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Complex reflection groups,
braid groups, Hecke algebras

By Michel Broué at Paris, Gunter Malle at Heidelberg and Raphaél Rouquier at Paris')

Abstract. Presentations “‘a la Coxeter” are given for all (irreducible) finite complex
reflection groups. They provide presentations for the corresponding generalized braid
groups (for all but six cases), which allow us to generalize some of the known properties
of finite Coxeter groups and their associated braid groups, such as the computation of the
center of the braid group and the construction of deformations of the finite group algebra
(Hecke algebras). We introduce monodromy representations of the braid groups which
factorize through the Hecke algebras, extending results of Cherednik, Opdam, Kohno and
others.

Introduction
In [DeMo], (17.20), Deligne and Mostow raised the following question:

“Let W< GL(V) be an irreducible finite group generated by complex reflections, and
let V' be the complement in V of the fixed hyperplanes of the complex reflections in W. For
H the fixed hyperplane of a complex reflection in W, let sy be the generator of the mono-
dromy around the image of H in V|W. It is well defined up to conjugacy in n:=n,(V'|/W).
The fundamental group m is an extension of W by the fundamental group of V', and sy
projects in W to the inverse of the generator of the fixer of H, with non trivial eigenvalue of
the form exp (2mi/ny).

Question 3. For each conjugacy class of each hyperplane H fixed by a complex reflec-
tion, let qy (1) be a path in C*, starting at exp(—2mni/ny). Is it uniquely possible to deform
with t a representation g, of ©, starting at t = 0 with the given representation of the quotient
W of m, so that 9,(sy) is a complex reflection with non trivial eigenvalue q5(¢)?”

1) We thank Jean Michel, Peter Orlik, Pierre Vogel for useful conversations, and the Isaac Newton Institute
for its hospitality while the last version of this manuscript was written up. The second named author gratefully
acknowledges financial support by the Fondation Alexander von Humboldt for his stays in Paris.
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As noticed by Deligne and Mostow, in the case where W is a Coxeter group, the
existence of the Hecke algebra as an image of the group algebra of the braid group =
provides a positive answer to their question.

It is one of our purposes here to give a positive answer to the preceding question,
at least for all infinite series of irreducible finite complex reflection groups, and for some
exceptional ones (a more partial answer, without proofs, had been announced in [BMR]).
We shall get this answer by exhibiting a generalized Hecke algebra for these groups again
as an image of the group algebra of the associated “‘braid group” .

Through recent work on representations of reductive finite groups and related topics
(like representations of finite Coxeter groups and associated Hecke algebras)?) it has become
clearer and clearer that finite “‘complex reflection groups” (i.e., linear groups generated
by pseudo-reflections) behave very much like Coxeter groups, or even like Weyl groups.

- Many of them behave as if they were the Weyl group of a reductive algebraic group:
in particular, they determine families of polynomials which share many properties of the
set of generic degrees of the unipotent characters of a reductive algebraic group.

+ Through suitable presentations by generators and relations, it has become possible
to deform the complex group algebra of most complex reflection groups in a way which
generalizes the construction of classical Hecke algebras of finite Coxeter groups.

Here we prove in particular that these presentations are naturally associated to
presentations of the corresponding braid groups, thus providing a more intrinsic definition.

It should be noticed that some other nice properties of ““Coxeter braid groups” extend
to this more general setting.

For example, generalizing a result of Deligne and Brieskorn-Saito valid for Coxeter
groups, we check here, in most cases, that the centers of braid groups associated to irre-
ducible complex reflection groups are cyclic.

Also (at least in the case of the infinite series) the pure braid group of an r-dimensional
irreducible complex reflection group has a natural structure as an r-fold iterated semidirect
product of free groups (of finite rank).

Nevertheless, it should be emphasized that this must only be the beginning of a long
story which is still to be discovered. Our results are — almost — general, but few of our
proofs are. Moreover, new questions emerge now: how to characterize the distinguished
generators and the diagrams representing the relations? How to explain the natural *“dia-
gram invariants” like degrees, codegrees, zeta function (see § 5 below)?

2) See for example [AlLu], [Ari], [ArKo], [BreMa], [BrMa], [BrMi], [BMM], [Lu], [Ma1], [Ma2].
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1. Complex reflection groups and their presentations

A. Background from complex reflection groups. For all the results quoted here, we
refer the reader to the classical literature on complex reflection groups, such as [Bou],
[Ch], [Co], [ShTo], [Sp], and also to the more recent fundamental work on the subject
by Orlik, Solomon and Terao (see [OrSo1], [OrSo2], [OrTe]).

Let V' be a complex vector space of dimension r. A pseudo-reflection of GL(V') is a
non trivial element s of GL (V') which acts trivially on a hyperplane, called the reflecting
hyperplane of s. Let W be a finite subgroup of GL (V') generated by pseudo-reflections.
The pair (V, W) is called a complex reflection group.

A parabolic subgroup of W is by definition the subgroup of elements of W which act
trivially on a subspace of V. The following result is due to Steinberg ([St], Theorem 1.5) —
cf. also exercises 7 and 8 in [Bou], Ch. v, §6.

1.1. Theorem. Let V' be a subspace of V. Then the parabolic subgroup W,,., consisting
of all elements of W which fix V' pointwise, is still generated by pseudo-reflections: Wy, is
generated by those pseudo-reflections in W whose reflecting hyperplane contains V.

We denote by .o« the set of reflecting hyperplanes of (V, W), and we set N:=|.o7|. We
denote by N* the number of pseudo-reflections in W (note that for real reflection groups
we have N = N*).

For H e </, we denote by W the pointwise stabilizer of H, and we set ey :=|Wj|.
The group W is a minimal non trivial parabolic subgroup of W. All its non trivial elements
are pseudo-reflections. The group W} is cyclic: if s; denotes the element of W with
determinant exp (2in/ey), we have Wy, = {(sy>, the group generated by s.

The centralizer Cy, (Wy) of Wy, in W is also its normalizer, as well as the normalizer
(setwise stabilizer) of H.

For e .o//W an orbit of hyperplanes, we denote by N, its cardinality. We have
Ny, =|W:Cy (Wy)| for He 6. We also set e,:=ey for He %.

We denote by S the symmetric algebra of ¥, by R = S" the algebra of invariants of
W, by R, the ideal of R consisting of elements of positive degree, and we set Sy;,:=S/R, S.

The following facts are known (they are introduced here in an order which is con-
venient for the exposition, but not necessarily for their proof).

+ Degrees. There is a family of r integers d,, d,, ..., d. called the degrees of (V, W),
defined as follows: the Poincaré polynomial of the graded module (V' ® Sy,)" is
qd1—1 + qdz—l + .- +qdr—1 .
We have
@+d—D@+d, =D (g+d-1)= Y ¢

weW
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(where V<" denotes the space of fixed points of w). It follows that

YW@= Y ey—= T Nle,—1)=N*.

Hesd Ged|W

+ Codegrees. There is a family of r integers dff, d, ..., d* called the codegrees of
(V, W), defined by the following condition: the Poincaré polynomial of the graded module
(V*® Sy)" is
qd’;+1 + qd’{+1 + - +qd’:+1.
We have

(q—df —1)(g—df —1) (g—d*—1)= ¥ det, (w) g™,

weW
It follows that
j=r
Z (dj*—l—l): z 1= Z N,=N
j=1 Heo Ced|W
and so

j=r
N+N*=Y (d+d)= Y Nge,.

j=1 Ged|W

Remark. The “codegrees’ have not been introduced as such in the quoted literature.
Nevertheless, the sets of degrees and the codegrees are related to the sets of exponents
{my,m,, ..., m,} and coexponents {m¥,m%, ..., m*} (which are defined in [OrSo2]) by the
formulae

m=d,—1 and m¥=d¥+1 (j=1,2,....r).

« Algebra of invariants — More on degrees. The algebra of invariants R is generated
by r algebraically independent homogeneous elements of S respectively of degrees
di,d,, ..., d.

The order of Wis |W|=d,d, - d..

If W is irreducible, its center Z(W') has order |Z(W)|=d, A d, A -+- A d. (Where we
denote d; A dy A - Ad.i=ged{d,,d,,...,d}).

« Cohomology of the hyperplane complements — More on codegrees. We set

M=V— ) H.

Heo

For H € .o/, let us denote by oy a linear form on V with kernel H, and let us define the
holomorphic differential form wy, on .# by the formula

1 doy

Wy =
H .
2im oy
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. . 1
which we also write wy = i
in

cohomology class.

dLog(ag). We denote by [wg] the corresponding de Rham

Brieskorn (cf. [Br2], Lemma 5) has proved the following result.

1.2. Let Cl(wg)gey] (resp. Z[(wy)ges]) be the C-subalgebra (resp. the Z-sub-
algebra) of the C-algebra of holomorphic differential forms on .4 which is generated by
{0y} ney. Then the map wy v [wy] induces an isomorphism between C[(wy)y..,] and the
cohomology algebra H* (M, C) (resp. an isomorphism between Z [(wy)yc.,] and the singular
cohomology algebra H* (M, 7)).

From now on, we write @y instead of [wy].

Orlik and Solomon (cf. [OrSo1]) have given a description of the algebra H*(.Z, C).
Before stating their result, we need to introduce more notation.

+ Let Co/:= (P ey be the vector space with basis indexed by <7, and let A.o7 be its
He o
exterior algebra, endowed with the usual Koszul differential map 6 : 4.o/ — A .o/ of degree

—1.

- For #={H,,H,,...,H,} c.</, we denote by D, the line generated by
ey, Aey, At Aey .

- We say that 2 is dependent if codim( () H) <|4)|.

He%

+ We denote by 14.o7 the (graded) ideal of A.e7 generated by the 6(D,) where #
runs overs the set of all dependent subsets of .o7.

1.3. Theorem (Orlik and Solomon). The map eyt wy induces an isomorphism of
graded algebras between Ao/ |14 .o/ and H* (M, C).

Let Int(e7) be the set of intersections of elements of .oZ. For X e Int(</), we set
H®(,C):=) D, where the summation is taken over all

B, |B|=codim(X), () H=X,

He%
and where D, is the complex line generated by wy A @y, A - A @y, if
#B=H,H,,.. 6 H).
Then it follows from Theorem 1.3 that
1.4. for any integer n, we have

H'(/,C)= @ HYW,C).
(X elInt())
(codim(X) =n)
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Moreover, we see that
1.5. (1) the family (wg)g.., is a basis of H* (M, C),

(2) for X an element of Int(<f) with codimension 2, if Hy denotes a fixed element of
o/ which contains X,

« whenever H and H' are two elements of o/ which contain X, we have
Wy A Oy = Oy, A Oy — Oy A O,
« the family (wg, A Op) - xym+ 1y IS @ basis of H® (4, C).

The codegrees are determined by the arrangement .oZ, by the following consequence
of Theorem 1.3.

1.6. The Poincaré polynomial P/,,(q):=2q"dim(H"(,/%,C)) of the cohomology

algebra H* (M, C) is given by the following formulae:

(I+U+dHU+A+dF)g) - (1+1+d¥q)

Z dCtV (W) ( _ q) codim (V<) .

weW

Py(q)

B. Presentations. The tables in Appendix 2 provide a complete list of the irreducible
finite pseudo-reflection groups, as classified by Shephard and Todd, together with presen-
tations of these groups symbolized by diagrams “a la Coxeter”, as well as some of the
data attached to these groups. Many of these presentations were previously known. This
is the case of the rank r groups which are generated by r reflections, studied by Coxeter
[Cx]. Some others (the ones corresponding to the infinite series) occurred in [BrMa] or
were inspired by [Ari].

The reader may refer to Appendix 2 to understand what follows.

Isomorphisms between diagrams. We may notice that the only isomorphisms between
the diagrams of our tables are between the diagrams of G(2,1,2) and G (4,4, 2), between
the diagrams of S, and G (2, 2, 3), between the diagrams of S5 and G (3, 3, 2), and between
the diagrams of &, and G(2,1,1).

Coxeter diagrams. Note (see tables) the following correspondence of notation:
« S,,, (r=0) is the Coxeter group of type A,,
+ G(2,1,r) (r = 2) is the Coxeter group of type B,,

+ G(2,2,r) (r = 3) is the Coxeter group of type D,.
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Indeed (see table 2 for notation) since e = 2, ¢, and ¢, commute, and it is enough to
show that the “double-link™ braid relation #5¢5¢,15151, = t5t,t551,15 1S @ consequence
of the other relations.

Applying successively the fact that 7, and 7, commute, the braid relation between ¢,
and ¢;, and the braid relation between ¢ and ¢,, we get

l3lélzl3l£[2 = 13126[3[3[2 = 13l2[3lé[312 = lzlslzlélﬂz = t213lét21312

=t lyttyt,ty =ttty =1l 5t .
« G(e,e,2) (e = 3) is the dihedral group of order 2e,
+ G,g is the Coxeter group of type F,,
+ G,4 1s the Coxeter group of type Eq,
+ G, 1s the Coxeter group of type E-,
+ G5, 1s the Coxeter group of type Eg,
*+ G,; is the Coxeter group of type Hj,
+ G5, is the Coxeter group of type H,.

Admissible subdiagrams and parabolic subgroups. Let & be one of the diagrams. Let
us define an equivalence relation between nodes by s ~ s and, for s & ¢,

s~1 <> sand tare notin a homogeneous relation with support {s, 7} .

Then we see that the equivalence classes have 1 or 3 elements, and that there is at most
one class with 3 elements.

If there is no class with 3 elements, the rank r of the group is the number of nodes
of the diagram, while it is this number minus 1 in case there is a class with 3 elements.
t

Thus s has rank 2, as well as
t

5 u $

Remark. One must point out that, in the first of the preceding two diagrams, s, ¢
and u must be considered as linked by a line (so ¢ and u do not commute).

An admissible subdiagram is a full subdiagram of the same type, namely a diagram
with 1 or 3 elements per class.
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u

t
Thus, the diagram s @@ has five admissible subdiagrams, namely the empty
5

diagram, the three diagrams consisting of one node, and the whole diagram.
1.7. Fact. Let & be the diagram of W as given in tables 1 to 4 in Appendix 2 below.

(1) If @' is an admissible subdiagram of 2, it gives a presentation of the correspond-
ing subgroup W (2') of W. This subgroup is a parabolic subgroup.

(2) Assume W is neither G4, G4, G353 nor Gy,. If P S P,
parabolic subgroups of W, there exist ge W and a chain 9,< 2,
subdiagrams of & such that

-~ S P, is a chain of
- S 9, of admissible

c
c

(P, Py ...s B) =1 (W(2)). W(Dy), ... W(Z,)).

