCg(P) and fpkCr (P).

SinceC is splendid, the theorem follows now from Theorem 5.6) & (i). [

Remark 6.4. A similar construction works for nonprincipal blocks (cf. the Appendix
and [Rou3]).
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6.2.2. In this subsection, assume thatis abelian and hag-rank 2.

Let Q be a subgroup of ordep of D. We haveD = (D N Z(Cyx(Q))) x
[D,Cy(Q)]. LetP = DNZ(Cy(Q)). ThenQ < P < D, D/P iscyclicandCg(P)
controls fusion ofp-subgroups i€ (Q). ThisimpliesCg(Q) = 0,,Cc(Q)-CG(P),
by the Z7-theorem (given a finite groupr and ap-subgroupP such thatCg (P)
controls fusion ofp-subgroups inG, thenG = 0,G - Cg(P)). This implies also
Ng(Q) = Oy Cg(Q) - Ng(P).

When P = D (the only possible case when= 2), the results above are easy
sinceCg(Q) is p-nilpotent by Burnside’s Theorem. Lep and f be the principal
block idempotents o C (Q) and@Cy (Q). The construction of 83.2.2 provides an

: AP ~ ~ ~
extension of Re%}’:jAQ Nptoan(ep® fp)O(Ap/AQ)-moduleNy andgp liftsto a

morphismgg : No — e¢o@Cs(Q) fo. Now, we continue as in §6.2.1 and construct
VQ, oQ ande.
We put

v
C:O—)@VQZLQ(B@G]’%O
0

whereQ runs over the subgroups of ordein D up to H-conjugacy (the terra® G f
is in degree 0).
The same proof as in Theorem 6.3 leads to the following result.

Theorem 6.5. The complexC induces a normalized splendid stable equivalence be-
tweene®G and fOH.

Remark 6.6. WhenNg(D)/Cg (D) acts freely onD — {1}, then this result is due to
Puig [Pu3, Corollary 6.7]. This is always the case wipes 2.

6.3. Blocks with Klein four defect groups

6.3.1. In this part we will make more explicit the constructions of §6.2 for the case
D =7/2 x Z/2, where some simplifications occur. Then we will show how to con-
struct a Rickard equivalence from the stable equivalence. The reason why the method
does not apply for any othdp of rank 2 is that there are too many indecomposable
kD-modules (the type is wild).

Throughout 86.3, we assunieis elementary abelian of order 4.

6.3.2. Stable equivalence.Let P be a subgroup of order 2 @&. The complexCp of
86.2.1 (i.e., the complex of 86.1.1 constructed for the grodf; (P)/ P) has homol-
ogy only in degree 0: this homology is a direct summaneka® (C (P)/ P) fp and it
induces a Morita equivalence betwegn9 (Cg(P)/P) and fpO(Cy (P)/P) (here,
ep and fp are the principal block idempotents ©(Cs (P)/P) and@(Cy (P)/P)).
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The comple>Cp inducing a Rickard equivalence betweer Cs (P) andfpOCy (P)
then has homology only in degree 0, i.e., there is a direct summand®f s (P) fp
inducing a Morita equivalence betweep@Cq (P) and fpOCg(P).

Finally, the complexC constructed in §6.2.1 has homology only in degree O: thisis
a bimoduleNV isomorphic to a direct summand@® Gf. Let M be a direct summand
of N such thatv = M & projective and has no projective direct summand. Then
M induces a stable equivalence betweles ¢©G andB = fOH.

Let us state this as

Proposition 6.7. There is a direct summande® G f inducing a normalized splendid
stable equivalence betwee@G and fOH.

6.3.3. The following result now solves Conjecture 5.3 or~ Z/2 x 7Z/2.

Theorem 6.8. There is a normalized splendid Rickard equivalence betwéehand
fOH induced by a comple& such thatC~1 is projective,C° = M andC? = 0 for
i #0, -1

Remark 6.9. For non-principal blocks, see the Appendix and [Rou3]. The existence
of a Rickard equivalence was established by Linckelmann in [Li2, Corollary 1.5], but
no equivalence was constructed.

The rest of this section is devoted to the proof of this theorem.

The groupE = H/Cg (D) is a p’-subgroup of the automorphism group bf
whence it is the trivial group or a cyclic group of order 3.

There is a normalized Morita equivalence betwéeand B’ = @D x E (cf.
for example [Rou2, Proposition 2.15]). LBt be a(B, B’)-bimodule inducing such
an equivalence. Lek = M ®p W: this is an indecomposablgi, B’)-bimodule
inducing a stable equivalence.

Note thatL ®p @ >~ 0.

6.3.4. The nilpotent case.AssumeE = 1. ThenL induces a Morita equivalence
betweenA and B’ (cf. §2.3.5), whenc& = M induces a Morita equivalence and
hence a Rickard equivalence betwetandB.

