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In his theory of unipotent characters of finite groups of Lie 
type, Lusztig constructed modular categories from two-sided 
cells in Weyl groups. Broué, Malle and Michel have extended 
parts of Lusztig’s theory to complex reflection groups. This 
includes generalizations of the corresponding fusion algebras, 
although the presence of negative structure constants prevents 
them from arising from modular categories. We give here the 
first construction of braided pivotal monoidal categories as-
sociated with non-real reflection groups (later reinterpreted 
by Lacabanne as super modular categories). They are asso-
ciated with cyclic groups, and their fusion algebras are those 
constructed by Malle.
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groups (“spetsial groups”). The case of spetsial imprimitive complex reflection groups 
has been considered by Malle in [10]: Malle defines a combinatorial set which generalizes 
the one defined by Lusztig to parametrize unipotent characters of the associated finite 
reductive group when W is a Weyl group. Malle generalizes also the partition of this set 
into Lusztig families. To each family, he associates a Z-fusion datum: a Z-fusion datum 
is a structure similar to a usual fusion datum (which we will call a Z+-fusion datum) 
except that the structure constants of the associated fusion ring might be negative.

It is a classical problem to find a tensor category with suitable extra-structures (pivot, 
twist) corresponding to a given Z+-fusion datum. The aim of this paper is to provide 
an ad hoc categorification of the Z-fusion datum associated with the non-trivial family 
of the cyclic complex reflection group of order d: it is provided by a quotient category 
of the representation category of the Drinfeld double of the Taft algebra of dimension 
d2 (the Taft algebra is the positive part of a Borel subalgebra of small quantum sl2 at a 
d-th root of unity).

The constructions of this paper have recently been extended by Lacabanne [8], [9]
to some families of the complex reflection groups G(d, 1, n). His construction involves 
super-categories instead of triangulated categories, as suggested by Etingof. In the par-
ticular case studied in our paper, Lacabanne’s construction gives a reinterpretation as 
well as some clarifications of our results.

In the first section, we recall some basic properties of the Taft algebra and its Drinfeld 
double. The second section is devoted to recalling some of the structure of its category of 
representations: simple modules, blocks and structure of projective modules. We summa-
rize some elementary facts on the tensor structure in the third section: invertible objects 
and tensor product of simple objects by the defining two-dimensional representation. The 
fourth section provides generators and characters of the Grothendieck group of D(B), a 
commutative ring.

Our original work starts in the fifth section, with the study of the stable module 
category of D(B) and a further quotient and the determination of their Grothendieck 
rings. In the sixth section, we define and study a pivotal structure on D(B)-mod and 
determine characters of its Grothendieck group associated to left or right traces. This 
gives rise to positive and negative S and T -matrices. We proceed similarly for the small 
quotient triangulated category. These are our fusion data.

We recall in the final section the construction of Malle’s fusion datum associated 
with cyclic groups and we check that it coincides with the fusion data we defined in the 
previous section.

In Appendix A, we provide a description of S-matrices in the setting of pivotal tensor 
categories.
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1. The Drinfeld double of the Taft algebra

From now on, ⊗ will denote the tensor product ⊗C. We fix a natural number d � 2 as 
well as a primitive d-th root of unity ζ ∈ C×. We denote by μd = 〈ζ〉 the group of d-th 
roots of unity.

Given n � 1 a natural number and ξ ∈ C, we set

(n)ξ = 1 + ξ + · · · + ξn−1

and

(n)!ξ =
n∏

i=1
(i)ξ.

We also set (0)!ξ = 1.

1.1. The Taft algebra

We denote by B the C-algebra defined by the following presentation:

• Generators: K, E.

• Relations: 

⎧⎪⎪⎨
⎪⎪⎩

Kd = 1,
Ed = 0,
KE = ζEK.

It follows from [7, Proposition IX.6.1] that:

(Δ) There exists a unique morphism of algebras Δ : B → B ⊗B such that

Δ(K) = K ⊗K and Δ(E) = (1 ⊗E) + (E ⊗K).