Remark. For groups G,, and G,,, all isomorphism classes of parabolic sub-
groups are represented by admissible subdiagrams of our diagrams, but not all conjugacy
classes of parabolic subgroups are represented by admissible subdiagrams, as noticed by
Orlik.

For groups G,; and G,,, not all isomorphism classes of parabolic subgroups are
represented by admissible subdiagrams of our diagrams. In these cases, it seems that a
second diagram should be introduced, as suggested by [Hu]. Then all parabolic subgroups
can be found somewhere inside one of the two diagrams given.

More precisely, for G5, the second diagram is only needed for parabolic subgroups
of type D,, while for G,, it is needed for parabolic subgroups of type D,, D, and the
second copy of As.

2. Braid groups and their diagrams

For X a topological space, we denote by £ (X) its fundamental groupoid, where the
composition of (classes of) paths is defined so that, if y, is a path going from x, to x,
and y, is a path going from x; to x,, then the composite map going from x, to x, is
denoted by v, - y,.

Given a point x, € X, we denote by =, (X, x,) (or 7, (X) if the choice of x, is clear)
the fundamental group with base point x,. So we have 7, (X, xy) = End y, (x,). If f: X = Y
is a continuous map, we denote by 2 ( f) the corresponding functor from Z(X) to 2(Y).
We also denote by n,(f,x,) (or mn,(f)) the group homomorphism from =x,(X,x,) to
n, (Y. f (x,)) induced by 2( /).

We choose, once for all, a square root of (— 1) in C, which is denoted by i. Moreover,
for every z e C*, we identify n,(C*, z) with Z by sending onto 1 the loop 4,:[0,1] —» C*
defined by A,(¢):=zexp (2int).
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A. Generalities about hyperplane complements. What follows is probably well
known to specialists of hyperplane complements and topologists. We include it for the
convenience of the reader, and because of the lack of convenient references.

Let .o/ be a finite set of affine hyperplanes (i.e., affine subspaces of codimension one)

in a finite dimensional complex vector space V. We set .4/ :=V— | ) H.
He o

Let x, € .#. We shall give now some properties of the fundamental group =, (4, x,).

Generators of the monodromy around the hyperplanes. In Appendix 1, we explain
what we mean by the generator ¢, of the monodromy around H, associated to a path y
“from x, to an affine hyperplane” H e .«/.

For He .o/, let ay be an affine map V' — C such that H = {xe V|ay(x)=0}. Its
restriction to .# — C* induces a functor 2 (o) : (M) - P (C*), and in particular a group
homomorphism 7, (oty, X,) : 7w, (M, xy) = Z.

2.1. Lemma. For H,H'e o/ and vy a path from x, to H (see Appendix 1), we have

7y (%) (Q[«,]) = 5H,H' .

Proof of 2.1. Letusset My:==H— | ) H' Let x,:=7(1) and let B be an open ball
with center x, contained in .# v .#y. Let ue[0,1[ such that y(¢) e B for 1 = u. We set
x,:=7(u). Then, the restriction of oy to Bn.# induces an isomorphism

w(ag) (B, x)) > 2.
Let 4 be a loop in Bn.#, with origin x,, whose image under 7, (o) is 1. Let y, be the

“restriction” of y to [0, u], defined by y,(¢):=7 (u?) forall € [0,1]. Define g, , =7y, L2y
Then the loop g, ; induces the generator of the monodromy g,; (see Appendix 1), and

7y (o) (Qy,}.) = (o) (4) = 5H,H' .o

2.2. Proposition. (1) The fundamental group w,(M, x,) is generated by all the gener-
ators of the monodromy around the affine hyperplanes H € .</.

(2) Let m, (M, x,) denote the largest abelian quotient of n,(M,x,). For H € .o/, we
denote by iy the image of oy, in w (M, xy). Then

n (M, x0)" = [ <oy

He o

where each {03 is infinite cyclic. Dually, we have

Hom(ﬂﬁ(%a xo),Z) = n (my(og))

He o
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Proof of 2.2. (1) is a special case of Proposition A1 (see Appendix 1 below).
(2) is immediate and left to the reader. O
Remark. Let us recall that we have natural isomorphisms
(M, xo)" —> H,(M,7) and Hom(m (M, x,),7) — H (M, 7).
Moreover, the duality between =, (4, x,)** and H'(.#, Z) may be seen as follows. For y

a loop in .# with origin x, and for w a holomorphic differential 1-form on .#, we set
{y,w):= [ w. It is then clear that, under the isomorphism
v

Hom(nl(‘%axo)ﬁ Z) — Hl(%a Z) 5

1 day
the element 7, (o) is sent onto the class of the 1-form w, = — —= (see 1.2 for more

details). 2im oy

About the center of the fundamental group. In this part, we assume the hyperplanes
in o/ to be linear.

2.3. Notation. We denote by = the loop [0,1] — .# defined by
w:t— xoexp(2int).

2.4. Lemma. (1) m belongs to the center Z(m,(M,x,)) of the fundamental group
Ty (M, x,).

(2) For all He o/, we have n (ay)(n) =1.

Proof of 2.4. (1) results from a more general lemma, for which we need to intro-
duce more notation.

Let z=|z|e' be a complex number with argument 0, chosen so that —n <0 < .
For 1€[0,1], we set z':=|z|"e"’. For x € .4, we denote by 7, , the path in .#, with initial
point x and terminal point zx, defined by

Vox [0,1] = A, tz'x.

2.5. Lemma. Let y be a path in M, with initial point x and terminal point y. Then the
paths vy, -y and zy -y, . are homotopy equivalent (where zy denotes the path defined by

t— zy(1)).

The proof of Lemma 2.5 is easy and left to the reader. Note that Lemma 2.5 holds
whenever . is a subset of ¥ which is stable under multiplication by C*.

1 jd(OCH(TL'(l‘))) }dl. 0

o ou(m(1) 0

(2) is immediate since 7, (o) (1) =
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2.6. Proposition. Let ./ be the image of M in (V —{0})/C*, and let X, denote the
image of x, in M.

(1) The map =, (M,x,) — 7 (M, X,) is surjective, and its kernel is {m).
(2) The center of w,(M,x,) is {m) if and only if the center of n (M, X,) is trivial.

Proof of 2.6. (1) Since the =(¢) are scalar multiples of x,, it is clear that = belongs
to the kernel of the map 7, (4, x,) — 7n,(M, X,).

The homotopy exact sequence --- — w,(C*) - n, (M, x,) — 7, (M, X,) > 1 shows
that the morphism 7, (#, x,) — (.4, X,) is surjective, and that its kernel is cyclic. Since
7 belongs to this kernel, it suffices to prove that = is a primitive element of 7, (%, x,), i.e.,
that = has no proper root in 7, (%, x,). But this results from Lemma 2.4, (2).

(2) Let us notice that, by Lemma 2.4, (2), the group () maps injectively into the
largest abelian quotient of w,(.#, x,). So it suffices to prove the following elementary
lemma.

2.7. Lemma. Let G be a group, and let H be a normal subgroup of G which maps
injectively into the largest abelian quotient G|[G,G] of G. Then the natural morphism
G — G/H sends the center of G onto the center of G/H.

Proof of 2.7. Indeed, let z be an element of G which becomes central in G/H. Then
[z, G] < H. But by hypothesis we have HN[G,G] =1. Thus we have [z,G] =1. O

Generating with one loop per hyperplane. With a little more work, Proposition 2.2
can be made more precise; one (well-chosen) generator of the monodromy around each
affine hyperplane suffices to generate the fundamental group:

2.8. Proposition. There is a set R = {0y}, of generators of n,(M,x,), where oy
is a generator of the monodromy around H.

Proof of 2.8. We may assume that .o/ is not empty. We prove the proposition by
induction on the dimension of V.

 The linear case. Let us first consider the case where the intersection of the affine
hyperplanes of ./ is non trivial. Up to translation, we can assume that 0 is contained in

this intersection, i.e., the hyperplanes of .o/ are linear.

Let H, be a hyperplane of .« and H, be the affine hyperplane of V' parallel to H,
and containing x,.

We consider the conic projection on H,; with center 0:
f+(V—H,) - H, x—CxnH,.

Both f and its restriction # — .#, = H,n .4 are locally trivial fibrations (see for example
[Spa], chap.2) with fiber F~ C* x.
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The associated exact sequence of fundamental groups is

ny(F, xo) = my (A, x,) M’ (M, x) = 1.

Let /' = o/ — {H,}. By induction, we can assume the proposition holds for the affine
hyperplane arrangement .o/, = {HNH,},. ., in H,: there is a set {¢,}, .., of generators
of n, (M, f(x,)) where g, is a generator of the monodromy around L.

Let i be the inclusion .#, — /. Then, oy = n,(i)(0y - ,) 1S @ generator of the mono-
dromy around H € .7’. Note that fi is the identity on .#,, hence n,( f)n,(i) =1. In parti-
cular, the exact sequence shows that 7, (.#, x,) is generated by the set {¢y} ., together
with &, the image of the positive generator of n, (F, x,), which is central in (4, x,).

Let ¢y, be a generator of the monodromy around H,. Then, there exists « in the
subgroup generated by {0y} .., such that 7, (f)(oy,®) =1, that is, ¢, o =" for some
integer r. Since 7, (0y,) (0,) = 1, Ty (2y,) (@) = 0 for H € .«/’and 7 (o) (m) = 1 by Lemmas
2.1 and 2.4, we obtain r =1. Hence, = is in the subgroup generated by {¢y} .., and this
proves that {g;}py.., generates m, (4, x,).

« The affine case. Let o/’ be a finite set of affine hyperplanes of V disjoint from .o/
and let #/'=V— |) H. Assume x,€.4'. Since one gets ./’ by removing a sub-

Hed v’
variety of (real) codimension 2 from .#, the injection .#'c ./ induces a surjection

(M, x) > 1 (M, Xx,) (see for example [Go], chap. x, th.2.3). Under this morphism, a
generator of the monodromy around a hyperplane H' e .o/’ becomes trivial. Hence, if the
proposition holds for .#’, then it holds for .#. Note also that we can change the base
point x, in order to prove the result.

We choose an affine hyperplane H,; of V outside .«Z, a new origin O VV— H, for V'
and a new base point x, € H, € .4 such that

- there is an open ball Q with center 0, containing x, and which doesn’t intersect
any of the non-linear hyperplanes of .#,

- the line Cx, never intersects two distinct affine hyperplanes of .7 at the same point,
and

+ no translate of the line Cx, lies in an affine hyperplane of .o7.
Then, adding to .o/

« the linear hyperplane H, parallel to H,,

+ the linear hyperplanes parallel to the affine hyperplanes of .oZ,

- given two distinct non-linear hyperplanes H, H' of ./, the linear hyperplane con-
taining Hn H',
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we may and will assume that .o/ satisfies the following assumption:

Let .o/" be the set of linear hyperplanes of .o/ distinct from H,, .«/” the set of non-
linear hyperplanes of .«Z, o/, = {H, " H}y., and .#4;=H,;— | ) L. Then, the map

LE&/l

fill - My, x—CxnH,

is a locally trivial fibration.

Note that the restriction of f to QN .# — ., is also a locally trivial fibration.

The associated exact sequences of fundamental groups give rise to the commutative
diagram:

”1(90((:3%_{0})33“0) — 1, Q0 M, xy) — 7751(%131((360)) — 1

l l |

T(Fxg) —————— (M, xo) — 7'51(%1:]((350)) — 1

where F=f"1(f(x,)) =Cx,— ({0} U{Cxon H} e )

The study of the linear case above shows that there is a set {g,} . -y, Of generators
of the monodromy around the linear hyperplanes in Q2 N .# which generates 7, (2 N .4, x,).

There are generators of the monodromy g, around the points Cx,n H (H e /") in
F, such that, together with the image of 7,(2 N (Cx, — {0}),x,), they generate r,(F, x,).

Now, the set {0}y, generates n,(4, x,). O
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B. Generalities about the braid groups.

More notation. We go back to notation introduced in §1. In particular, .o/ is now
the set of reflecting hyperplanes of a finite subgroup W of GL (V') generated by pseudo-
reflections. We denote by p: .# — .# /W the canonical surjection.

Notice first that we may assume that W is “‘essential”, i.e., that the subspace V" of
fixed points of V under W is trivial. Indeed, let us set

Vo= (\ H, V=V|V,, d:={H|Vo|(Hes)}, M=V— |) H.

He o

Then the natural epimorphism s: ¥+ V' induces a trivial fibration s:.# +— .# with fibre
V5, hence a homotopy equivalence, and in particular an isomorphism

(2.9) ny (M, xo) — 7, (A, S(xo)) .
Let x, € .4. We introduce the following notation for the fundamental groups:
Pi=n,(M,xo) and Bi=m,(M|W,p(x,)),

and we call B and P respectively the braid group (at x,) and the pure braid group (at x,)
associated to W. We shall often write m, (.# /W, x,) for m,(.4|W, p(x,)).

The covering .# — .#|W is Galois by Steinberg’s theorem (see Theorem 1.1 above),
hence the projection p induces a surjective map B —» W, o +— &, as follows:

Let ¢:[0,1] —» .# be a path in .#, such that 6(0) = x,, which lifts ¢. Then & is
defined by the equality ¢ (x,) =6 (1).

The map ¢ + & is an anti-morphism. Indeed, if ¢’ is another loop in .# /W with origin
X,, and if ¢’ is lifted onto a path ¢ with origin x, in .#, we may lift the loop (¢'c) onto

the path 6(¢') - 6, whose image in W is clearly 56’ (here we set G(6')(¢):=a(6'(1))).

Denoting by W°P the group opposite to W, we have the following short exact
sequence:

(2.10) 1->P—>B->WP 1,
where the map B — W*°P is defined by o +— 6.
The spaces .# and .4 |W are conjectured to be K (=, 1)-spaces.

The following result is due to Fox and Neuwirth [ FoNe] for the type A,,, to Brieskorn
[Br2] for Coxeter groups of type different from H;, H,, E¢, E,, Eg, to Deligne [De1]
for general Coxeter groups. The case of the infinite series of complex reflection groups
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G (de, e, r) has been solved by Nakamura [Na]. For the non-real Shephard groups (non-

real groups with Coxeter braid diagrams), this has been proven by Orlik and Solomon
[OrSo3]. Note that the rank 2 case is trivial.

2.11. Theorem. Assume W has no irreducible component of type G,,, G54, G,q9, G54,
G5 or Gy,. Then, M and M |W are K(m,1)-spaces.