6.3.5. TheAs-case. Let us now consider the cagB| = 3. ThenD x E >~ Ay.
Let S be a non-trivial simpleB’-module. We have

Homy (L ®p' S, k) >~ Homg/ (S, L* ®4 k) = Hompg/ (S, k) = 0.

Let V1 be a simple quotient af ® ' S (this is not the trivial module).

We have an isomorphism Hog(L* ®4 Vi, k) =~ Homys(V, k) = 0, and sim-
ilarly Hompg: (k, L* ® 4 V1) = 0. It follows thatk is not a composition factor of
L*®4 V1 (this module has no projective direct summand and hence has Loewy length
atmost 2). Consequentl§;*® 4 V1 has aunique simple quotiesit. LetS, be asimple
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B’-module notisomorphictbor S;. ThenL*®4 Vi = S10r L*® 4 V1 is an extension
of §1 by So.

Furthermore, we have HoftV1, L ®p S2) >~ Homg (L* ®4 V1, S2) = 0 and
Homy (k, L ® g S2) = 0. So there is a simple submodulg of L ® g S> that is not
isomorphic tak or Vi.

If L*®4 V1 = S1,thenwe havé.*®4 Vo = S, SOL® gr— send simple modules to
simple modules, whendeinduces a Morita equivalence betwe¢andB’ (cf. 2.3.5).
So in this case a solution to Theorem 6.8 is provided’by M.

AssumeL* ® 4 V1 is an extension ofy by S2. ThenL* ® 4 Vo is an extension of
S» by S1. Now we are in a situation similar to 5.1: a projective coveLd$

P = Py, ® P, ® Py, ® P5, ® Py, ® Pg,.
Let s be the restriction of a surjective mdp, — L to R = Py, ® P5, & Py, Q Py,
andC’ be the complex
C'=0>R-5L-0
with L in degree 0.

The same proof as that of Proposition 5.2 shows ¢Handuces a Rickard equiv-
alence betweerd andB’. So

C=C@yW'=0—>RQpg W*->M—>0

provides a solution to Theorem 6.8. O

6.3.6. Asin86.1.1and6.1.2, one checksthatthe construction can be done compatibly
with p’-outer automorphism groups and central extensionsgsoups, as conjectured
in 85.2.3and 5.2.4.

6.4. Blocks with defectZ/2 x Z/2 x 7./]2

In this subsection, we assume that Hypothesis 4 holds With Z /2 x 7./2 x 7./ 2.

Let M be the unique indecomposable direct summanad f with vertexA D.

A construction similar to that in 86.2.1 (using now 86.3 instead of 86.1) provides,
for every subgroupP of order 2 of D, a relatively A P-projective p-permutation
(eOG®(fOH)°)-moduleVp andamapip : Vp — M. Consider now the complex

C=0—>@VPZ”—‘>/’PM—>O
P

where P runs over the subgroups of order 2Bfup to H-conjugacy (the ternd is
in degree 0).
A proof analogous to that of Theorem 6.3 shows

Theorem 6.10. The complexC induces a normalized splendid stable equivalence
betweere®G and fOH.



Block theory via stable and Rickard equivalences 129

Note that we have a block of wild type (unlike the case whereas order 4) and
we do not know how to lift this to a Rickard equivalence (without using a case by
case proof based on the classification of finite simple groups with 2-Sylow subgroups
elementary abelian of order at most 8).

7. Local constructions

In this section, we develop a formalism for gluing Rickard complexes and apply it
here only to principal blocks. In 85.3, we constructed local Rickard equivalences
from a global stable equivalence, using the Brauer functor. Here, we try to pro-
vide some converse, hamely the construction of a global stable equivalence from a
suitable family of local Rickard equivalences. This generalizes the construction
of §6.2.

A more detailed study is being conducted in [Rou3] (cf. also the Appendix), where
various categories of “sheaves” over the posepefubgroups will be considered,
giving rise for example to a local construction of the stable category of all modules or
of p-permutation modules.

Our approach here consists of constructing locally a “subcategory” of the category
of p-permutation modules.

7.1. Gluing G-sets

Let G be a finite group and a field of characteristip > 0.

LetT = 7 be the category gh-subgroups o;, with maps the inclusions. There
is an action ofG by conjugation ory".

Let ¥ be aG-stable full subcategory of .

7.1.1. We define the categog(F) = &g (F) as the full subcategory of the category
€ of G-sets of objects whose point-stabilizers arefin

GivenX, Y in &(¥), then a morphisny : X — Y is an isomorphism if and only
if, for every P in F, the morphismf? : X¥ — Y* is an isomorphism.

7.1.2. SheavesAssume now that is closed above (i.e., iP isin & andQ is a
p-subgroup containing, thenQ is in ¥).

Let us denote by (F) the category of5-equivariant presheaves of (finite) sets
over ¥, i.e., the category ofi-equivariant contravariant functofs — sets.