(ε) There exists a unique morphism of algebras ε : B → C such that

ε(K) = 1 and ε(E) = 0.

(S) There exists a unique anti-automorphism S of B such that

S(K) = K−1 and S(E) = −EK−1.

With Δ as a coproduct, ε as a counit and S as an (invertible) antipode, B becomes a 
Hopf algebra, called the Taft algebra [6, Example 5.5.6]. It is easily checked that
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B =
d−1⊕
i,j=0

CKiEj =
d−1⊕
i,j=0

CEiKj . (1.1)

1.2. Dual algebra

Let K∗ and E∗ denote the elements of B∗ such that

K∗(EiKj) = δi,0ζ
j and E∗(EiKj) = δi,1.

Recall that B∗ is naturally a Hopf algebra [7, Proposition III.3.3] and it follows from [7, 
Lemma IX.6.3] that

(E∗iK∗j)(Ei′Kj′) = δi,i′(i)!ζζj(i+j′). (1.2)

We deduce easily that (E∗iK∗j)0 � i,j � d−1 is a C-basis of B∗.
We will give explicit formulas for the coproduct, the counit and the antipode in the 

next subsection. We will in fact use the Hopf algebra (B∗)cop, which is the Hopf algebra 
whose underlying space is B∗, whose product is the same as in B∗ and whose coproduct 
is opposite to the one in B∗.

1.3. Drinfeld double

We denote by D(B) the Drinfeld quantum double of B, as defined for instance in [7, 
Definition IX.4.1] or [6, Definition 7.14.1]. Recall that D(B) contains B and (B∗)cop as 
Hopf subalgebras and that the multiplication induces an isomorphism of vector spaces 
(B∗)cop ⊗B

∼−→ D(B). A presentation of D(B), with generators E, E∗, K, K∗ is given 
for instance in [7, Proposition IX.6.4]. We shall slightly modify it by setting

z = K∗−1K and F = ζE∗K∗−1.

Then [7, Proposition IX.6.4] can be rewritten as follows:

Proposition 1.3. The C-algebra D(B) admits the following presentation:

• Generators: E, F , K, z;

• Relations: 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kd = zd = 1,
Ed = F d = 0,
[z, E] = [z, F ] = [z,K] = 0,
KE = ζEK,

KF = ζ−1FK,

[E,F ] = K − zK−1.
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The next corollary follows from an easy induction argument:

Corollary 1.4. If i � 1, then

[E,F i] = (i)ζF i−1(ζ1−iK − zK−1)

and

[F,Ei] = (i)ζEi−1(ζ1−izK−1 −K).

The algebra D(B) is endowed with a structure of Hopf algebra, where the comulti-
plication, the counit and the antipode are still denoted by Δ, ε and S respectively (as 
they extend the corresponding objects for B). We have [7, Proposition IX.6.2]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δ(K) = K ⊗K,

Δ(z) = z ⊗ z,

Δ(E) = (1 ⊗ E) + (E ⊗K),

Δ(F ) = (F ⊗ 1) + (zK−1 ⊗ F ),

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S(K) = K−1,

S(z) = z−1,

S(E) = −EK−1,

S(F ) = −ζ−1FKz−1,

(1.5)

ε(K) = ε(z) = 1 and ε(E) = ε(F ) = 0. (1.6)

1.4. Morphisms to C

Given ξ ∈ μd, we denote by εξ : D(B) → C the unique morphism of algebras such 
that

εξ(K) = ξ, εξ(z) = ξ2 and εξ(E) = εξ(F ) = 0.

It is easily checked that the εξ’s are the only morphisms of algebras D(B) → C. Note 
that ε1 = ε is the counit.

1.5. Group-like elements

It follows from (1.5) that K and z are group-like, so that Kizj is group-like for all i, 
j ∈ Z. The converse also holds (and is certainly already well-known).