Generators of the monodromy around the hyperplanes. For H € o/, we denote by sy
the pseudo-reflection in W with reflecting hyperplane H and determinant { :=exp (2i7n/ey).
We set

Ly:=1im(sy; —1d;).
For x eV, we set x = pry(x) + pry(x) with pry(x) € H and prj(x) € Ly.
Thus, we have s; (x) = {5 priy(x) + pry (x).

If e R, we set {;;+==exp(2int/ey), and we denote by sj; the element of GL(V') (a
pseudo-reflection if ¢ & 0) defined by:

(2.12) st (x) = {4 pri(x) + pry(x) .
For x eV, we denote by gy , the path in V' from x to sy(x), defined by:
g [0,1] =V, t—sp(x).

For any path y in .#, with initial point x, and terminal point xj, the path defined by
sp(p Yt sy (77 1)) is a path in .4 going from sy (xy) to sy (x,).

Whenever 7y is a path in .#, with initial point x, and terminal point x,, we define
the path o , from x, to sy (x,) as follows:

(2.13) Ouy =50 ) Oy V-

It is not difficult to see that, provided xj is chosen “close to H”, the path oy  is in .Z,
and its homotopy class does not depend on the choice of x,, and the element it induces
in the braid group B is actually a generator of the monodromy around the image of H in
MW (see Appendix 1 below).

The following properties are immediate.
2.14. Lemma. (1) The image of sy, in W is sy.

(2) Whenever y' is a path in M, with initial point x, and terminal point xy, if T denotes
the loop in M defined by t:=y'~'y, one has

— . Lol
O,y =71 O-H,y T
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and in particular sy, and sy . are conjugate in P.

ji=0
(3) The path [] On.sl > @ loop in M, induces the element sy, in the braid group
j =emg—1
B, and belongs to the pure braid group P. It is homotopy equivalent, as a loop in M, to the
generator g,; of the monodromy around H in P (see Appendix 1).

2.15. Definition.

A distinguished pseudo-reflection in W is a pseudo-reflection s with the following
property: if H denotes its reflecting hyperplane, and if ey, is the order of the minimal para-
bolic subgroup W, then s is the element of W}, with determinant e?'™/*,

+ Let s be a distinguished pseudo-reflection in W, with reflecting hyperplane H. An
s-generator of the monodromy is a generator of the monodromy s around the image of H
in ./ /W such that 5§ =s.

The discriminants. Let % be an orbit of W on .«Z. Recall that we denote by e, the
(common) order of the pointwise stabilizer Wy, for He 4. We call discriminant at € and
we denote by J,, the element of the symmetric algebra of V* defined (up to a non zero
scalar multiplication) by

ogi= (] o).
He®
Since (see for example [Co], 1.8) d, is W-invariant, it induces a continuous function

Og: M|W — C*, hence induces a functor 2 () : P(M|W) - 2 (C*), and in particular it
induces a group homomorphism n,(é,): B — Z.

2.16. Proposition. For any H € .o/, we have

1 if He®,
n1(5%)(sH,y) = {0 if H¢%
Proof of 2.16. Letusset ¢*:=% — {H} (so ¢* =% if H¢ %), and

5@*::( H OCH«)E(”.

He%*
Recall that W}, denotes the (parabolic) subgroup of W generated by s,,. Then the maps
O, 05F 1 M — C*
are both Wy-invariant, and so define maps

vy 08 MWy — C .
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The following diagram summarizes where the maps are defined:

The computation of 7, (8, (sH,y)) may be performed at the level .#/W},, and so it suffices
to check

(1) 7;(dg+) (sH,y) =0,
(2) (") (s,,) =1.
Let us check (1) and (2).

(1) It suffices to check that 7, (d4+) (sf”,) = 0, and this follows from Lemmas 2.1 and
2.14, (3).

(2) We have

. d(O‘H (S;i (XH))QH) .

1
Ty (") (5,,) = 2in o o (sh(xp))em

Since
%y (5;1 (XH))eH = Oy (er (xg) + {hpry (XH))eH
= (o (pri (xg))

= exp (2im 1) oy (pry; (x5)) ",

1
we see that (") (sy,) = [di=1. O
0

Generators and abelianization of B.

2.17. Theorem. (1) The group B is generated by the generators {sy .} ( for all hyper-
planes He o/ and all paths vy from x, to H in M) of the monodromy (in B) around the
elements of of.

(2) We denote by B* the largest abelian quotient of B. For € € .o/|W, we denote by
s¢” the image of sy, in B* for He 6. Then

B = ] sty

Ged|W
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where each {sZ®) is infinite cyclic. Dually, we have

Hom(B,Z) = [| <(m(5,)).

Ced|W

Remark. We have natural isomorphisms
B* —~» H (#/W,7) and Hom(B,Z) —~—» H (MIW,7),
and, under the second isomorphism, we have

1 do 1
71(0g) > ey Z — = dLog(dy) .

Hew 2im oy  2im

Proof of 2.17. The second assertion is immediate by the first one and by Proposition
2.16. Let us sketch a proof of (1).

Since W is generated by the set {sy} .., and since we have the exact sequence (2.10),
it is enough to prove that the pure braid group P is generated by all the conjugates in P
of the elements s; . This is a consequence of Proposition 2.2, (1). O

Let us denote by Gen(B) the set of all generators of the monodromy in B (see Defi-
nition 2.15 above). For s € Gen(B), we denote by e, the order of 5.

In other words, if s is a generator of the monodromy around the reflecting hyperplane
H e o/, we set now (using the notation of Definition 2.15): e :=ey,.

The following property is a consequence of general results recalled in Appendix 1
below.

2.18. Proposition. (1) The pure braid group P is generated by {$},_Genm)-

(2) We have
W~ B/<ses>seGen(B) .

Proof of 2.18. The two assertions are obviously equivalent. The first one results
from Propositions A2 and A3, (2) (see Appendix 1 below). O

Length. Let
o= [] o

Ged|W

be the discriminant, and let 7,(6) : B — Z be the corresponding group morphism.

Let b € B. By Theorem 2.17 above, there exists an integer k and for 1 £ j <k, H; € </,
a path y; from x, to H; and an integer n; such that

— ¢t na cee @k
b= SHi,91 SHa, v, Sy -
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The following proposition results from Proposition 2.16 above.

2.19. Proposition. We have

m@O® = Y n.

We call the length of b and we denote by 7 (b) the integer 7, () (b).

If {s} is a set of generators of the monodromy around hyperplanes which generates
B, let us denote by B* the sub-monoid of B generated by {s}. Then for b e B, its length
/ (b) coincides with its length on the distinguished set of generators {s} of the monoid B*.

About the center of B.
2.20. Notation. We denote by f the path [0,1] — .# defined by
B:t— xoexp(int/ | Z(W)]).

The following result is a consequence of Corollary 2.26. Notice that it generalizes a
result of Deligne [De1], (4.21) (see also [BrSa]), from which it follows that if W is a
Coxeter group, then /() = 2 N. It was noticed “experimentally’ in [BrMi], (4.8).

2.21. Corollary. We have £ (B)=(N+ N*)/| Z(W)| and £ () = N + N*.

From now on, we assume that W acts irreducibly on V. Note that, since W is irre-
ducible on V, it results from Schur’s lemma that

ZW) = {exp(2ink/|Z(W))| (ke )},
and so in particular # defines an element of B, which we will still denote by f.
2.22. Lemma. (1) The image B of B in W is the scalar multiplication by
exp2in /|1 Z(W)]).
It is a generator of the center Z(W) of W.
(2) We have pe Z(B), ne Z(P), and = = B!,

Proof of 2.22. We only have to check that pe Z(B). This results from Lemma
25. O

2.23. Proposition. Let ./ be the image of M in (V — {0})/C*. Then, we have a com-
mutative diagram, where all short sequences are exact:
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1 1 1
l l l

l— ) — B> —  ZW)* —1
l l l

1 —— m (M, xo) —— m (MW, x5) — wep — 1

l l l

U —— ny (M, %) — n (MW, %) —— (W|Z(W))® —— 1

l l l

1 1 1
Proof of 2.23. It is clear that f belongs to the kernel of the map
ny (MW, xo) = 70y (MW, %) .

By Lemma 2.22, we know that the map () — Z (W) is onto. The three horizontal
sequences are exact, as well as the last vertical one. So it suffices to check that the first
vertical sequence is exact, i.e., to show that {m) is equal to the kernel of the map
(M, x,) > 7,(M,X,). This is Proposition 2.6, (1). O

The following statement is known for Coxeter groups (see [Del] or [BrSa]). The
result holds as well for G,5, G,, G5,, since the corresponding braid groups are the same
as braid groups of Coxeter groups. We shall prove it for all the infinite series in § 3 below
(see Propositions 3.4, 3.10, 3.33), and we give below a proof for the particular case of
groups in dimension 2.

We conjecture it is still true in the case of G5, as well as for G,,, G,,, G,q, G35, G34.
2.24. Theorem. Assume W different from G,,, Gy, G,9, G5, G353, G34.

The center Z(B) of B is infinite cyclic and generated by B, the center Z(P) of P is
infinite cyclic and generated by m, and the short exact sequence (2.10) induces a short exact
sequence

1> Z(P)—> ZB) > Z(W) > 1.

Note that, by Propositions 2.23 and 2.6, (2), Theorem 2.24 is equivalent to the
following statement:

2.25. The center of the “projective braid group” w,(M,X,) is trivial.
Proof of 2.24 in dimension 2. Assume that V' has dimension 2. The space ./# is
homeomorphic to P*(C) minus N points, so 7, (.#, X,) is isomorphic to a free group F, _,

on N — 1 generators. Since W is irreducible, we have N > 2 and so 2.24 is proved. O

2.26. Corollary. Let B be the image in B*® of the central element B of B. Then we
have
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ﬁabz l—[ (s;b)egzv@/mwn‘
Ced|W ’

Proof of 2.26. It suffices to prove that, for all ¥ € oZ/ W, we have

1(0¢) (B*") = ex N [| Z(W)] .

This is immediate:

aby _ ey ¢ doy(xoexp(int/|Z(W)]))
m1(0e) (B b) - Hze:‘g 2in 0 OCH(XOG’XP (2in[/|Z(W)|))
3 2im 1

= dt = N/ Z(W)]|.
2im o 1ZO0)] ) VT Nl IZOV B

C. The braid diagrams. Let us first introduce some notation.

Let (V,W) be a finite irreducible complex reflection group. As previously, we set
M=V — \) H, B:=n,(M|W,x,), and we denote by ¢+ ¢ the antimorphism B —-» W

He o

defined by the Galois covering .4 — M |W.

Let 2 be one of the diagrams given in tables 1, 2, 3 (Appendix 2 below) symbolizing
a set of relations as described in Appendix 2.

+ We denote by Z,, and we call braid diagram associated to & the set of nodes of ¥
subject to all relations of &2 but the orders of the nodes, and we represent the braid dia-
gram Z,, by the same picture as & where numbers inside the nodes are omitted. Thus, if

(D1 t
2 is the diagram s @ , then Z,, is the diagram s() and repre-
sents the relations u u

Stustu--- = tustus--- = ustust--- .

e factors e factors e factors

Note that this braid diagram for e = 3 is the braid diagram associated to G(2d, 2,2) (d = 2),
as well as G,, Gy, G4. Also, for e =4, this is the braid diagram associated to G,, and

t
for e =5, the braid diagram associated to G,,. Similarly, the braid diagram s
is associated to the diagrams of both G, and G (44, 4,2). 5

u

« We denote by 2°° and we call opposite diagram associated to & the set of nodes
of & subject to all opposite relations (words in reverse order) of &. Thus, if & is the

(b) ¢
diagram s@ , then 2°P represents the relations
u
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s“=t’=u*=1 and wutsuts--- = sutsut--- = tsutsu--- .

e factors e factors e factors

(bt
Note that 2°P is the diagram . Finally, we denote by Z¢? the braid diagram
s t

associated with 2°P. Thus, in the above case, Z;? is the diagram MO@ . Note

that if &,, is a Coxeter type diagram, then it is equal to ZgP. s

The following statement is well known for Coxeter groups (see for example [Br1]
or [De1]). It has been noticed by Orlik and Solomon (see [OrSo3], 3.7) for the case of
non real Shephard groups (i.e., non real complex reflection groups whose braid diagram
— see above — is a Coxeter diagram). We shall prove it below for all the infinite series. We
also checked it case by case for all the exceptional groups but G,,, G,,, G,4, G5, G353, G4
— for the case of groups of rank 2, we made use of [Ba].

We conjecture it still holds for G;,. The question whether it is possible to find right
diagrams for G,,, G,,, G,o, G35, G5, 1s still open (see remark below).

2.27. Theorem. Let W be a finite irreducible complex reflection group, different from
G,4, Gyqy Gy, Gys, Gy, — and also different from Gy, for which the following assertions
are still conjectural.

Let NV (2) be the set of nodes of the diagram 9 for W given in tables 1-3 below,
identified with a set of pseudo-reflections in W. For each s € V' (2), there exists an s-gene-
rator of the monodromy s in B (cf. Definition 2.15) such that the set {s} . 4, together with
the braid relations of .Y, is a presentation of B.

T

2.28. Questions. Let ¥ be a finite irreducible complex reflection group, different
from G,,, G55, G,q, G35, G34. We denote by B* the monoid defined by generators and rela-
tions as follows: a set of generators is {s},. ;4> subject to the braid relations represented
by ZgP.

(1) Is the natural morphism B* — B injective?

(2) Do we have
B={n"b|(neZ)(be B")}?

Remark. This is true for Coxeter groups (see [De1]). But the answers to the above
questions are negative for diagrams given above for G,,, G,,, G,q, G335, G34.

D. Parabolic subgroups. From now on, we endow the complex vector space V' with
a W-invariant hermitian scalar product. The balls in V are defined with respect to this
scalar product.

Let I be an intersection of reflecting hyperplanes: I = ﬂ H. Let us set

He o
IcH

oAp={Heo|(IS H), and M;=V— () H.

HE:%I
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We recall (see 1.1 above) that the parabolic subgroup W, the pointwise stabilizer of 1, is
generated by pseudo-reflections (more precisely, W} is generated by all the cyclic groups
Wy for H e o7;).

For x, € A, we set

Pi=m (M, x,), Ppi=my (M, X,)
Bi=m, (MW, x,), Bp=mn(M|W,x,) .

We shall define a morphism of short exact sequences (see 2.10 above)

1 P, B, wer 1
1 P B wor 1

where all vertical arrows are injective, and where the corresponding injection B; ¢ B is
well-defined up to P-conjugation.