Its objects are familieS2 = (Q2p,¢(Q, R),[g, SDp,0.r,5.,¢ WhereP, O, R, S
run over the objects of with 0 C R andg overG. Here,Qp is asetgp(Q, R) is
a map fromQg to Q¢ and[g, S] is an isomorphisnf2s = €Q¢s. Furthermore, the
following conditions should be fulfilled:

(i) ¢(R, R) = lgy;
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(i) (0, R)P(R,S) =¢(Q,S);
(iii) [g," Pk, P1=Igh, PJ;
(iv) we have a commutative diagram

P,
Q0 ¢(P.Q) Qp

[g.0] [g.P]

Qp o Qup.
0 S apag  HP

Note that the mapg, P] for g € Ng(P) give a structure of &g (P)-set toQp:
we have a functor?: L(F) — Ng(P)sets.

We say that? is ashealfif, for H a subgroup otz and P an object of¥ normal
in H, then

¢ (P, H) is an isomorphisny = (Qp)¥ if H is ap-group

and(2p)? = 0 otherwise.

We denote by8 (F) the full subcategory off () consisting of sheaves.
For a sheaf?, the groupP acts trivially onQ2p and the map® (P, Q) are inclu-
sions, since every map ifd is a composition of normal inclusions.

7.1.3. Some functors. Let g be a full subcategory of closed above.
We denote by R(f,':s the restriction functoi () — L(4).

We need to construct also a left adjoint gjuﬂom L(4) to L(F).

ForQ € £($), andP e ¥, the setQ), = (Ind:g"r Q)p is the direct limit of
the restriction of2 to the full subcategory of of objects containingP: this is the
quotient Of]_[Qeg,ng Qg by the (coarsest) equivalence relation that identifiaad
d(R, Q)(x) forx € Qp andR — Q in §. We denote by.p o the canonical map
Qo — QpforP C Q.

The equivalence relation admits the following easier description Whens$(4):
we haverp g(a) = Ap o(a’) if and only if there existR € § andb € Qg with
0 C RandQ’ C R suchthat: = ¢(Q, R)(b) anda’ = ¢(Q’, R)(b).

To prove this claim, it is enough to consider the case where theéfegmal in
Q and in Q" with ¢(S, Q)(@) = ¢(S, Q')(a’). Let us denote by this element of
QSQ N QSQ, = Q’§ (we putR = (Q, Q). Sinceg is a sheaf, this shows th&tis a p-
group andthatthereilse Qg suchthat = ¢ (S, R)(b). Now¢ (S, Q)¢ (Q, R)(b) =
¢ (S, Q)(a). Sinceg(S, Q) is an inclusion, we obtaia = ¢(Q, R). Similarly,
a =¢(Q,R)D).
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There is a morphism of functors I§d?e§ — 1 making the following diagram
commutative

(Indf Reg Q)p — Qp

T {6(P,O)}o
UQeg,PgQ Qo

and a morphism of functors 4> Re§ Indg given by

A T lrog
Qo =% (Reg, Ind? 2)o.

They make Ing a left adjoint of Re§.
The functor Re§ clearly restricts to a functo$ () — $(4).

Lemma7.1. The functonndg restricts to a functor fron(4) to §(F).

Proof. LetQ € $(§) andQ' = Ind} . Let P € F andx € Q). LetQ € § be
maximal such that = Ap o(a) for some element € Q. Letg € Ng(P) such
thatg(x) = x. Thenip o (lg, Ql(a)) = Ap,g(a). It follows that there isR in §
containingQ and Qf andb € Qg such thatp(Q, R)(b) = a and¢ (8 Q, R)(b) =
[g. Ol(a).

The maximality ofQ shows thatR = Q = Q¢%, whenceg € Ng(Q) anda €
(Q0)#2. So (g, Q) is a p-group anda is in the image ofp(Q, (g, Q). The
maximality of Q shows thag € Q.

SinceQ, is a direct limit over a transitive system of injections, the map, :
Qo — Q) isinjective. It follows thatQ’ is a sheaf. O

Remark 7.2.
« The adjunction between Res and Ind restricts also to sheaves.

» The adjunction morphism 4> Res)” Ind/” between functors fron() to itself
is an isomorphism.

* ForQin 4(%) andP € ¥, the point-stabilizers of the/G(P)-set(Indg Q)p
are ing.

Let X € €. LetQp = XP and, forP < Q, let (P, Q) be the inclusion
X2 «— XP. Wedefindg, P]: X — X*Pbyx > gx. Then(Q2p, #(0, R), [g. S1)
is an element o8(7). This gives a functor Bt & — $(77) which is canonically
inverseto?: 8(7) — &.

Let Br(¥) be the restriction of R(f;‘;sBr to E(F).

Theorem 7.3. The functoBr(¥) is an equivalence of categori€sF ) = 8(F) with
inverse?; - Ind7..
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Proof. To simplify notation, we putA = Br(¥) and B =?; - Indg. We know
already thatB is left adjoint toA and that the adjunction morphism-2% AB is an
isomorphism.