Lemma 1.7. If g ∈ D(B) is group-like, then there exist i, j ∈ Z such that g = Kizj.
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Proof. Let g ∈ D(B) be a group-like element. Let us write

g =
d−1∑

i,j,k,l=0

αi,j,k,lK
izjEkF l.

We denote by (k0, l0) the largest pair (for the lexicographic order) such that there exist i, 
j ∈ {0, 1, . . . , d −1} such that αi,j,k0,l0 �= 0. The coefficient of KizjEk0F l0 ⊗KizjEk0F l0

in g ⊗ g is equal to α2
i,j,k0,l0

, so it is different from 0.
But, if we compute the coefficient of KizjEk0F l0 ⊗KizjEk0F l0 in

g ⊗ g = Δ(g) =
d−1∑

i,j,k,l=0

αi,j,k,lΔ(K)iΔ(z)jΔ(E)kΔ(F )l

using the formulas (1.5), we see that it is equal to 0 if (k0, l0) �= (0, 0). Therefore (k0, l0) =
(0, 0), and so g belongs to the linear span of the family (Kizj)i,j∈Z. Now the result follows 
from the linear independence of group-like elements. �
1.6. Braiding

For 0 � i, j � d − 1, we set

βi,j = E∗i

d · (i)!ζ

d−1∑
k=0

ζ−k(i+j)K∗k.

It follows from (1.2) that (βi,j)0 � i,j � d−1 is a dual basis to (EiKj)0 � i,j � d−1. We set 
now

R =
d−1∑
i,j=0

EiKj ⊗ βi,j ∈ D(B) ⊗D(B).

Note that R is a universal R-matrix for D(B) and it endows D(B) with a structure of 
braided Hopf algebra [7, Theorem IX.4.4]). Using our generators E, F , K, z, we have:

R = 1
d

d−1∑
i,j,k=0

ζ(i−k)(i+j)−i(i+1)/2

(i)!ζ
EiKj ⊗ z−kF iKk. (1.8)

1.7. Twist

Let us define

τ : D(B) ⊗D(B) −→ D(B) ⊗D(B)

a⊗ b �−→ b⊗ a.
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Following [7, §VIII.4], we set

u =
d−1∑
i,j=0

S(βij)EiKj ∈ D(B).

Recall that u is called the Drinfeld element of D(B). It satisfies several properties (see 
for instance [7, Proposition VIII.4.5]). For instance, u is invertible and we will recall only 
three equalities:

ε(u) = 1, Δ(u) = (τ(R)R)−1(u⊗ u) and S2(b) = ubu−1 (1.9)

for all b ∈ D(B). A straightforward computation shows that

S2(b) = KbK−1 (1.10)

for all b ∈ D(B). We now set

θ = K−1u.

The following proposition is a consequence of (1.9) and (1.10).

Proposition 1.11. The element θ is central and invertible in D(B) and satisfies

ε(θ) = 1 and Δ(θ) = (τ(R)R)−1(θ ⊗ θ).

Let us give a formula for θ:

θ = 1
d

d−1∑
i,j,k=0

(−1)i ζ
(i−k)(i+j)−i

(i)!ζ
zk−iF iEiKi+j−k−1. (1.12)

Corollary 1.13. We have S(θ) = zθ.

Proof. Let g = S(θ)θ−1. Since Δ ◦ S = τ ◦ (S ⊗ S) ◦ Δ and (S ⊗ S)(R) = R (see for 
instance [7, Theorems III.3.4 and VIII.2.4]), it follows from Proposition 1.11 that g is 
central and group-like. Hence, by Lemma 1.7, there exists l ∈ Z such that S(θ) = θzl. 
So, by (1.12), we have

S(θ)Ed−1 = θzlEd−1 = 1
d

d−1∑
j,k∈Z/dZ

ζ−jkzk+lKj−k−1Ed−1. (
)

Let us now compute S(θ)Ed−1 by using directly (1.12). We get
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S(θ)Ed−1 = Ed−1S(θ) = 1
d

∑
j,k∈Z/dZ

ζ−jkEd−1z−kK1+k−j

= 1
d

∑
j,k∈Z/dZ

ζ−jkζ1+k−jz−kK1+k−jEd−1

= 1
d

∑
j,k∈Z/dZ

ζ(1−j)(1+k)z−kK1+k−jEd−1.