Let 1: M o ., denote the inclusion, which induces a homomorphism
Ly (M, xo) — 1y (M, X,) -
Let us prove that 7, is a split surjection.

- Weset 4(1)=1— ) InH).
He o
I¢H
- Lety be a path from x, to #(I)in .4, i.e., a path in V' such that y(0) = x,, y(¢) € A
for t+1,and y(1) e .# ().

Let ¢ be a positive real number such that the ball 2 with center y(1) and radius ¢
does not intersect any subspace /N H (for He o/ and I& H).

Let u e [0,1[ such that y(¢) € Q for ¢ = u. Set x,:=7y(u), and let y, be the “‘restriction”
of y to [0,u] (see Appendix 1).

+ We define the homomorphism ¢ : 7, (2N .4, x,) - n,(#, x,) by the condition

Ayt Ay,

Then it is easy to see that
1,0 : 0 QM x,) = 7y (M, Xy)

is an isomorphism. In particular, 7, is a split surjection and ¢ a split injection, so we have
an injection

0(1,0)" " my (M, xo) > (M, x,),
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depending only on the .# (I )-homotopy class of y. It sends a generator of the monodromy
around H € o7, in .#; to a generator of the monodromy around H in ..

Since y(1) € I, the ball Q is W;-stable. In particular, the inclusion
K QM) Wy MW,
induces a homomorphism
Ky T (RO M) W, x1) = 0 (MW, ) -
On the other hand, the injection A: .# /W, o .#;/W; induces a homomorphism
A T (MW, Xo) = 70y (M W, X) -
It is easily seen that
Ayl (R ) Wy, xy) — 1y (M | Wy, Xo)
is an isomorphism.
2.29. Proposition. (1) In the following diagram
* all sequences but the vertical ones are exact,

- all triangles and squares but those involving both 1, and Kk (A,Kx,)"" are commu-

tative.

Ly 0(1*0)71 nl(%/w/}’xo)

S | [y Grre )™
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(2) The injective morphism k(A k,)”" depends only on the 4 (I)-homotopy class of
v, hence is well-defined up to P-conjugation.

(3) If s is a distinguished pseudo-reflection of W;, the injection B; & B defined by the

preceding diagram sends an s-generator of the monodromy in B, to an s-generator of the
monodromy in B.

3. Proofs of the main theorems for the braid groups B(de, e, r)

In this paragraph, we shall prove Theorems 2.27 and 2.24 for the infinite series of
irreducible complex reflection groups G (de, e, r).

A. Notation and prerequisites.

Notation. Let d, e and r be positive integers. We denote by (z,, z,, ..., z,) a general
element of C". Let G(de,e,r) be the subgroup of GL,(C) whose elements are:

la,0]:z;— a;z,;
foroe €, and a = (ay, ..., q,) where a;€C, af* =1 and (a, - a,)" =1.
The group G (de, e, r) is a subgroup of index e of G (de,1,r) and

G(de,,r) ~ (Z|deZ)1 S, .

For de+1 and (d,e,r) + (1,2, 2), the group G (de, e, r) acts irreducibly on C", while
G(1,1,r) is isomorphic to &, in its permutation action on C".

Note that the center Z(G(de, e, r)) of G(de, e, r) is cyclic, of order d(e A r). We denote
by A(de, e, r) the abelian normal subgroup of G (de, e, r) given by

A(de, e, r):={[a,1]} .
The group A(de, e, r) is of order d(de)"~*.

For the following notation, we assume that de +1 and (d,e,r) £ (1,2,2) (i.e., that
G (de, e, r) acts irreducibly on C").

For me N — {0}, let {,,;=exp(2in/m). We set

(3.1 Spi=L[Cn1,....1,1],
6 m) =[G 1. s D (L],
fi=[L(—1,j)] for2<j<r.
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Let S(de, e, r) denote the set of pseudo-reflections of G(de, e, r) given by

{sgs t5(de), t,, ..., 1,} when e+1, d=+1,
S(de,e,r):=< {54 t5, ..., 1,} when e =1,
{ti(e), ty, ..., 1,} when d=1.

The following result is proved, for example, in [Ari].

3.2. Proposition. The set S(de, e, r), together with the relations described in Appendix
2 and its tables 1 and 2, give a presentation by generators and relations of G(de,e,r).

Note that S(de, e, r) consists of distinguished pseudo-reflections (see Definition 2.15
above) for G(de,e,r).

Reflecting hyperplanes. The following lemma is well known and easy to check.
3.3. Lemma. Let m be a positive integer.

(1) For e|m and e < m, the complement in C" of the union of the reflecting hyperplanes
of G(m,e,r) is

ME 1) = {21,730 - 2) | (U, ko 1 S j 4k S D (Vae Z)(z;+ 0)(z; + (42} -

(2) For all ee N, the complement in C" of the union of the reflecting hyperplanes of
G(e,e,r) is

Me,r)={(zy,25,....2) |V, k,1 S j<k=r)(Vae Z)(z;+ (7))} .

Choosing an appropriate base point, we denote by B(de,e,r) and P(de,e,r) respec-
tively the corresponding braid group and pure braid group associated with G (de, e, r).

Remark. By Lemma 3.3 above, P(de,e,r) depends only on (de,r):
P(de,e,r) = P(de,1,r) (foralld+1).

On the other hand, we shall prove (see Proposition 3.8 below) that B(de,e,r) depends
only on (e, r) for d+1 (so that B(de,e,r) = B(2e,e,r)).

Preliminary: the case of the symmetric group. Here we quote some well known results
about the usual braid groups, mainly due to Artin [Ar] — see also [Bi], th.1.8.

Let us introduce some specific notation.
We set A (r):=.#(1,r) and A *(r):=.4*(1,r) (see Lemma 3.3 above).
For all j <r, we denote by H! *" the hyperplane of C"*! defined by the equation

z;=2;,,, and we denote by s" " (or simply s;) the reflection in C" "' with respect to
H"*Y The set {s\" "V}, generates a subgroup of GL, ,(C) which we identify with
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the symmetric group &, ,,, and the set .#(r +1) is the complement of the union of the
reflecting hyperplanes of S, _ ;.

We choose a base point xe R"*! with coordinates x,,x,,...,x,,,; such that
x; < x,< -+ <x,,,. Note that x is in one of the alcoves of .Z(r +1)nR" ™! delimited
by (the real part of) the hyperplanes H{ * Y.

We set

Pr+1)=n(Mr+1),x) and Br+1)=n,(M(r+1)/S, ,,,X).

For each j < r, we denote by £ * (or simply ;) the generator of the monodromy around
H""VYin . (r+1)/ &, associated to a path contained in R"*'/&, . ,.

The following well known proposition establishes Theorem 2.27 for the case where
G =G, .. The second assertion has been proved by Chow [Cho].

3.4. Proposition. (1) The group B(r + 1) has a presentation described by the following
diagram:

&1 & ér

(2) Let n(r + 1) be the element of B(r + 1) defined by

n(r+1)::(£1£2"'fr)r+1-

Forr =2, we have
Z(B(r+1)) = Z(P(r+1) = {n(r+ 1))

We will often consider B(r) = n,(#(r)/S,, (x,, ..., X,,,)) as a subgroup of B(r + 1)
through the injection & +— &Y. This induces an injection of the pure braid group
P(r)=mn,(M(r), (x5, ...,x,,,)) into P(r + 1), as well as an injection of S, in S, ,, as the
subgroup fixing the first coordinate.

3.5. Proposition. The map

P M +1) > M), (21,2353 Zp41) > (Zas s Zig )
is a locally trivial fibration, and it induces a short exact sequence
1> F@) - Pr+1) > P(r) > 1,
where F(r) is a free subgroup on the set of generators
(E1 &6 881, L& G668 -

We have P(r + 1) = F(r) X P(r).
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B. Computation of B(de,e,r) and of its center for d = 1.

B 1. Proof of Theorem 2.27. Let us use the notation introduced above about
B(r+1) and P(r+ 1), as well as notation introduced in (3.1).

3.6. Theorem. Assume d +1.

(1) Forsequalto respectively s, t,,t5, . .., t,, there exist s-generators of the monodromy
denoted respectively by ¢,1,,75,...,7, in B(d,1,r) and an injective group morphism

o &7,

¢(d,1,r):B(d’19r)C>B(r+1)a q’)(d,l,r): {Tj'_’éj fOi’jg 2

which induces an isomorphism of B(d,1,r) onto the subgroup of B(r + 1) generated by
{6%) 527 63’ M ér}

(2) This isomorphism, as well as the isomorphism between B(r) and the subgroup of
B(r + 1) generated by {&,, &5, ..., &}, induce the following commutative diagram:

PN, ————— P +1)
B(r+1)

B(d,1,r)

G(d1,r)—F—C

Proof of Theorem 3.6. The map
(21 Z9s orz) > (24,29, ..., 28

co Ly

identifies the quotient of .# *(d, r) by the action of the diagonal group A(d,1,r) with the
space ./ * (r).

The map

Srl(r+1) — MF(), (21,2505 2o ) P> (21— 20,20 = 23500 20— 24 q)
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is a trivial fibration with fiber C, which is &, -equivariant with respect to the action of S,
on .#(r + 1) defined by the embedding of S, into &, ,; as the pointwise stabilizer of the
first coordinate.

Since
G(d,1,r)=A(d,1,r) xS,

we have the following commutative diagram:

M*(d,r)

l

ME, )| Ad N, r) ——> M (r) M(r+1)

l l l

MEA, )]G, r) —" MF() ]S, «——— Mr+1)/C,

l

Mr+1)[CS, 4.

C-fibration
—

The horizontal arrows induce isomorphisms between fundamental groups.
Let y e #*(d,r) with image f(x) in .#*(r). Let v be the isomorphism
(M *(d,r)|G(d,r),y) = n,(MF+1)]S,, x)
and ¢ (d, r) be the injection
n, (M*(d, )] G(d1,r),y) - n,(ME+1)]S,,x) > n,(MFT+1)/S, ., X).

Note that ¢7 is a generator of the monodromy around H{*YV in .#(r+1)/S,
(Proposition A 3, Appendix 1). Since P(r+ 1) is contained in the subgroup of B(r + 1)
generated by &2, &,, ..., &, and since the image of this subgroup in &, ., is S,, it follows
that n,(#(r+1)/S,,x) is the subgroup of n,(#(r+1)/S,,,,x) generated by
é%: 52’ e ér-

Let o =y~ '(£7): this is a generator of the monodromy around the hyperplane z, = 0.
Let 7; =1 '(&;) for j = 2: this is a generator of the monodromy around the hyperplane
H{". Then, n,(.#*(d,r)/G(d,1,r),y) is generated by o, 7,,...,7, and Theorem 3.6
follows. O

Let us now explain why Theorem 3.6 above implies Theorem 2.27 (for the case which
is presently considered, namely the case of B(de,e,r) with d > 1).

1. The case e =1. By Theorem 3.6, the group B(d,1,r) is isomorphic to the sub-
group of B(r + 1) generated by {¢7,¢&,, &5, ..., &}, and from now on we identify B(d,1,r)
with this subgroup.
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In particular, it follows from Theorem 3.6 above that P(r + 1) < B(d,1,r). Since the
image of B(d,1,r) in S, ., (recall that S,,, = B(r+1)/P(r + 1)) is isomorphic to S,,
the index of B(d,1,r) in B(r+1) is (r+1). Hence the set {1,&,, &,&,, ..., &+ &}
is a set of right coset representatives of B(d,1,r) in B(r 4+ 1). By construction, it is actu-
ally a Schreier set of right coset representatives, and it results from the Reidemeister-
Schreier method (see [MKS], Th. 2.8) that the braid relations defined by the diagram

&8 &L & &

are indeed defining relations for B(d,1,r).

Remark. The group G(2,1,r) is actually a Coxeter group, since it is isomorphic to
the Weyl group of type B,. So we have reproved in this case a result which is known for
all Coxeter groups by [Del] or [Br1].

Note also that
3.7. the injection B(d,1,r) & B(r+ 1) induces an injection
Pd1,r s Pr+1).

2. The general case e > 1. Letusset&y:=¢EFE, E7 2 Note that (with notation intro-
duced in Part A above) &) is a t;(de)-generator of the monodromy in the braid group
B(de,e,r).

Note also that, since we have the following coverings
MF(de,r) — M*(de,r)|G(de,e,r) — M*(de,r)|G(de,1,r),

it results from Proposition A3 (Appendix 1 below) that £2¢ is an s,-generator of the mono-
dromy in the braid group B(de,e,r).

By Lemma 3.3 above we may identify P(de,1,r) and P(de,e,r) for d+1. Further,
G (de, e, r) acts as a subgroup of G(de,1,r) on .# *(de, r), so we have the natural embeddings

P(de,1,r) & B(de,e,r) & B(de,1,r),

and the index of the latter embedding equals e. Let «: B(de,1,r) > G(de,1,r) denote the
canonical epimorphism. Set ¢:=¢7. Now {1,x(¢), ..., k(¢°™ 1)} is a set of right coset re-
presentatives of G(de,e,r) in G(de,1,r), so, since

[x(B(de,1,r)): k(B(de,e,r))] = e = [B(de,1,r): B(de,e,r)],

the set {1,¢&, ..., %7} is a right (Schreier) transversal of B(de,e,r) in B(de,1,r).
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An application of the Reidemeister-Schreier method then proves, starting from the
presentation for B(de,1,r) on the set £7,¢&,, ..., &, (proved above) that the braid relations

defined by the diagram
3
cf‘fc@%)—o— =0
€+1 53 64 ér
&

are indeed defining relations for B(de, e, r). This proves Theorem 2.27 for B(de, e, r) and
d >1 assuming the corresponding statement for B(de,1,r). O

Note that the above diagram is indeed the opposite diagram to the braid diagram
describing the relations between the set S(de, e, r) of the corresponding family of distin-
guished generators of the finite group G(de, ¢, r), namely

7
s %@—@m@.
) Lo I

e I

It will be useful to note that we have proved for G(de,e,r) a statement similar to
(and more general than) Theorem 3.6, (1), namely:

3.8. Proposition. For s equal to respectively s, t;(de), t,,t5, ..., t,, there exist s-gene-
rators of the monodromy denoted respectively by ¢¢,15,7,,75,...,7, in B(de,e,r) and an
injective group morphism

ot G,
d)(de,e,r) . B(dea e, r) S B(V + 1)> ¢(de,e,r) : Té = éé (Where éé = éfészz)a
T ¢ for j=2

which induces an isomorphism of B(de,e,r) onto the subgroup of B(r+1) generated by
(éfes éé) 627 é?,a CERE] ér}

On the pure braid group. Let us note a result about the structure of P(d, 1, r) which
is analogous to Proposition 3.5.