Now the counit of adjunctio®A — 1 becomes an isomorphism after composing
with A since the compositd — ABA — A is the identity and the first map is
already known to be an isomorphism. This means that, gkém & (), the counit
BA(X) — X becomes an isomorphism after taking fixed points by a subgro#p in
SinceBA(X) and X are in&(¥F), it follows that the counit is an isomorphism (cf.
§7.1.1). O

Of special interestis the case whéFeonsists of the non-trivigh-subgroups of;:
Theorem 7.3 says that the categé@f) of G-sets whose stabilizers are non-trivial
p-groups is “locally determined”.

7.1.4. LetF be aG-stable full subcategory 6f and¥ be the closure of , i.e., the

full subcategory ofi” with objects thep-subgroups that contain some objectfof
We define$(¥) as the full subcategory of (¥) with objects the2 such that

Qp = ¢for P ¢ F. Then BI(¥) restricts to an equivalence 8F) : £(F) — 8(F).

7.2. p-permutation modules

7.2.1. Let &(F) be the Karoubian envelope 61 F): this is the category obtained
from &(F) by k-linearizing and then adding images of idempotents. Its objects are
pairs(X, e) whereX is an object o6 (¥) ande is an idempotent of the-algebra of

the monoid EndX).

The space Hom(X, ¢), (X', ¢))) is the subspace’ (k7omX. X)), of fHomX.X"),
Similarly, we have a categor§(F) obtained from8(¥) by k-linearizing and then
adding images of idempotents as above.

The functor B(F) gives rise to a functog (¥) — 8(F). From Theorem 7.3 we
can deduce

Corollary 7.4. The functoBr(¥) is an equivalencé& () = 8(F).

We have a faithful functop : £(7) — kG-perm,(2, e) — kQe. If Q is free,
then we have an isomorphism

Homg -, (2. €). (2, ¢)) = Homigperm(k e, k'e').

The category€ (7)) consists of certaip-permutation modules with additional
structure and the maps between them are those which can be “constructed” from maps
betweenG-sets. A complex of objects &f(7") will be called ageometricakcomplex
forkG.
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7.2.2. GivenX, Y € & such that the&s-set underlyingX is free, we have an isomor-
phism

Homz (X, Y) = Homg (o (X), p(Y)).

Consequently, every projectives-module arises ag(X) for someX € € with
an underlyingG-set free.

7.2.3. Let ¥ be aG-stable full subcategory df; closed above. Lap be a maximal
p-subgroup ofG outsideF . Let ' be the full subcategory df; with objects those
of ¥ together with the conjugates of. Let # be the full subcategory 6fy,, o) with
objects thosg-subgroups oNg (Q) containingQ.

Let us construct a categoy. Its objects are families2, V, {¢r}o<r) Where
Qe 8(F),V € &y, (H)andpr : Qr — V is a map of sets satisfying

(i) givenS in ¥ containingR, we haveps = ¢ro (R, S),
(ii) givenh € Ng(Q), we have a commutative diagram

QR¢4R>V

[h,R]\L ih

QhRHV,
¢/7R

and
(iii) given R a p-subgroup withQ < R and Q # R, we have an isomorphism
dr: Qr > VR,

A morphism(2, V, {¢pr}o<r) = (2, V', {¢p%}o<r) is a pair(A, f) consisting
of a morphismA : Q@ — @’ and amapf : V — V’ such that, for allR containing
Q, the following diagram is commutative

QR¢4R>V

1

Qr ——=V'.
Pk

Lemma 7.5. The functor§(¥’) — € given byQ — (Rei/ Q2,Q0,{¢(0.R)}) is
an equivalence.

Letus give a useful application of this lemma. et 8(F') andY € &y, (g)(H)
with Re%f{Q} Brxo > Re%ff{Q} BrY. Then there isX/ e &(F’) with

Res. X' Res X andX[, > Y.
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7.3. Geometric stable and Rickard equivalences

7.3.1. We assume Hypotheses 4 (the blocks are principal) aofl .2.3 (cf. the
Appendix and [Rou3] for nonprincipal blocks). Assume furthermorefhatabelian.
Denote by# the full subcategory op-subgroups ofA contained inAD up to
conjugacy.
We may refine Broué’s conjecture 5.3:

Conjecture 7.6. There is acompleg in §5 (F) such thaRe%XHo p(C)isaRickard
complex forA ® B°.

Note that ifC is such a complex, then R&s,. p(C) is a splendid Rickard com-
plex, i.e., a Rickard complex gb-permutationk(G x H°)-modules with vertices
contained inAD. So Conjecture 7.6 indeed implies Broué’s conjecture.

7.3.2. Let us assume Hypothesi§.3We denote byD the inverse image ab in X.
Let  be the full subcategory gé-subgroups oA containingA P and contained in
AD up to conjugacy.

One can ask the following question abgit, P, G):

Question 7.7. LetC be acomplexii€ 5 (¥) suchthatRed, ;. kKA®, z p(C) induces
a stable equivalence betwegrandB.
Is there a complex” in &5 (¥) such that

0] Re%xHO kA ®,x p(C") induces a Rickard equivalence betwetandB, and

. o
(ii) Resz;_mp} BrC’ ~ Refﬁ_mp} BrC?