So, if we set j′ = 1 − j and k′ = −1 − k, we get

S(θ)Ed−1 = 1
d

∑
j′,k′∈Z/dZ

ζ−j′k′
zk

′+1Kj′−k′−1Ed−1.

Comparing with (
), we get that zl = z. �
2. D(B)-modules

Most of the results of this section are due to Chen [2] or Erdmann, Green, Snashall 
and Taillefer [4], [5]. By a D(B)-module, we mean a finite dimensional left D(B)-module. 
We denote by D(B)-mod the category of (finite dimensional left) D(B)-modules. Given 
α1, . . . , αl−1 ∈ C, we set

J+
l (α1, . . . , αl−1) =

⎛
⎜⎜⎜⎜⎜⎝

0 α1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 0 αl−1
0 · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎠

and

J−
l (α1, . . . , αl−1) = tJ+

l (α1, . . . , αl−1).

Given M a D(B)-module and b ∈ D(B), we denote by b|M the endomorphism of M
induced by b. For instance, E|M and F |M are nilpotent and K|M and z|M are semisimple.

2.1. Simple modules

Given 1 � l� d and p ∈ Z/dZ, we denote by Ml,p the D(B)-module with C-basis 
M (l,p) = (e(l,p)

i )1 � i � l where the action of z, K, E and F in the basis M (l,p) its given 
by the following matrices:

z|Ml,p
= ζ2p+l−1 IdMl,p

,

K|Ml,p
= ζp diag(ζl−1, ζl−2, . . . , ζ, 1),
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E|Ml,p
= ζpJ+

l ((1)ζ(ζl−1 − 1), (2)ζ(ζl−2 − 1), . . . , (l − 1)ζ(ζ − 1)),
F |Ml,p

= J−
l (1, . . . , 1).

It is readily checked from the relations given in Proposition 1.3 that this defines a 
D(B)-module of dimension l. The next result is proved in [2, Theorem 2.5].

Theorem 2.1 (Chen). The map

{1, 2, . . . , d} × Z/dZ −→ Irr(D(B))

(l, p) �−→ Ml,p

is bijective.

2.2. Blocks

We put Λ(d) = Z/dZ ×Z/dZ, a set in canonical bijection with {1, 2, . . . , d} ×Z/dZ, 
which parametrizes the simple D(B)-modules. Given λ ∈ Λ(d), we denote by Mλ the 
corresponding simple D(B)-module. We also set (Z/dZ)# = (Z/dZ) \ {0} and Λ#(d) =
(Z/dZ)# ×Z/dZ. Finally, let Λ0(d) = {0} ×Z/dZ be the complement of Λ#(d) in Λ(d).

Define

ι : Λ(d) −→ Λ(d)

(l, p) �−→ (−l, p + l).

We have ι2 = IdΛ(d) and Λ0(d) is the set of fixed points of ι. Given L a ι-stable subset 
of Λ(d), we denote by [L /ι] a set of representatives of ι-orbits in L . The next result is 
proved in [4, Theorem 2.26].

Theorem 2.2 (Erdmann-Green-Snashall-Taillefer). Let λ, λ′ ∈ Λ(d). Then Mλ and Mλ′

belong to the same block of D(B) if and only if λ and λ′ are in the same ι-orbit.