Let F(r) be the free subgroup of P(r 4+ 1) introduced in Proposition 3.5. Let us set

@,:=¢ and
pi= (G GGG G forj=2 .

Then F(r) is the free group on {¢,, ¢,, ..., ¢,}.
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The map n, (A (r +1),x) ~ 7, (M *(r), f(x)) = A(d,1,r) provides by restriction a
morphism F(r) > A(d,1,r). We denote by F(d,r) the kernel of this morphism. Thus we
have a short exact sequence

1> Fd,r) > Fr) > A(d,1,r) - 1.

3.9. Lemma. (1) We have F(d,r)=F(r)nP(d,1,r), and F(d,r) is a free group on
((r —1)d" +1) generators.

(2) We have P(d,1,r)=F(d,r) ¥ P(r).

Proof of 3.9. The equality F(d,r)=F(r)nP(d,1,r) expresses the definition of
F(d,r). Since F(d,r) is a subgroup of index d" of the free group F(r), it is a free group
on ((r —1)d" +1) generators.

Since P(r+1) = F(r) X P(r), the second assertion follows from the fact that

P(rycPd1,r)cP(r+1). O

B2. The center of B(de,e,r) for d =1. Let us denote by B(de, e, r) the central ele-
ment of B(de, e, r) defined as in 2.20.

The following proposition proves Theorem 2.24 for the braid groups B(de, e, r) with
d > 1. We use the notation introduced in Proposition 3.8. In particular, B(de, e, r) is defined

by generators and relations represented by the diagram

T2

3.10. Proposition. We have:

(1) B(de,e,r) ="/ " (t)1y15- - 1,)°0 DI

(2) Z(B(de.e.r) = (B(de.e.n).

(3) Z(P(de,e,r)) = Z(B(de,e,r)) N P(de,e,r) = {B(de,e,r)* ",

Proof of 3.10. Note that for e =1 the result is already known by [De1], since by
Theorem 3.6 we have B(d,1,r) = B(2,1,r), the braid group associated to a Weyl group.

In what follows, we identify B(de,e,r) with its image in B(r + 1) (see Proposition
3.8 above).

Step 1. We prove that

(3.11) Z(P(de,e,r)) c<{n(r+1)).
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Let ze Z(P(de,e,r)).

Since P(r) = P(de,e,r) = P(r + 1), the element z belongs to P(r + 1) and centralizes
P(r). Since (cf. Proposition 3.5) P(r+1) = F(r) X P(r), where F(r) is the normal closure
in P(r+1) of the subgroup generated by ¢2, in order to prove that ze Z(P(r +1)) it
suffices to prove that z centralizes £7. But z centralizes ¢7%¢. Thus the elements z¢£7z71

and £2 both belong to the free group F(r), and their (de)-th powers are equal. This implies
that they are equal (see for example [MKS], 1.4, ex. 2). This proves (3.11).

Thus we have

(3.12) Z(B(de,e,r))nP(de,e,r) = Z(P(de,e,r)) = {m(r +1)> " B(de,e,r).

Step 2. Let us now prove that

(3.13) (r(r+ 1)) N B(de,e,r) = {m(r 4+ 1)/€ " .

We have (see [Bi], 1.8.4):

(B14) n(r+1) = E(EETEN(EEETEE) - (& - &5 881 8385+ &)
Since &, = &72¢;¢2, we have &) ¢2 = £2¢,, and (3.14) becomes

(.15 m(r+1) =& (ETEE)(E(EREE)E) (& &(E 888+ &)
Since ¢} commutes with (¢,&5), as well as with ¢; for j = 3, we deduce from (3.15) that

(3.16) m(r+1) = (&6 (6,80 E) - (& 66,808, &),
and then for all ne N,

(A7) w(r+1)" =& (EE)(E5(E,85)E3) -+ (& E5(E 80 & - &))"
Since, for e’ e N, we have (B(de,e,r), 3¢ = B(de, (e ne’),r), it follows from (3.17) that
n(r +1)" € B(de, e,r) if and only if ¢ divides rn, i.e., if and only if e/(e A r) divides n, which
proves (3.13).

Step 3. Let us now check that

(B18) (&8 (E5(8,85)E3) -+ (& 58,8085 &) = (6,868 &)

Let us introduce the group B(2,1,r — 1) together with its distinguished set of gene-
rators {a, o5, ..., a,_}, which satisfy the relations described by the diagram:

o an a3 Oy — 1

Then the map
w85, &y forjz2
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defines a morphism B(2,1,r — 1) —» B(de,e,r). Thus, in order to prove (3.18), it suffices
to prove that

0 (0t 0000y) (03 01y 000y 003) =+ (O g o Oy Oy 00y 0Ly 0 q) = (00w )"
This last equality expresses a known property of reduced expressions of the longest element
in the Weyl group G(2,1,r —1), i.e., the Weyl group of type B, _, (see for example [Bou],
chap. v, § 6, ex. 2). The proof of (3.18) is complete.

Last step. Let us (temporarily) set p’:=n(r +1)¢/“"". By (3.12) and (3.13), we see
that

(3.19) Z(B(de,e,r))nP(de,e,r) = {B’>,
and by (3.18) and (3.16), we see that
B = E2rellenn (g g g o g ) Dienn
or, with the identification made in Proposition 3.8,
(3_20) I;' — a”/(“’)(rérz‘% R ‘E,)e(’_l)/(e”) .
On the other hand, it is not difficult to check that

3.21. the canonical epimorphism x : B(de,e,r) — G(de,e,r) sends B’ onto the scalar
multiplication in V by exp(2in/| Z(G(de,e,r))|).

Since the map «: Z(B(de,e,r)) — Z(G(de,e,r)) is onto, and since (by (3.19)) its
kernel is contained in {f"), it follows from 3.21 that

(3.22) Z(B(de,e,r)) =<{B’>.

Using (3.11), it is then easy to prove that Z(P(de,e,r)) = {p'4€ ">,
It remains to check now that B’ = B(de,e,r). This follows from the fact that,
+ on one hand, we have (by (3.22) and Lemma 2.22, (2)) B(de,e,r)e<{p’>,

- on the other hand, f(de, e, r) and B’ have both the same image under the discriminant
map 7,(0): B(de,e,r) > Z (cf. §2, B above). O

C. Computation of B(e,e,r) and of its center, ¢ 1. In this section we study the
braid group of type B(e,e,r) and in particular prove Theorems 2.27 and 2.24 for type
G(e,e,r).

Note that the construction in the proof of Theorem 3.6 above gives an identification
of n,(M*(e,r)|G(e,e,r)) with the subgroup of the braid group B(r+1) generated by
e, &0, &, &, ..., &, with presentation
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<,
(3.23) 2 =0
e+1 C“3 64 ér
&

Since .# * (e, r) is obtained from .# (e, r) by removing the hyperplanes {z;=0jfor1</<r
we have a natural map

pion, (M*(e,r)|Ge,e,r) — n,(M(e,r)|G(e,er)),

which is surjective since the complement .#(e,r)/G(e,e,r)— .4 *(e,r)/G(e,e,r) has
complex codimension 1.

The following proposition follows from Proposition A1 in Appendix 1.

Proposition 3.24. The kernel of y is the normal closure of the subgroup generated by
2¢ in the group nn,(M *(e,r)/G(e,e,r)).

Note that Theorem 2.27 follows immediately from this. Indeed, by the above pro-
position the presentation of B(e,e,r) is obtained from (3.23) by suppressing the node
corresponding to &3°.

Complements on B(e,e,r).

Theorem 3.25. Let e,r =2, and let B(e, e,r) be the braid group of type G(e,e,r), on
standard generators t,,75, 75, ..., T, ordered such that (t,7,713)% = (t137,15)%:

N
Q.
[>e-—o-¢

Let B(e,1,r —1) be the preimage of the subgroup G(e,1,r —1) of G(e,e,r) fixing the first
coordinate. Then B(e,1,r —1) has index r in B(e, e, r) and has a presentation on generators

e
’
TZ

{“joﬂj,l|2§j§”,0§l§€—1}

subject to
(B ifi€2,j,j+1,
Biv1. ifi=j+1,
(3.26) ot o = < ﬂ]?ll+1ﬁj71,1+1 =2,
ﬁ2,1+1ﬁj,zﬁ;} ifi=2<j,
\ﬁj,Hz ifi=j=2

(where the subscript [ of B; , is taken modulo e),
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(3.27) ﬁj,e—l j,e—2"'ﬁj,0=1 Jor2<j<r,
and oy, ..., o, satisfy the relations of the standard generators of B(e,1,r —1).
In terms of the generators of B(e,e,r) we may take

— / — . 1 _ r—1
Oy =T,T5, 0, =7, for3ZiZr, B,o=7157,, Pfr1=715 1,.

In particular, B(e,1,r —1) has a semidirect product decomposition
Ble,d,r—1)=F, 1,1, ¥ B(e,1,r —1),
where F, _ 1. _4, denotes the free group on the (e —1)(r —1) generators B, o, ..., B, .—1-

Proof. The assertion can be proved by the Reidemeister-Schreier method (see for
example [MKS], Theorem 2.8). Assume first that r =2. Then B(e,e¢,?2) is generated by
{t,,75} subject to the single relation 1,757, "+ =157,75** with e factors on each side.
A right transversal for B(e,1,1) in B(e,e,2) is given by T:={1,7,}. Let ¢: B(e,e,2) > T
be the transversal map which to every element of B(e, e, 2) associates its coset represen-
tativein 7. Then by the Reidemeister-Schreier theorem B(e, 1, 1) is generated by the elements
(tg)"'o(tg) where te T and g runs over the generators of B(e, e,2). In our case this yields
the generators

(3.28) Uy =T,T5, Pioi= T, V=15
Furthermore, by the Reidemeister-Schreier algorithm the relations for B(e, e, 2) yield
(329) af V2 =B, 6 (1262,0)C 20y = (1,550 2y, ifeis odd,

(3.30) a5/? = (V2ﬁ2,0)e/2 = (ﬂz,o?z)e/z if e is even,

as defining relations for B(e,1,1). By introducing f, :=15" "1, =, 'y, we may eliminate
v, and arrive at the statement of the theorem in this case.

Now assume that r = 3. Here a transversal is given by 7:={1,7,,7,75}. We obtain
generators

O3i=Ty, V3i=T,T3T, 0, 0=T,Ty IT3THT,
and o, y,, B, , from (3.28) above, subject to the relations
(3.31) (03)% = (A305)%, a3 'P203 =73, 0337, = V37203,

ﬁz,oézasﬁz,m o‘zasﬁz,o:‘sysa 0y30, = 730,03,

Vzﬂz,oo‘aé”/s = aséysyzﬁz,o = Va?zﬁz,o“sé )

and the relations (3.29) respectively (3.30). We may eliminate y;=oa3"'y,a; and
0 =P5.003P,5.0- With f, ==05"y, as above we find the stated presentation.
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Finally, for r = 4 it follows easily from the presentation for B(e, e, r) given in Theorem
2.27 (proved by Proposition 3.24) that

T:={1,1,,T,T5,...r TyT3 """ T,}
is a right transversal for B(e,1,r —1) in B(e, e, r). This yields the generators

= = 2,71 ... 71.—1 ;
=1, and )=T,T3 LTty T, BT,

R / e 2 ! -1 R r—1 r . —1
Uy =TTy, V2 =13, .32,0'—752'52 s 0F=T,T TT3THT,

Furthermore, by the Reidemeister-Schreier algorithm the relations for B(e, e, r) yield as
relations for B(e,1,r — 1) the relations of the standard generators for B(e,1,r —1) on
,, ..., 0,, the commutator rules

[0yl =1 forj+ii+1, o lip0 =74, for2=i,

and
%p1VierVi = Vie1Vi% 4+, for2 =1,

as well as
[By0,21=1 forj=z4, [0,0;]=1 forj>4, [4,7;]=1 forj=4,
doy 0 =0, 00, (00300,)% = (g030)%,
and the relations (3.31), (3.29) respectively (3.30). Note that the generators y, ..., y, may

be eliminated from this presentation using the relation y, , ; = o}, 7;%; , ;. This reduces the
assertion to the case r=3. O

This result has some nice consequences, like the following analogue of Proposition
3.5 and Lemma 3.9.

Corollary 3.32. The pure braid group P(e,e,r) is a semidirect product
P(e,e,r) = F,_1y,-1) X Ple,1,r—1)
of the free group of rank (e —1)(r — 1) with the pure braid group of type G(e,1,r —1).

This follows immediately by descent to the pure braid groups (see [Na], p. 6, for a
related result). We also obtain Theorem 2.24 for type G (e, e,r):

Corollary 3.33. For e,r =2, (e,r) + (2,2), the center of the braid group B(e,e,r) is
generated by (t,- -+ 1,)°0~D/ern,

Proof. Let x:B(e,e,r) > G(e,e,r) be the canonical projection. If z is central in
B(e,e,r) then so is x(z) in G(e,e,r). Hence x(z) =(t,---7,)" with n a multiple of
e(r—1)/(enr), and z= (1, - 7,)"w for some w in ker(x). But then we already have
ze B(e,1,r — 1) (defined as above).



164 Broué, Malle, and Rouquier, Complex reflection groups, braid groups, Hecke algebras

Let A:B(e,1,r—1) > B(e,1,r —1) be the canonical projection with kernel
F:=F,_y),_1, the free group on (e —1)(r — 1) generators emanating from Theorem 3.25.
Since the center of A(B(e,1,r —1)) = B(e,1,r — 1) is generated by (o, o) = (1, 7,)"
we deduce that z = (1, 7,)"w for some we F. But (1, 7,)" is central in B(e,1,r — 1),
while the center of the free group F is trivial (note that (e — 1)(r — 1) = 2). Thus the center
of B(e,1,r —1) is generated by (t,---1,)¢" D/

Remark 3.34. For the braid group B(2,2,r) of Coxeter type D, Theorem 3.25 spe-
cializes to the following: B(2,1,r — 1) has a presentation on

{a, Bil2 =i j=r}

subject to
[ 5 if i 2,),)+1,
ﬁj+1 if i=j+1,
o By = BB i =2,
By BByt if i=2<],
L5 ifi=j=2,
and o,, ..., o, satisfy the relations of the standard generators of B(2,1,r — 1).

Remark 3.35. The subgroup B(e,1,1) of index 2 of the braid group B(e,e,2) of
Coxeter type I, (e) has a presentation on {u,, ;|0 </=e— 1} subject to

o0 froy =Py, for0=ise—1
(where the subscript of f§; has to be taken mod e), and

ﬁe—lﬁe—z"'ﬁo =1.