This question has a positive answer whén = p (more generally, foD cyclic)
or whenD is a Klein four group.

Let us justify this claim, for a particular choice ¢f (when this will be used in
the application of Theorem 7.8, it will be possible to ensure &hé of that type).
We assume” is concentrated in degree 0 aMi = p(C9 is a direct summand of
kX, as akA-module. Then it follows from §6.1 and §6.3 that there is a projective
k(A/AP)-moduleR’ and a morphism

f:R=Re§i/APR/—>M

such that the complex 6> R ~l> M — 0Oinduces a Rickard equivalence between
the principal blocks ofG and H. By 87.2.2, there is an objeét in Ex/ap and a

morphisma : V — C%with p(a) = f. NowC’' =0 — V — C° — 0 answers
Question 7.7.

Note that whenD is not abelian, there are stable equivalences that do not lift to
Rickard equivalences (that happens for the principal bloak ef Sz(8) for p = 2).
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7.3.3. We can now state our main result.

Theorem 7.8. Assume Questioh7 has a positive answerfchX(Q)J 0,Cc(Q)/0)
for all non-trivial subgroupsQ of D. Then there is a compleX in &4 (F) such that
Res;, ;. p(C) induces a stable equivalence betwe€G and fOH.

We recover the existence of stable equivalencedfar Z/p x Z/p (86.2) and
for D elementary abelian of order 8 (86.4).
This result readily implies

Corollary 7.9. Assume Question7 has a positive answer for

(Nx(Q), 0,Cc(Q)/0)
for all subgroupsQ of D. Then Conjectur&.6 holds for(X, G).

7.3.4. Proof of Theorenv.8. Let § be a full subcategory of — {1} closed under
conjugation and such that, givghin ¢ andR in f”yvith Q < R,thenRising. We
will construct by induction ong| a complexXg in 84 (4) such that

k(C6(Q) x Cr(0)°) Bkco@)xC0r) ReSEo 2 e, 0y P (Xg)a0)

is a Rickard complex for the principal blocks 6§ (Q) = Cg(Q)/Q andCy (Q) =
Cy(0)/0, forall Q < Dwith AQ € §.

Assume we have a comple&; satisfying the induction hypothesis and @t~ 1
be a maximal subgroup @ with AQ ¢ . Letg' = G U {(AQ) }ren-

Lety = Ind? Xg. LetZ = Ya o, an object o€y, (ag)(¥), whereH is the full
subcategory oﬂgNA(AQ) of p-subgroups containing Q and contained im\ D up to
conjugacy.

For every p-subgroupR of D strictly containingQ, we have Big p(Z) =~
P ((Xg)AR), whence Bir/ap C induces a Rickard equivalence between the prin-
cipal blocks ofCg (R) andCy (R), where

C =Reg> [0LC"E) kNAAQ)/(Q x 0°) ®inaa0) P(2).
By Theorem 5.6, it follows thaf' induces a stable equivalence between the principal
blocks ofC;(Q) andCy (Q).

Since we are assuming a positive answer to Question 7.7 by hypothesis for
(Nx(Q), 0, Cc(0)/0Q), it follows that there exists a compleX’ in éNA(AQ)(}f)
and an isomorphism

Resy (5, BrZ' = Resg (5 Brz

A ° o . .
such that R%EQ)QX)Q,Q(Z)Q ) kNA(AQ)/(Q X Q°)Qina(ap)p(Z) induces a Rickard

equivalence between the principal blocks®f(Q) andCr (Q).
By §7.2.3, there is a compleX in $4(4’) with Y/AQ — Z'andYy = (Xg)g for
R € §. Now X4 = Y’ satisfies the required properties. O
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Appendix

Our aim here is to present some of the main points of the work in progress of [Rou3].
It completes the results described previously, mainly by extending most of these to
nonprincipal blocks.

We will be working in the Appendix with Hypothesis 3 unless otherwise stated.

A.l. Splendid equivalences

A.1.1. Previous constructions.As explained by Broué in [Brl], a Rickard equiva-
lence betweer and B induces a perfect isometry between the bloek a character
correspondence with signs satisfying certain arithmetical properties. Now, Broué in-
troduced also in [Brl] the class of isotypies, which consist of a compatible system
(for the generalized decomposition maps) of perfect isometries for local subgroups.
In [Ri4], Rickard proved that, by adding the assumption of splendidness to a Rickard
equivalence, one then gets such an isotypie. Actually, Rickard proves more. Namely,
he shows how to get Rickard equivalences for local subgroups (this is Theorem 5.6,
(i) = (ii)). Unfortunately, Rickard's construction was done only for principal blocks.
Later, Harris [Ha] showed that, # is a subgroup o6, then Rickard’s definition of
splendidness still provides Rickard equivalences for local subgroups (i.e., Theorem
5.6,(i)= (ii) holds for nonprincipal blocks and without the assumption faabntrols
fusion of p-subgroups irG). As for a general definition of splendidness, this has been
given by Linckelmann in [Li5].