We have constructed in §1.7 a central element, namely θ. Note that

The element θ acts on Ml,p by multiplication by ζ(p−1)(l+p−1). (2.3)

Proof. It is sufficient to compute the action of θ on the vector e(l,p)
1 . Note that Eie

(l,p)
1 = 0

as soon as i � 1. Therefore, for computing θe(l,p)
1 using the formula (1.12), only the terms 

corresponding to i = 0 remain. Consequently,

ωl,p(θ) = 1
d

d−1∑
j,k=0

ζ−jkζ(2p+l−1)kζ(p+l−1)(j−k−1)

= ζ1−l−p

d

d−1∑
ζpk

(d−1∑
ζ(p+l−1−k)j

)

k=0 j=0



C. Bonnafé, R. Rouquier / Journal of Algebra 558 (2020) 102–128 111
The term inside the big parenthesis is equal to d if p + l−1 −k ≡ 0 mod d, and is equal 
to 0 otherwise. The result follows. �
2.3. Projective modules

Given λ ∈ Λ(d), we denote by Pλ a projective cover of Mλ. The next result is proved 
in [4, Corollary 2.25].

Theorem 2.4 (Erdmann-Green-Snashall-Taillefer). Let λ ∈ Λ(d).

(a) If λ ∈ Λ#(d), then dimC(Pλ) = 2d, Rad3(Pλ) = 0 and the Loewy structure of Pλ is 
given by:

Pλ/Rad(Pλ) � Mλ

Rad(Pλ)/Rad2(Pλ) � Mι(λ) ⊕Mι(λ)

Rad2(Pλ) � Mλ.

(b) Pd,p = Md,p has dimension d.

3. Tensor structure

We mainly refer here to the work of Erdmann, Green, Snashall and Taillefer [4], [5]. 
Since D(B) is a finite dimensional Hopf algebra, the category D(B)-mod inherits a 
structure of a tensor category. We will compute here some tensor products between 
simple modules. We will denote by Ml the simple module Ml,0.

3.1. Invertible modules

We denote by Vξ = Cvξ the one-dimensional D(B)-module associated with the mor-
phism εξ : D(B) → C defined in §1.4:

bvξ = εξ(b)vξ

for all b ∈ D(B). We have

Vζp � M1,p. (3.1)

An immediate computation using the comultiplication Δ shows that

Ml,p ⊗ Vζq � Vζq ⊗Ml,p � Ml,p+q (3.2)

as D(B)-modules. The Vξ’s are (up to isomorphism) the only invertible objects in the 
tensor category D(B)-mod.
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3.2. Tensor product with M2

We set ei = e
(2,0)
i for i ∈ {1, 2}, so that (e1, e2) is the standard basis of M2. The next 

result is a particular case of [4, Theorem 4.1].

Theorem 3.3 (Erdmann-Green-Snashall-Taillefer). Let (l, p) be an element of {1, 2, . . . ,
d} × Z/dZ.

(a) If l� d − 1, then M2 ⊗Ml,p � Ml+1,p ⊕Ml−1,p+1.
(b) M2 ⊗Md,p � Pd−1,p.

4. Grothendieck rings

We denote by Gr(D(B)) the Grothendieck ring of the category of (left) D(B)-modules.

4.1. Structure

Since D(B) is a braided Hopf algebra (with universal R-matrix R),

the ring Gr(D(B)) is commutative. (4.1)

Given M a D(B)-module, we denote by [M ] the class of M in Gr(D(B)). We set

mλ = [Mλ ], ml = [Ml,0 ] and vξ = [Vξ ] ∈ Gr(D(B)).

Recall that vζp = m1,p. It follows from (3.2) and Theorem 3.3 that

vζqml,p = ml,p+q and m2ml,p =

⎧⎨
⎩

ml+1,p + ml−1,p+1 if l� d− 1,

2(md−1,p + m1,p−1) if l = d.
(4.2)

Proposition 4.3. The Grothendieck ring Gr(D(B)) is generated by vζ and m2.