Remark 3.36. The action of B(e,1,r —1) on F,_;,_;, in Theorem 3.25 can be
extended to an action of the Artin braid group B(r). More precisely, let &,, a5, ..., o, be
the standard generators of B(r). Then B(e, 1, r — 1) is isomorphic to the subgroup generated
by 43,05, ..., %, by Theorem 3.6. We extend the action (3.26) of «,, ..., o, to an action of

e—1
B(r)on F, 1,1, = <ﬂj,l| H Bii= 1> by
1=0
o jE2,
o?;l j,z&z _ {ﬂz,lﬁj,l . ]'*
ﬁj,H—l if j=2.
It is easy to verify that this does in fact extend the action of B(e,1,r —1).

On the other hand the action (3.26) can be viewed as an action on the free group
F,,._1y on free generators {f; ,|2=j=<r,0=/=<e—1) by just omitting relations (3.27).

The homomorphism defined by

¢:Fp_yy > <ty=2, P>t forallj, [,
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is B(e, 1, r — 1)-equivariant (with trivial action on the right side), so it gives rise to a Magnus
representation (see [Bi], Th. 3.9)

®: Be,1,r —1) > GL,,_,(Z(1))
of B(e,1,r — 1) with

( 33k Otm if i42, j,j+1,
0+ 1.%01m ifi=j+1,
D) tem = § O 1400w 1m— OO )t 00y i i =j %2,
0210141, m+ (03 0y — 05101, 1 if i=2<j,
{04004 2m ifi=j=2

(where 2 <i,j,k<r, 0=Zlm=<e—1).
A general statement for pure braid groups. Let us first introduce some notation.

+ We make the convention that G(1,1,r):=&,,;, and we denote by P(1,1,r) the
corresponding pure braid group.

+ Let m*(de,e,r) be the co-exponent (see §1. A above) of G(de,e,r) such that the
set of co-exponents of G(de,e,r) consists of the set of co-exponents of G(de,1,r —1),
together with m*(de, e, r). We have m*(de,e,r) = (r —1)de + 1 for d + 1 and
m¥(e,e,r)=(r—1)(e—1).
+ For any natural integer m, let F,, be the free group on m generators.
3.37. Proposition. For all positive integers d, e, r, we have a split short exact sequence

1 = Fyeer = Pldee,r) > P(de,1,r—1) > 1.

In particular, P(de,e,r) is the semidirect product of a free group on m*(de, e, r) generators
by the pure braid group associated with a complex reflection subgroup of G (de,e,r) of rank

(r—1).

Proof of 3.37. We assume d =+ 1, since for d =1, the result was proven in Corol-
lary 3.32.

Consider the map f: .4 *(de,r) — .M *(de,r — 1), (z{, ..., 2,) > (z{, ..., z,_,). This is
alocally trivial fibration, with fiber isomorphic to C minus (r — 1) de + 1 points. By Theorem
211, M *(de,r — 1) is a K(m,1)-space. Hence, we have a short exact sequence of funda-
mental groups associated to the fibration:

1 - F,_1y4e+1 = P(de,e,r) > P(de,1,r—1) - 1.

The locally trivial fibration .# *(de,r) - M4 *(r), (z,, ..., z,) — (z9%, ..., z*¢) induces a com-
mutative diagram with exact rows and columns:
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1 1 1

l l l

1 —— Fo_hger1 — P(de,e,y) —— P(de,e,yr —1) —— 1

l l l

1 — E — Py —— Pr—-1) —1

l l l

1 —— Z/deZ —— A(de,1,r) —— Alde,1,r—1) —— 1

l l l

1 1 1.
The splitting of the map P(r) — P(r — 1) together with the splitting of
A(de,1,r) - A(de,1,r —1)

given by identifying A(de,1,r — 1) with the subgroup of A(de,1,r) of elements acting
trivially on the last coordinate give then a splitting of P(de,e,r) —» P(de,e,r — 1) and the
proposition follows. O

4. Hecke algebras

We extend to the case of complex reflection groups the construction of generalized
Knizhnik-Zamolodchikov connections for Weyl groups due to Cherednik ([Ch1], [Ch2],
[Ch3]; see also the constructions of Dunkl [Du], Opdam [Op] and Kohno [Ko1])?).
This allows us to construct explicit isomorphisms between the group algebra of a complex
reflection group and its Hecke algebra.

A. Background from differential equations and monodromy. What follows is well
known, and is introduced here at an elementary level for the convenience of the unexpe-
rienced reader, since we only need this elementary approach. For a more general approach,
see for example [De?2].

We go back to the setting of §1. Let A be a finite dimensional complex vector space.
We denote by 1 a chosen non zero point of 4 — in the applications, 4 will be an algebra.
We set E:=End(A). Let o be a holomorphic differential form on .# with values in E, i.e.,
a holomorphic map .# — Hom(V, E), where Hom (V, E) denotes the space of linear maps
from V into E, such that (see 1.2 and 1.5, (1)) we have

w = Z fH('OHa
He o
. 1 d
with w =—,ﬂ, and f, € E. For xe ./ and veV, we have
T 2in oy "

3) This construction has also been noticed independently by Opdam, who is able to deduce from it some
important consequences concerning the “generalized fake degrees” of a complex reflection group. We thank him
for useful and friendly conversations.
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1oy w0

B 2im iy o (X)
We consider the following linear differential equation

(Eq(w)) dF = o(F),

where F is a holomorphic function defined on an open subset of .# with values in 4. In
other words, for x in this open subset, we have dF(x) e Hom(V, A), and we want F to
satisfy, for all ve V, dF(x)(v) = w(x)(v)(F(x)), or in other words

@O =5 ¥ 2O L (F).

T e g ()
For y e ./, let us denote by 7"(y) the largest open ball with center y contained in

. The existence and unicity theorem for linear differential equations shows that for each
y € M, there exists a unique function

F:7(y) >4, x— F(x),
solution of (Eq(w)) and such that F,(y) =1. From now on, we set
F(x,y)=FE(x).
Assume now that the finite group W acts linearly on 4 through a morphism
@ : W — GL(A). Then it induces an action of W on the space of differential forms on .#

with values in E, and an easy computation shows that w is W-stable if and only if, for all
we W,

(4.1) (W) =W (o) w e,

which can also be written, for all xe .# and veV:

Y oy fr= Y og)Ww ) e frew ).

He o He o

An easy computation shows that this is equivalent to

A%y

d
(4.2) S fuan Y @00 fup(n)

Hesd Ay Hed H

In particular we see that
43. if froy =0 W) fpow™") for all He of and w e W, then the form o is W-stable.

From (4.1) (and from the existence and unicity theorem), it follows that
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4.4. if wis W-stable, then for all y € M, x € V" (y) and w € W, the solution x — F(x, y)
satisfies

o (W) (F(x,)) = F(w(x), w(y)) .

The case of an interior W-algebra. The following hypothesis and notation will be
in force for the rest of this chapter. From now on, we assume that A4 is endowed with a
structure of C-algebra with unity, and that o takes its values in the subalgebra of E
consisting of the multiplications by the elements of 4 — which, by abuse of notation, we
still denote by A. With this abuse of notation, we may assume that

o= ) agog,
He o

where ay € A, and the equation (Eq(w)) is written

dF=oF or dFX)@) =— y 220

2in gy o (X)

ag F(x) .

Let y be a path in .#. From the existence and unicity of local solutions of (Eq(w)) it
results that the solution x> F(x,y(0)) has an analytic continuation ¢+ (*F)(¢,7(0))
along y, which satisfies the following properties.

Let us say that a sequence of real numbers 1, =0 < ¢, < - <¢,_, <t,=11sadapted
to (7, (Eq(w))) if for all 1 <j <n, we have y([1;_,. ;1) = 7" (7()))-

Then:
(1) there exists & > 0 such that (y*F)(z,7(0)) = F(y(¢),7(0)) for 0 <t < e,

(2) whenever t,=0<t,<---<t, _,<t, =1 is adapted to (y,(Eq(w))), we have
G*F) (1, 7(0) = F(p(2;), 7 (1;- D)) 0*F) (£;- 1, 7(0)) for all j > 0.

We see that
45) P (170) = TT FO@).10;-1) .

Note that there is always an adapted sequence for (7, (Eq(w))).

The case of an integrable form. We recall that the form w is said to be integrable if
do+wonrw=0.

The following fact was noticed, for example, by Kohno (see [Ko2], 1.2).

4.6. Lemma. The form o = ), aywy is integrable if and only if, for all subspaces
He o/
X of V with codimension 2, and for all H € </ such that X = H, ay commutes with ). ay..
(H'e <)
Indeed, this is an immediate consequence of 1.5, (2). (H'=>X)
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If w is integrable, the value (y*F)(1,7(0)) depends only on the homotopy class of
y. By (4.5), we see that we get a covariant functor

_ {9’(«/% ) > A",
e ) (1.9(0).

Action of W. Assume now that 4 is an interior W-algebra, i.e., that there is a group
morphism W — 4™ (through which the image of w € W is still denoted by w), which defines

a linear operation ¢ of W on A by composition with the injection 4* ¢c GL(4). So, with
our convention, for we W and a € 4 we have ¢ (w)(a) = wa.

The form w is then W-stable if and only if, for all we W and x € .,
@ (w(x)) = w(wx) - w Hw !,
which can also be written, for all xe .# and veV:

Y ogwx)Way = Y, og(x)(w @) wagw .

He o He o

By 4.3, we have the following criterion.

4.7. If, for all He o/ and we W, we have a,, g, =wagw™ ', then the form w is W-
stable.

By 4.4, the solution F of (Eq(w)) then satisfies

(4.8) wE(x,y)w™ = F(w(x),w(y)).

4.9. Definition-Proposition. Assuming that w is W-stable, we define a group morphism
T:m, (MW, xy) = (A7)

(or, in other words, a group anti-morphism T : 7t (M |W, x,) — A), called the monodromy
morphism associated with w, as follows.

For o € B, with image ¢ in W through the natural anti-morphism B — W (see 2.B
above), we denote by 6 a path in M from x, to G(x,) which lifts 6. Then we set

T(0)=S({GYHa.
Let us check that 7" is a group anti-morphism.

Notice first that, by (4.8) and by (4.5), for we W and y a path in .#, we have

wSw = S(w(y).
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Thus we have
T(0,)T(0,) = S(6; 1) a,S(67 1) oy

= 5(52_ 1) S((’:z (&1_1)) 0,0,
= S(UNE 1,(67 1)) 0,0,

= S5((6,(6,)6,) ") 7,0,

which proves that 7'(¢,) T (6,) =T (0,0,), since &,(6,) 6, is indeed a path in .# with origin
X, which lifts (¢,0,). O

Dependence of parameters. Suppose the form @ depends holomorphically on m
parameters ¢, ..., t,,. Denoting by O the ring of holomorphic functions of the variables

Iys..osly, wehave o = ) fyoy where f; € 0 ® ¢ E. Then, for y € ./, the function F, is
He o/
a holomorphic function of 7,, ..., ¢, i.e., F, has values in 0 ® 4.

9 fmo

Then, given a path y in .#, the analytic continuation ¢ (y*F)(z,7(0)) depends
holomorphically of ¢, ..., ¢

m*

If w is integrable and W-stable, then the monodromy morphism depends holomor-
phically on the parameters ¢4, ..., t,,. It follows that we have a monodromy morphism

Ty (MW, %)™ — (0 @A)

B. A family of monodromy representations of the braid group. From now on, we
assume that 4 =CW.

Notation and hypothesis. We denote by O the ring of holomorphic functions of a

set of ) e, variables z = (Zg Vg a/Wyo0<jsee—1)-
Ced|W

Let

t:=(lyg ) wea/Wwy0<jse,—1)

be a set of ) e, complex numbers. For H e %, we set 1, ;:=1, ;.
Ced|W

We put
qgj =€Xp(—lg;/eq) forCe AW 0=<j<e,—1.

For He €, we set qy ;=4 ;-

Let ¥€.o//W and let He¥. For 0 <j <e, —1, we denote by ¢;(H) the primitive
idempotent of the group algebra C W}, associated with the character det, of the group Wj,.
Thus we have

| ket dimjk
g(H)=— ) exp<l>s,§.
k=0

€q €y
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We set
j=eH—1
ag:= Y ty;&(H) and w:= ) azoy.
j=0 He o/
In other words, we have
j=eg—1
o= Y ' ly;6;(H) 0y .

The following lemma is clear.

4.10. Lemma. The map o/ — A, H > ay has the following properties:

(1) it is W-stable, i.e., for all we W and H € o/, we have a,, ) = wagw™ ',

(2) for all H e o/, ay belongs to the image of CWy, in A.
The following property follows from 4.10.
4.11. Lemma. The form w is W-stable and integrable.

Proof of 4.11. The form w is W-stable by 4.7. It is integrable by 4.6. Indeed, let X
be a codimension 2 subspace of V" and let H be an element of ./ containing X. By 4.10

above, it is enough to check that, if w e W}, then w commutes with Y ay . This
(H'es/)(H' > X)
is the case since w centralizes X, hence normalizes {H'e </ |(H'> X)}. O

The main theorem.

4.12. Theorem. We denote by T: B°® — (CW)* the monodromy morphism associated
with the differential form w on M. For all H € €, we have

j=eg—1

l—[ (T(SH,y) — gy, ;dety (SH)j) =0.
j=o

Furthermore, T depends holomorphically on the parameters ty ;, i.e., arises by specialization
from a morphism T: B°®® —» (OW)*.

Proof of 4.12.

First step: case of rank 1. Here we assume dim(}') = 1. So we may assume that W
is the cyclic group of order e generated by the multiplication s by exp (2in/e). We have
M =C".

For 0 =j=<e—1, let ¢; be the primitive idempotent of CW corresponding to the
character of W which sends s onto exp (2i7j/e).
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There are e complex numbers ¢, ¢,, ..., f,_, such that

where F;: C* — C.
The equation (Eq(w)) becomes

dF, t; F,
_Jz_{ﬁ for0<j<e—1.
dz 2it z

Hence the solution F(x,1) is given by the formula

j=e—1

F(x,1)= ) x4?"g,.
ji=o

The analytic continuation of F along the path o: ¢+ exp (2int/e) gives

S(o) = jziil exp(t;/e)e;
j=o
hence
T(s)=S(0) 's= jz‘i_l exp(—t;/e)exp(2inj/e)e;.

Thus we see that, with g;:=exp(—1;/e), we have

j=e—1

(4.13) [1 (T()—q;exp2inj/e) = 0,

as claimed.