In order to define splendid equivalences (or even isotypies), one needs an equiva-
lence between the Brauer categories of the two blocks (we will recall later what they
are). One needs also an identification of the defect groups of the blocks. Then Linck-
elmann’s definition of splendidness is relative to a choice of source idempotents for
the blocks, which makes it difficult to check on examples.

For principal blocks, the situation is simpler because of Brauer's third main theorem
and because the assumption on the Brauer categories means that the groups have
the same fusion op-subgroups. More generally, Harris pointed out that it is still
enough to assume some relative projectivity on the terms of the complex, provided
one of the groups controls the fusion pfsubgroups in the other group — but this
is not a very satisfactory assumption, being non-symmetric and involving more than
just information about the Brauer categories of the blocks. There, one trick (due to
Rickard) is needed, namely, that a complex of exactB)-bimodulesC induces a
Rickard equivalence if and only if one of the two isomorphisms in 82.3.2, (i) holds.

A.1.2. A new approach. What is not natural in the previous approaches is the iden-
tification a priori of the defect groups of the blocks, as pointed out by Broué.

Let D be a defect group o and D’ a defect group oB. Let C be an indecom-
posable complex gp-permutation(A, B)-bimodules inducing a stable equivalence.
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One shows that there is an isomorphigm D = D’ such that the terms of are
projective relatively toA s (D) = {(x, ¢(x))|x € D}. Now let(D, ep) be a maximal
e-subpair. There is an equivalenge: Br(e) = Br( f) with the following property:

Given a subpaitQ, bp) < (D, bp), the complexeg Bra,0)(C) induces a Rickard
equivalence betwearpkCg (Q) and fo kCy (Q'), where(Q', fo) = F(Q, ep).

This is the generalization of Theorem 5.6, (ii).

We recall that the Brauer category®y of e©® G has for objects the-subpairs and
Hom((Q, eg), (R, er)) is the set of homorphism8 — R which are the composition
of conjugationQ — Q¢%, x — g~ 1xg followed by an inclusionQ¢ C R, for some
g € Gsuchthag™lepg = ex.

One can say much more about the vertices of the indecomposable texts in
One constructs a theory of vertex-subpairs for indecomposable modules. Then one
shows that the vertex-subpairs of the terms have the fagiQ), ep ® f5(0)), Where
(Q,e0) < (D,ep) and(¢(Q), fs0)) = F(Q,ep). This last property finally tells
us that the complex is splendid in the sense of Linckelmann.

Now, what should be a splendid complex? It depends on the data! As long as
there has been no chosen isomorphismbD = D’ between defect groups of the two
blocks, this should be any indecomposable complex-pErmutation modules (this
makes it easy to check that the known examples of Rickard complexes are splendid).
Once such an isomorphism is chosen, we should ask that the terms are projective
relative toA, D. If furthermore maximal subpaif®, ep) and(D’, fp) are chosen,
one should put the more precise assumption on the vertex-subpairs.

All of this is compatible with the previous definitions of Rickard, Harris and Lin-
ckelmann. This should also be seen as a special (but more explicit) case of the theory
of basic equivalences of Puig [Pu4].

A.2. Nilpotent blocks, p-rank 2 and Puig’s finiteness conjecture

Let P be an abeliarp-group. We know that given an indecomposable bimoddle
inducing a stable equivalence betwesG andk P, there is an integet such that
Q"M induces a Rickard equivalence (it is crucial, here, to assBnseabelian). This
follows from Dade’s classification of endotrivial modules for abelagroups [Da2]
(we use the fact tha'* ® . V is endotrivial ifV is simple). A difficulty arises when
n is negative: starting from a geometrical complex giving the stable equivalence, we
cannot, in general, get a geometrical complex giving a Rickard equivalence. Note that
when P is cyclic, we can always take = 0 orn = 1, SO we assume now is not
cyclic.

Now take forM an indecomposablg-permutation module. Assume the block
ekG is self-dual. Then “the” simplekG-moduleV is self-dual; hencaf* ®.rc V
is also self-dual. Sinc8* ®.rc V ~ Q "k, it follows that22'k ~ k. As P is not
cyclic, this forces: = 0, so thatM already induces a Morita equivalence.
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Let us explain how the problem should be solved in general. We work over a semi-
local ring® = Z,[¢] where¢ is a suitable root of unity. The complex conjugation
induces an automorphism 6f and the semi-linear anti-automorphism®& given
by ag — ag ' fora € © andg e G stabilizes all the blocks o0G. Now,
the extension of the theory to the base rifigshould provide the conclusion that
M is always a Morita equivalence! Note that similar considerations should solve
some cases of Puig’s finiteness conjecture. Examples are blocks with defect group
7./2 x 7Z./2 and (non-abelian defect) nilpotent blocks, where the problem is to show
that the endopermutation module involved has finite order in the Dade group.

This would give a proof of Conjecture 7.6 for nilpotent blocks with abelian defect
and would show that there are stable equivalences for blocks with abelian defect groups
and nilpotent local structure: the existence of such stable equivalences is due to Puig
[Pu3], who shows how to glue endopermutation modules — this was a important
source of inspiration for this work on local constructions.

When the defect groups are abelian witliank 2, we obtain a geometrical stable
equivalence betwees andB (here, the problem of “negative does not arise, since
the local blocks arg-central extensions of blocks with cyclic defect). We then get a
splendid Rickard equivalence for blocks with defect grél/@ x 7Z/2 (without using
complex conjugation, it is not clear that this comes from a geometrical complex). Let
us explain this last result more precisely.

AssumeD ~ 7Z,/2 x Z/2. Let M be the unique indecomposable direct summand
of eOGf withvertexXAD. LetE = Ng(D, ep)/Cc (D), where(D, ep) isa maximal
e-subpair.

If |E| = 1, then there is an integer such that” M induces a Morita equiv-
alence between®G and fOH. This can be realized using a Rickard complex of
p-permutation modules, by truncating a projective resolution (or a relatively injective
resolution) ofM (note that by the discussion above, we should hax€0).

If |[E| = 3, then there is an integerand a direct summang of a projective
cover of Q"M such that the complex 8 R — Q"M — 0 induces a Rickard
equivalence. As above, this can be realized by a Rickard complgxpefmutation
modules (although, again, we should already haveO0).

In order to be able to construct stable equivalences for blocks with defect group
7./2 x 7./2 x 7,/ 2 by gluing local Rickard equivalences coming from the construction
above, we would need = 0.

For nilpotent blocks with non-abelian defect groups, we have a Morita equivalence
betweenA andk D, as shown by Puig, but this cannot be realized, in general, by a
complex of p-permutation modules. A common generalization of this case and of
the abelian defect case is the case where the hyperfocal subgroup of the defect group
(as defined by Puig in [Pu5]) is abelian: it is tempting to ask whether there is still a
Rickard equivalence betweehand B. Such an equivalence would not be splendid
in general, but should be basic in the sense of Puig [Pu4].
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A.3. Further categories of sheaves

A.3.1. Stable category op-permutation modules. Inorderto constructglobal com-
plexes ofp-permutation modules by gluing local complexes, we can look for a local
description of the category gf-permutation modules. The projective modules will
not be (directly) reflected locally, so we should rather look for a local description of
the stable category gf-permutationk G-modules, defined as the quotient category of
the category op-permutation modules by the full subcategory of projective modules.

This can be achieved as followspgpermutation module gives rise, via the Brauer
functor, to a family ofp-permutation modules farNg (Q)/ Q, whereQ runs over the
non-trivial p-subgroups oG, together with certain isomorphisms. Conversely, the
data of a compatible family &fNq (Q)/ Q-modules comes froma-permutatiork G-
module, unique up to a unique isomorphism in the stable category. To make all of this
precise, one needs first to check various natural properties of the Brauer functor and
then to define a category of “sheaves’pepermutation modules over thesubgroups
complex, where the transitions maps account for isomorphisg®8Bs V = Bro V
whenP < Q.

We can use this construction to glue a compatible family of complexgs- of
permutation modules for variousNg(Q)/0 (Q # 1). What we get is not quite
a complex ofp-permutation modules, but only a gradgepermutationk G-module
with an endomorphisni of degree 1 such thaf is a projective map — it is not clear
how to get a genuine complex (i.e., witR = 0) from such a complex.

This construction has nevertheless some interesting and useful consequences. It
permits to get direct sum decompositions of certain full subcategories of the stable
category ofp-permutation modules defined by conditions on vertex-subpairs.}

A.3.2. Complexes of geometrical origin. The idea we pursue here, following a sug-
gestion of Alperin, is to study a category of complexes that behaves like the complexes
of chains of a finite simplicial complex acted upon G&y— we want nevertheless to
replace the assumption that the terms are permutation modules by the fact that they are
p-permutation modules. We introduce a category where the objegtsggemutation
modulesM with additional structure, namely, compatible splittings of the canonical
morphismsM? — Brp M for every p-subgroupM.

The induction and restriction functors can be extended to this category, and the in-
duction is left adjoint to the restriction. Something new happens nevertheless, namely
the Brauer functor has now a left adjoint! One can consider (fairly complicated)
categories of presheaves of objects of such categories, ovgrdhbgroup complex.

Nevertheless, one can deal with an easier subcategory. This category can be given
the structure of an exact category, by deciding that the exact sequences are those se-
quences that are split exact when we only keeptipermutation modules underlying
the objects. It turns out that the full subcategory of projective objects for this structure
of exact category is related to the categérgf §7.2.
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A.4. p-extensions

A.4.1. Inductive approach to Broué’s conjecture. In the inductive approach to
Broué’s conjecture described in 87.3 the problem is to give a positive answer to Ques-
tion 7.7. Let us recall that inductive approach.