Second step: towards the reduction to the case of rank 1. We are back to the general
case. Here we use notation introduced in § 2. B.

1. First we prove that, to compute the relation satisfied by the monodromy of sy _,
we may assume that x, is “close to H”’, namely that x, = x.

Let us denote by
Ty 1y (MW, x)® — A
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the monodromy morphism associated with @, and let us denote by s4 the element of
ny (M| W, xy) defined by the path oy .

4.14. Lemma. For any path y from x, to sy(x,), we have

T(spy) =SSO T, (51) SG) .

Proof of 4.14. By (2.13), we have oy = sg(y" Y 0y, v, from which it follows
that

T(sy,,) = S(og))su
=SG ) S(Onk,) S(su () sy
=S80 NSOuk)suSO)
=SO0 N7, () SO). O
2. Now we prove that we may reduce to rank one.

Choose and fix H € .«/. We still use notation introduced in §2.

The elements of the affine line (x,; + L) are the elements x; (z) == pry (xp) + zpry (Xg)
with z e C. We may adjust the choice of xj so that, if

Dy = {x4(2)|0<|z] <2},
we have Dy = .. Note that Dy, is stable by the operation of the group W.

We have oy (xy4(2)) = zoy (priy(xy)). For H' % H, we set oy, (pry(xy)) = uy, and
oy (pry(xy)) = vy Recall that x, has been chosen so that

Zug. + vy 0 onDy ifH +H.
Then the function

RyF:Dyy —» CW, xy(z) F(xu(2),xy),

satisfies the following differential equation:

dz Z

dRyF) [ 1 W 1 Uy
\2im 2 y5e 20T ugz oy

aH’) RHF(XH(Z)) :

In other words, Ry, F satisfies the differential equation associated with the differential form
Ry w defined on Dy by

1 ,
(4.15) Ryw: <a—”+ y La,,)dz.

2in \ z = ZTp ugz+og

Note that Ryw is Wy-stable.
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3. Now we reduce to the case of the action of the cyclic group W} on Dy.

Let Ry S: 2 (Dy;) » CW be the monodromy functor associated with the form Ry .
By the existence and unicity theorem for linear differential equations, since the loop gy
takes its values in Dy, we see that

(4.16) S(oy) = Ry S(oy) .
Let us still denote by s the image of the path g in 7, (Dg/Wy). Let
RyT,, (D W)™ — A

be the monodromy morphism associated with the differential form Ry®. Then it results
from (4.16) and from Lemma 4.14 that

4.17. T(sy ) is conjugate (in (CW)*) to Ry T,, (sy).

Third step: reduction to the case of rank 1. Let Ty : n,(Dg | Wy, xg)°® - CWj, be the
monodromy morphism associated with the Wj,-stable differential form defined on Dj by
agwy. By (4.13), we know that the characteristic polynomial of Ty (sy) (viewed as acting
on CWj, by left multiplication) is

j=eg—1
Py(1) = 1—[ (t — ¢, €XP (2i7fj/e<g)) ,
j=0
where € denotes the W-orbit of H. We want to prove that Py (Ry T, (sy)) = 0.

By the first two steps, it is clear that our problem may be reformulated as follows.

We set D:={zeC|(|]z| <2)} and D*:=D — {0}, and we view D and D™ as endowed
with the action of W}, defined by (w, z) — det,, (w)z for we W and ze D.

In order to simplify the notation, we also set e:=e,(=ey), and for 0<j<e—1,
e—1
e=¢,(H), t;=14; q;=qq;, and a=ag= ) 1.
=0

j=

We define a holomorphic function » on D by the formula

1 U
b(z)i=— Z 7HaH,

2in g7y ugz + vy

(note that uy.z + vy % 0 on D).

We have two differential equations for holomorphic functions (locally) defined on
D> with values in CW:
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dF,
(Eq(@) T = SE ),

d
(Eq(a,) o= (rbe)re.

Both these equations correspond to Wj,-stable differential forms on D*: a commutes with
the action of W, and we have b(w.z) = det, (w)"'wh(z)w™ ! for we W, and z e D.

We denote by Sy and S the functors from 2 (D) to (CW)* associated respectively
to the equations (Eq(«e)) and (Eq(a, b)), and by Ty, T: 7, (D*/Wy,1) » (CW)* the corre-

sponding morphisms.

4.18. Proposition.  Assume that, for all 0 < j,k <e—1,q;q, " is not an e-th root of
unity. Then there exists an invertible element u of CW such that, for all 6 € 1 (D*/ Wy, 1),
we have T(0) = uTy(o)u™ .

Proof of 4.18.
1. Equivalence of (Eq(a)) and (Eq(a,b)). Here we follow [Ha], 1.4.
Let us consider the following differential equation

dd 1
(Eq'(a, b)) (@ =-(a2(2) - P(2)a) +b(2)P(2),

dz Tz

for @ a function (locally) defined on D™ with values in CW. The following assertion is
proved, for example, in [Ha], 1.4 (see in particular 1.4.2, and proof of 1.4.1). Here we

C e . . t t t,_
use the fact that the spectrum of the multiplication by ¢ in CW is { —>, ..., <!
2in 2in 2in

t.
(each 2—’ with multiplicity |W: Wy]).
LT

4.19. Lemma. Assume that, for all 0 <j,k<e—1, we have t;—1t,¢2inZ —{0}.
Then there is a unique solution ® of (Eq'(a, b)) satisfying the following two conditions:

(1) @ is holomorphic on D,
(2) (0)=1.

Now it is immediate to check that, if z +— Fy(z, z,) is the solution of (Eq(a)), defined
in the neighbourhood of z,, and such that F,(z,,z,) =1, then the function

2> F(z,20) = P(2) Fy(z,25) P(z4) " *

is the solution of (Eq(a, b)), defined in the neighbourhood of z,, and such that F(z,, z,) = 1.
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By (4.5), we see that, for all homotopy classes of paths y in D*, we have then

(4.20) SG) =2 M) Sy (y(0)~".

2. Wy-equivariance and proof of Proposition 4.18. By the unicity property of @ (see
Lemma 4.19), it follows from the W, invariance of @ and b that @ (det,, (w)z) = w® (z)w™!
for all we Wy and ze D. Then the formula (4.20), together with the Definition 4.9 of the
monodromy functors, imply Proposition 4.18 with u:=®(1), i.e., for all 6 € 7, (D*/ Wy, 1)
we have

T(6)= (1) Ty(0)®(1)" . O

Conclusion: end of proof of Theorem 4.12. From what precedes, we see that Theorem
4.12 is proved provided the family

q:= (q‘g,j)((ge&//W)(0§j§e% -1)

satisfies the condition that (for all ¢ and all j, k) g4 jq;’i is not an e4-th root of unity,
i.e., if the family ¢ has the property that 7, ; — 7, is not a non-zero integer, for all ¢ and

all j, k. Since the set of such families is a dense open subset in the space qygf“ of all
families ¢, we see that Theorem 4.12 follows by continuity, since the solution x — F(x, y)
is a holomorphic function of t. O

C. Hecke algebras. We define a set

u= (u‘f,j)((geﬂ/W)(O Sjgeg—1)

of ) e, indeterminates. We denote by Z[w,u” '] the ring of Laurent polynomials in
Ced|W
the indeterminates u.

Let 3 be the ideal of the group algebra Z[u,u” '] B generated by the elements

(SH,y - u‘g,O)(sH,y —Ugy) (sH,y - “%,e(gﬂ)

where ¢ € o/ /W, He ¥, sy, is a generator of the monodromy around H in B (cf. (2.13))
and s is the image of sy , in W.

4.21. Definition. The Hecke algebra #, (W) is the Z [u,u”*]-algebra Z [u,u” '] B/3J.

Now assume that W is a finite irreducible complex reflection group (see §2. C above
for notation and references). Let & be the diagram of W, and let s € 4"(2) be a node of
9. We set ug ;+=uy ; for j=0,1,...,e, — 1, where ¥ denotes the orbit under W of the
reflecting hyperplane of s.

The following proposition is an immediate consequence of Theorem 2.27:
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4.22. Proposition. Assume W is different from G,,, G,,, G,q, G35, G5, — and also
different from G5, for which the following assertion is still conjectural. The Hecke algebra
H,(W) is isomorphic to the 7 [u,u”*]-algebra generated by elements (T),. (@) Such that

* the elements T, satisfy the braid relations defined by Zg°

ro

* we have (Tg — u,0) (T; — ug 1) =+ (T3

s us,ex

_»=0.
Notice that through the specialization u, jr—>detV(s)j (for se /(%) and

0=<j=<e,—1), the algebra #, (W) becomes the group algebra of W°° over a suitable
cyclotomic extension of Z.

Hecke algebras and parabolic subgroups. Let I be an intersection of reflecting hyper-
planes, and let W, (the pointwise stabilizer of /) be the corresponding parabolic subgroup

of W(see§ 2. D above). We recall that we denote by .7, the set of reflecting hyperplanes of .

Let = (ty )geamyo<jce,—1) DEASEL Of ) e, indeterminates and
Ged|W

v = (Vg )@ear/mo0<jse,—1)

beaset of )  (e,) indeterminates.
Ce MI/WI

Let a: o/ /W, — o/ /W be the map which sends a W}-orbit of hyperplanes onto the
corresponding W-orbit.

We have a morphism
-1 -1
Z[v,v" ] = Z[u,u" "], vy Uy -

The injection By, < By, defined up to conjugation (see 2.29 above) induces an in-
clusion (defined up to conjugation)

%(VVI) ®Z[v,v*1]z[uau_1:| - %(W) ’
whose image is called the parabolic Hecke sub-algebra of #,(W') associated with 1.

Specializing u, ; to exp (—2inj/e,), this gives rise to the inclusion ZW; ¢, ZW induced
by the group inclusion W, < W.

Hecke algebras and monodromy representations. By Theorem 4.12, we see that the
monodromy representation T factors through #, (). Indeed, let us set

ly ;=dety, () uy ;

for all (%,j), and

t:=(lg JGeamyo<ise,—1)>
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and let us denote by @ the ring of holomorphic functions of the set of variables ¢. Then
we have the following commutative diagram:

OB oW
N\ /

o ®Z[u,u“]%(W)

The following lemma is a key point to understand the structure of 7, (W). It is
well-known to hold for Coxeter groups. For the infinite series of complex reflection
groups, see [ArKo] for G(d,1,r), [BrMa], (4.12) for G(2d,2,r) and [Ari], Proposition
1.4 for the general case (it has been also checked for many of the remaining groups of
small rank — see for example [ BrMa], Satz 4.7). We conjecture it is true for all complex
reflection groups.

4.23. Lemma. Assume W is a Coxeter group or a complex reflection group in the
infinite series.

The Z [u,u*]-module #,(W) can be generated by |W | elements.
Let ¢ be the field of fractions of ¢. From this lemma, we can deduce the following.

4.24. Theorem. Assume W is Coxeter group or a complex reflection group in the
infinite series.

The monodromy representation T induces an isomorphism of A -algebras
H @ pan Ha(W) > AW
Furthermore, #,(W) is a free Z[u,u”*]-module of rank |W|.
Proof. By Lemma 4.23, there is a surjective morphism of Z [u, u™*]-modules
&:7[u,u N - #,(W).

Let m be the ideal of O of the functions vanishing at the point (z, ; =1). The morphism
O ®714.u- 1144 = O, W induced by the monodromy is surjective by Nakayama’s lemma,
since it becomes an isomorphism after tensoring by (¢,,)/m. Composing with 1, ®", we
obtain an epimorphism O} — @, W: this must be an isomorphism. Hence, ker¢ = 0, i.e.,
¢ is an isomorphism and #, is free of rank |W| over Z [u,u™'].

Since the morphism K®y, -1, = KW is a surjective morphism between two
K-modules with same dimensions, it is an isomorphism and Theorem 4.24 follows. 0O
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5. Diagrams and tables
Information provided by the tables: invariants of braid diagrams. Let us recall that

a diagram where the orders of the nodes are “forgotten’ and where only the braid relations
are kept is called a braid diagram for the corresponding group.

The groups have been ordered by their diagrams, by collecting groups with the same
braid diagram. Thus, for example,

* G5 has the same braid diagram as the groups G(4d,4,2) for all d = 2,

* G, Gg, G, G, 5, Gy, all have the same braid diagrams as the groups €5, €, and S5,

* Gs, Gy, G5 have the same braid diagram as the groups G(d,1,2) for all d = 2,

+ G,, G{,, G4 have the same braid diagram as the groups G(24,2,2) for all d = 2,

+ G, has the same braid diagram as G(d,1,3) for d = 2.

The element f (generator of Z(W)) is given in the last column of our tables. Notice
that the knowledge of degrees allows then to find the order of Z (W), which is not explicitely
provided in the tables.

The tables provide diagrams and data for all irreducible reflection groups.

« Tables 1 and 2 collect groups corresponding to infinite families of braid diagrams.

+ Table 3 collects groups corresponding to exceptional braid diagrams (notice that
the fact that the diagram for G, provides a braid diagram is only conjectural), but G,,,
G27’ G29’ G333 G34'

+ The last table (table 4) provides diagrams for the remaining cases (G,4, G,-, G,o,
G55, G3,). It is not known nor conjectural whether these diagrams provide braid diagrams
for the corresponding braid groups.

Degrees and codegrees of a braid diagram. The following property may be noticed
on the tables. It generalizes a property already noticed by Orlik and Solomon for the case
of Coxeter-Shephard groups (see [OrSo3], (3.7)).

5.1. Theorem. Let & be a braid diagram of rank r. There exist two families

d,,d,,...,d) and (df dj, ..., d*)

r

of r integers, depending only on 9, and called respectively the degrees and the codegrees of
9, with the following property: whenever W is a complex reflection group with & as a braid
diagram, its degrees and codegrees are given by the formulae

d,=|ZW)|d, and d*=|Z(W)|d¥ (j=1,2,...,r).
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The zeta function of a braid diagram. In [DeLo], Denef and Loeser compute the
zeta function of local monodromy of the discriminant of a complex reflection group W,

which is the element of Q[¢] defined by the formula

Z(g, W)= []det(1 — qu, H(F,,C))" V""",
J

where F, denotes the Milnor fiber of the discriminant at 0 and u denotes the monodromy
automorphism (see [DeLo]).

Putting together the tables of [DelLo] and our braid diagrams, one may notice the
following fact.

5.2. Theorem. The zeta function of local monodromy of the discriminant of a complex
reflection group W depends only on the braid diagram of W.