First start with defect 0, then proceed by induction on the order of the defect group:

» Constructliftings of Rickard equivalences throygleentral extensions (in order
to go from a Rickard equivalence between block€gi P)/P andCy(P)/P,
which exists by the induction hypothesis, to one between blockg;¢P) and
Cy(P)for P #1).

« Use outer automorphism equivariance to extend the Rickard equivalence (in
order to obtain a Rickard equivalence between blockS§®fP) andNg (P)).

» Gluing: construct a global stable equivalence from the compatible system of
local Rickard equivalences.

« Lift the stable equivalence to a derived equivalence.

The introduction of geometrical complexes in §7 was needed in order to achieve the
gluing step.

We want to explain two facts here. First, the lifting problem through cemptral
extensions can be handledpriori. Then, in order to lift the stable equivalence to
a Rickard equivalence, one need not worry about geometrical complexes, as long as
the lifting is of a particular type. So, in order to solve Conjecture 7.6, it is enough
to give a positive answer to a weaker form of Question 7.7. Note that this works as
well for non-principal blocks. It is not necessary to worry abptdentral extensions.
More precisely, a positive answer to the question can be deduced from the case where
the centralp-subgroupP of Hypothesis 3 is trivial and one can forget about the
geometrical complexes and even work directly with stable equivalences induced by
bimodules.

A.4.2. Letus review first the general problem pfextensions. We assume Hypoth-
esis 3 but, to simplify, we assum& = G, i.e., we forget about automorphisms.
Consider a Rickard complexof (eO G, f O H)-bimodules. Underwhat condition
does there exist a Rickard compléxof (¢0G, f© H)-bimodules withA P acting
trivially, such that9 (G x H°)®0(éxﬁo)é ~ C? Aspointed outin 85.2.4, itisenough

to construct a compleg of (¢0G, f© H)-bimodules withA P acting trivially, and
such thatd (G x H®) ® g g o) € = C.
The problem of lifting from®G to @G is similar to the one of lifting fronk G to
OG : in both cases, we obtain an algebra as a quotient of the other algebra by an ideal
I generated by central elements contained in the radical (the setdf for x € P
in the first case, the radical ¢f in the second case) and the algebra is complete for
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the toplogy defined by that ideal. We can then apply lifting methods, similar to that
of Rickard [Ri3]. The only problem is to lift the individual terms of the complex to
modules that are free as leftP-modules and are acted on trivially lyP. Once
this is done, we lift the differential of the complexC to get a graded endomorphism
d. The squarei? is not zero, but it so modulé. Thanks to the vanishing of the
module of homomorphisms froifi to C[2] in the homotopy category of complexes
of (eOG, fOH)-bimodules, we can changeto get a new liftingd; of d such that
Jf is zero modula’?. We go on and, sincg = 0 for n large enough, we eventually
get a genuine differential and the compl@is constructed.

Note that this strategy works even#fis a normal but non-central-subgroup.

When the complex is splendid and the inverse imagefin G is abelian, one
shows that it is always possible to lift the individual terms of the complex. Here, we
consider the case whei¢ = Ng(D) but this applies as well to the case where we
consider any other finite groud and any block idempotent of @ H. Then we only
requireC to be a complex op-permutation modules and we use the results of 8A.1.2.

A.4.3. Letus come to a more concrete problem. Suppose we are given a complex
C of (e0G, fOH)-bimodules inducing a stable equivalence and a complef
(eO®G, fO H)-bimodules withA P acting trivially, such that

O(G x H®) ®g Gy ey C = C.

Consider a (bounded) complex of exdet? G, f© H)-bimodules all of whose
non-zero terms are projective, except for the one of smallest dégi¢e= C?. Then
M induces a stable equivalence betweé&G and fOH.

Suppose there is a compl&xof projective(e@ G, f© H)-bimodules and a mor-
phismyr : Z — M (whereM is seen as a complex concentrated in degdeghose
coneis a Rickard complex. This means we have been able to lift the stable equivalence
induced byM to a Rickard equivalence in a particular way. Then one gets a complex
Z' of projective(e® G, f© H)-bimodules and a morphisg’ : Z' — C whose cone
is a Rickard complex. Now, there is a complékof exact(é© G, f© H)-bimodules
with A P acting trivially and amag’ : Z' — € suchthat 1® ¥’ = v’'. The cone’’
of ¥’ is now a Rickard complex @89G, f© H)-bimodules withA P acting trivially.

Finally, if C comes from a geometrical complex as in Question 7.7, then we will
be able to find another geometrical complex giving ris€'to This means that it is
enough to lift, in a particular way, certain stable equivalences beta@éhand f O H
to Rickard equivalences in order to solve Question 7.7 — in general, all of this should
be done in a way compatible with the actionfG.
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