Remark. Two different braid diagrams may be associated to isomorphic braid

groups. For example, this is the case for the following rank 2 diagrams (where the sign
“~” means that the corresponding groups are isomorphic):

t t
For e even, s ~ 0O ,
e+1 u u
t
for e odd, s ~ (=0,
e+1 u $ !

and s ~ CVE(Q

It should be noticed, however, that the above pairs of diagrams do not have the same
degrees and codegrees, nor do they have the same zeta function. Thus, degrees, codegrees
and zeta functions are indeed attached to the braid diagrams, not to the braid groups.

Appendix 1. Generators of the monodromy around an irreducible divisor

We define here what we mean by a ““generator of the monodromy around an irreducible
divisor” and recall some well known properties.

Let Y be a smooth connected complex algebraic variety, / a finite family of irreducible
codimension 1 closed subvarieties (irreducible divisors) and Z:= () D. Let X:=Y—Z
and x, € X. Del
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For D eI, let D, be the smooth part of D and D:=D, — (D, U D).

D’el,D'+ D

“A path from x, to D in X" is by definition a path y in ¥ such that y(0) = x,,7(1)e D
and y(f)e X for ¢ + 1.

Let y’ be another path from x, to D in X. We say that y and y’ are D-homotopic if
there is a continuous map 7: [0,1] X [0,1] — Y such that 7'(¢,0) = y(¢) and T(¢,1) =y'(¢)
for te [0,1], T(0,u) = x, and T(1,u)e D for all ue[0,1], and T(t,u)e X for te[0,1]
and u€[0,1]. We denote by [y] the D-homotopy class of 7.

Given a path y from x, to D in X, let B be a connected open neighbourhood of y(1)
in XU D such that BN X has a fundamental group free abelian of rank 1. Let u e [0,1[
such that y(¢) € B for t =z u. Put x,:=y(u). The orientation of Bn X coming from the
orientation of X gives an isomorphism f: 7, (BN X, x,) —— Z. Let A be a loop in BN X
from x; such that f([4]) =1.

Let y, be the “restriction” of y to [0,u«], defined by y,(?):=7(ut) for all te[0,1].
Define ¢, ,:=7, ' A y,. Then, the homotopy class of g, , in n,(.#, x,) depends only on
the D-homotopy class of y and is denoted by ¢;,;. We call it the generator of the monodromy

around D associated to [y].
Xo

Given two paths y and 7’ from x, to D, the generators of monodromy g,; and ¢,
are conjugate.

A 1. Proposition. Let i be the injection of an irreducible divisor D in a smooth con-
nected complex variety Y and x,€ Y — D. Then, the kernel of the morphism

(D) (Y — D, xo) = m;(Y, x0)
is generated by all the generators of the monodromy around D.

Sketch of proof of A.1. Note that the singular points of D form a closed subvariety
D, of D, distinct from D, hence of (complex) codimension at least 2 in Y. Therefore (see
for example [Go], chap. x, 2.3) the natural morphism nt, (Y — D — D, X,) = 7, (Y — D, x)
is an isomorphism, and in order to prove A1 we may assume D is smooth, which we do
now.

The lemma then follows from the fact that given a locally constant sheaf % over
Y — D, its extension i,.# to Y is locally constant if and only if every generator of the
monodromy around D acts trivially on #. O

A 2. Proposition. Suppose that Y is simply connected. Then the fundamental group
(X, xo) is generated by all the generators of the monodromy around the divisors D € I.



182 Broué, Malle, and Rouquier, Complex reflection groups, braid groups, Hecke algebras

Proof of A2. Thisfollowsimmediately from Proposition A1 by inductionon |/|. O

Lifting generators of the monodromy. Let p:Y — Y be a finite covering between two
smooth connected complex varieties. Let D be the branch locus of p and D = p(D). We
assume D is an irreducible divisor. We set X:=Y — D and X:=Y — D.

We shall see that a generator of the monodromy around D (associated to a path j
from X, to D in Y) may be naturally lifted to an element of 2 (X) (which depends only
on the D-homotopy class of 7).

Indeed, let y be the path from x, to an irreducible component, say D., of D, which
lifts . Let B be an open neighbourhood of X, in Y such that the fundamental group of
B X is free abelian of rank 1 and BN (XU ﬁy) — Bis unramified outside D,. Let u € [0, 1]
such that y(¢) e B for t =2 u. Let 1 be a loop in Bn X with origin 7 (u) which is a positive
generator of ,(Bn X, 7(u)).

Let A be the path from y(u) which lifts 1. Let 7, be the restriction of y to [0,u]. Let
7Y be the path from /A (1) which lifts (j,)”', where 7, is the “‘restriction” of § to [0, u].

The proof of the following proposition is left to the reader.
A 3. Proposition.  We define ¢,==7, - A+,
(1) The homotopy class of ¢, in #(X) depends only on the D-homotopy class of 7.

(2) Let ey, denote the ramification index of p on D. Then ;P is the generator of the
monodromy around D, associated 1o 7.

Appendix 2. Tables 1 to 5

Here are some definitions, notation, conventions, which will allow the reader to
understand the diagrams.

The groups have presentations given by diagrams & such that

- the nodes correspond to pseudo-reflections in W, the order of which is given inside
the circle representing the node,

+ two distinct nodes which do not commute are related by “homogeneous” relations
with the same “‘support” (of cardinality 2 or 3), which are represented by links between
two or three nodes, or circles between three nodes, weighted with a number representing
the degree of the relation (as in Coxeter diagrams, 3 is omitted, 4 is represented by a
double line, 6 is represented by a triple line). These homogeneous relations are called the
braid relations of 2.
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More details are provided below.

Meaning of the diagrams. This paragraph provides a list of examples which illustrate
the way in which diagrams provide presentations for the attached groups.

- The diagram corresponds to the presentation
s

t

s?=14=1 and ststs--- = tstst---.
| S———; [
e factors e factors

« The diagram == corresponds to the presentation
t

N

s>=13=1 and stst=1tsts.

t
+ The diagram s@ corresponds to the presentation

u

s=t"=u*=1 and stustu--- = tustus--- = ustust--- .
e factors e factors e factors
. S u .
« The diagram corresponds to the presentation
v t w
st=t’=ut=v*=w?=1,

UL = VU, SW=WSs, VW= WD,
sSut =uts = tsu,

Svs = vsv, vt =vtv, IWt=WwItw, WUw =uwu.

+ The diagram

Listy = 130515, Lzl =130, [30L 151 =131,

LySthtytytyty - = sthtythty thty -

e + 1 factors e + 1 factors
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5@
« The diagram g}%@ corresponds to the presentation
I3
t2

184

r=t;=1t5=1,

Lty =131yl Lyl =13l 1y, I3l LIl =Ll

Lyt tytyty - = thtythty sty - .

e factors e factors

« The diagram s corresponds to the presentation

Stu = tus, ustut=stutu.

corresponds to the presentation

Stst = tsts, tutu=utut, utusut= sutusu, Sus= usu.

corresponds to the presentation

Stst=tsts, tutut=ututu, utusut=sutusu, Sus= usu.

v
« The diagram (Q—2==2) corresponds to the presentation
f u

N

Sts = tst, vtv =tvt, wuvu =vuv, tutu=utut, vtuvtu = tuvtuv.

corresponds to the presentation

+ The diagram s

ustus = stust, tust=ustu.
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QO—2,
. * .
+ The diagram (Q)—2) corresponds to the presentation
t u
s?=t’=u’=0v* =1, su=us, tv=nuot,

Sts = tst, tut=utu, uULU =DVUD, VSV = SUS, SIUVSIUDS = TUDSIUVST.

In the following tables, we denote by H X K a group which is a non-trivial split
extension of K by H. We denote by H - K a group which is a non-split extension of K by
H. We denote by p" an elementary abelian group of order p”".

name diagram degrees codegrees p field G/Z(G)
@ t r e(r—1)
Glde.e.n) @ (ed2ed. .. O.ed,.... sED(thtyt5-1) @0 Q)
e>2,dr=2 AN @ s . (r—"1ed,rd) (r—1)ed)
7, v
t
Gys K 12,24 0,24 ustut = s(tu)? QL) S,
5 u
S, 41 @—2- @ 2.3,..., 0,1,..., (ty 1)+t Q
r=1 t t, t, LLr+1) nr—1)
G, —0 4,6 0,2 (s0)? Q) 9a,
K t
Gy 8,12 0,4 (s1) Q) e,
s t
Gie 60— 20,30 0,10 (s1) Q) A,
K t
G,s G—3B— 6,9,12 0,3,6 (stu)* Q@) 3*%SL,(3)
s t u
Gs, G—3Br—3r—3) 12,18,24,30 0,6,12,18 (stuv)® Q) PSp, (3)
s t u v
G, (@=2—2- -2 @2d... ©,d,..., (styty 1) Q)
d=2 s ., L i ..rd) o (r=1)d)
G, OO 6,12 0,6 (s1)2 Qy) a,
s t
Gio 12,24 0,12 (s1)? Q) s
K t
Gys == 30, 60 0,30 (s1)? Q) A,
s t
Ge O=—022r6) 6,12,18 0,6,12 (stu)? Q@)  3*%SL,(3)
s i u

Table 1
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name diagram degrees codegrees p field G/|Z(G)
N o 20-1
GQd.2.r) o @ Cdid 0,2d, ..., S (thtyty 1) @ QL)
drz2 % 22 200 —1)d,rd) 20r—1)d)
fz 3 4 r
t
G, 5(2) 12,12 0,12 stu Qy,) A,
u
t
Gy, sQ2) 24,24 0,24 stu Q) e,
u
t
Gyo 5(2) 60, 60 0, 60 stu Qo) A
u
¢ @ e(r—1)
Gle,e,r) 2NN\ (e,2e,..., ©,e,...,(r —2)e, (thtyty-- 1) ern Q)
ex2,r>2 e @ r—1)e,r) r—1)e—r)
i, 1,
tZ
Gle.e,2) oO—® 2. 0.e—2 (sp)elter QE A+
e=3 K 7
G, =@ 4,12 0,8 (s1) Qy,) A,
s t
G, 8,24 0,16 (s1) Q) e,
N t
G, =2 20, 60 0,40 (s1)? Q(Cy0) A,
N t
8 -
Gy e3—2 6,24 0,18 (s0)* Ql.)/~2) S
N t
5
Gso G—® 12,30 0,18 (s1)° Q¢G5 U
N t
10
Gy, G—> 12, 60 0,48 (s1)® YRS

Table 2
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name diagram degrees codegrees p field G/Z(G)

t
Gy, s@ 6,8 0,10 (stu)* Q(/=2) e,
u

f@ t
Gy, s gag 8,12 0,16 (stu)? Q) c,

t
G,y S@Gﬁ 12,20 0,28 (stu)® Qda, ﬁ) A
u

5
G,y @_@_@ 2,6,10 0,4,8 (stu)’ 2(/3) a1,
Gg 2—2=2—2) 2,6,8,12 0,4,6,10 (stuv)® Q 24 % (S, x Sy
s t u v
Gyo 2,12,20,30  0,10,18,28  (stuv)'® Q(/s) a0 22
S 13 u v s
s,
Gys 9 9 9 9 9 2,56,8,9,12 03,4,6,7,10 (s,...5,)"? Q SO; (2)
1 6
Sz
Gss 9 9 g 9 g 9 2,6,8,10,12, 0,4,6,8,10, (s;...5,)° Q S0,(2)
53 So o % 14,18 12,16
Sz
G, 9 2O—2D—2r—2——~2—2) 2.8,12,14,18, 0,6,10,12,16, (s...55)"° Q SO; (2)
S300 S 8 Se 87 Ss 20,24, 30 18,22,28

8,12,20,24  0,12,16,28  (stuow)® Q) 243 @ *

Table 3

It is still conjectural whether the corresponding braid diagram for G5, provides a presentation for the
associated braid group.

1 The action of S, x &, on 2* is irreducible.
* The group G;,/Z(Gj5,) is not isomorphic to the quotient of the Weyl group D by its center.
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name diagram degrees codegrees p field G|Z(G)
u
G QQ\ 4,6,14 0,8,10 (stu)’ (/=7 GL,(2)
24 s Vs s Oy —
s 7 3
u
A S
G 6,12, 30 0,18, 24 (stu)® Q 5 €A
27 D= & )/5) 6
U
Gy —— 4,8,12,20 0,8,12,16 (stuv)’ Q@) 24% S 1
s t u
W
A 0 .
Gys ——-@ 4,6,10, 0,6,8 (ustow) Qs5) SO5(3)
s l u v 12,18 12,14
s w’
20—
t u v
(2)"
A -
G, @Q—(2—2—2—2 6,12,18,24, 0,12,18,24, (stuvwx)’ Q)  PSOg(3)-2
s t u v x 30,42 30,36
S w/
*
—2—0—®
t u v RY
Table 4

These diagrams provide presentations for the corresponding finite groups. It is not known nor conjectural
whether they provide presentations for the corresponding braid groups.

+ The group G,4/Z(G,,) is not isomorphic to the Weyl group Ds.

name diagram degrees codegrees p
o e(r—1)
B(de,e,r) e, 2e,..., 0,e,..., gern (1,151 1T,) (ern)
ex2,r=2,d>1 (r—1e,r r—1e
B(1,1,7) 2,3, ...,r+1 0,1,...,r—1 (ty--7) !
B(d,1,r) 1,2,...,r 0,....,(r—1) (01,157 1,)"
d>1
TzO\ e(r—1)
B(e,e,r) e .. O e 2e,..., 0,e,...,(r—2)e, (t,1575°717,) (€7D
ez2,rz2 , T, T, T, r—1e,r r—1e—r
T2

Table 5. Braid diagrams

This table provides a complete list of the infinite families of braid diagrams and corresponding data. Note
that the braid diagram B(de, e, r) for e = 2, d > 1 can also be described by a diagram as the one used for G(2d, 2,r)
in table 2. Similarly, the diagram for B(e,e,r), e =2, can also be described by the Coxeter diagram of type D,.
The list of exceptional diagrams (but those associated with G,,, G,,, G,q4, G35, G3,) is identical with table 3.



[AlLu]

[Ari]
[ArKo]

[Ar]
[Ba]

[Bi]
[Bou]
[BreMa]
[Br1]
[Br2]
[BrSa]
[BrMa]

[BMM]
[BMR]

[BrMi]

[Ch1]

[Ch2]
[Ch3]

[Ch]
[Cho]
[Co]
[Cx]

[Det]
[De2]

[DeMo]
[DeLo]
[Du]
[FoNe]
[Go]
[Ha]

[Hu]
[Kol]

[Ko2]
[Lu]

[MKS]
[Ma1l]
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