Proof. We will prove by induction on l that ml,p ∈ Z[vζ , m2]. Since m1,p = (vζ)p, this 
is true for l = 1. Since m2,p = (vζ)pm2, this is also true for l = 2. Now the induction 
proceeds easily by using (4.2). �
4.2. Some characters

If b ∈ D(B) is group-like, then the map

Gr(D(B)) −→ C

[M ] �−→ Tr(b| )
M
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is a morphism of rings. Here, Tr denotes the usual trace (not the quantum trace) of an 
endomorphism of a finite dimensional vector space. Recall from Lemma 1.7 that the only 
group-like elements of D(B) are the Kizj , where (i, j) ∈ Λ(d). We set

χi,j : Gr(D(B)) −→ C

[M ] �−→ Tr(Kizj |M ).

An easy computation yields

χi,j(ml,p) = ζpi+(2p+l−1)j · (l)ζi . (4.4)

Note that the χi,j ’s are not necessarily distinct:

Lemma 4.5. Let λ and λ′ be two elements of Λ(d). Then χλ = χλ′ if and only if λ and 
λ′ are in the same ι-orbit.

Proof. Let us write λ = (i, j) and λ′ = (i′, j′). The “if” part follows directly from (4.4). 
Conversely, assume that χi,j = χi′,j′ . By applying these two characters to vζ and m2, 
we get:

⎧⎨
⎩
ζi+2j = ζi

′+2j′ ,

ζj(1 + ζi) = ζj
′(1 + ζi

′).

It means that the pairs (ζj , ζi+j) and (ζj′ , ζi′+j′) have the same sum and the same 
product, so (ζj , ζi+j) = (ζj′ , ζi′+j′) or (ζj , ζi+j) = (ζi′+j′ , ζj

′). In other words, (i′, j′) =
(i, j) or (i′, j′) = ι(i, j), as expected. �
5. Triangulated categories

5.1. Stable category

As B is a Hopf algebra, it is selfinjective, i.e., B is an injective B-module. Recall that 
the stable category B-stab of B is the additive category quotient of B-mod by the full 
subcategory B-proj of projective modules. Since B is selfinjective, the category B-stab
has a natural triangulated structure. Similarly, the category D(B)-stab is triangulated. 
Note that a B-module (resp. a D(B)-module) is projective if and only if it is injec-
tive. Since the tensor product of a projective D(B)-module by any D(B)-module is still 
projective [6, Proposition 4.2.12], D(B)-stab inherits a structure of monoidal category 
(such that the canonical functor D(B)-mod → D(B)-stab is monoidal). In particular, its 
Grothendieck group (as a triangulated category), which will be denoted by Grst(D(B)), 
is a ring and the natural map
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Gr(D(B)) −→ Grst(D(B))

m �−→ mst

is a morphism of rings. Given M a D(B)-module, we denote by [M ]st its class in 
Grst(D(B)).

It follows from Theorem 2.4 that

mst
d,p = 0 and 2(mst

l,p + mst
d−l,p+l) = 0 (5.1)

if l� d − 1.

5.2. A further quotient

We denote by D(B)-projB the full subcategory of D(B)-mod whose objects are the 
D(B)-modules M such that ResD(B)

B M is a projective B-module. Since D(B) is a free 
B-module (of rank d2), D(B)-proj is a full subcategory of D(B)-projB. We denote 
by D(B)-stabB the additive quotient of the category D(B)-mod by the full subcate-
gory D(B)-projB: it is also the quotient of D(B)-stab by the image of D(B)-projB in 
D(B)-stab.

Lemma 5.2. The image of D(B)-projB in D(B)-stab is a thick triangulated subcategory. 
In particular, D(B)-stabB is triangulated.

Proof. Given M a D(B)-module, we denote by πM : P (M) � M (resp. iM : M ↪→
I(M)) a projective cover (resp. injective hull) of M . We need to prove the following 
facts:

(a) If M belongs to D(B)-projB, then Ker(πM ) and I(M)/ Im(iM ) also belong to 
D(B)-projB.

(b) If M ⊕N belongs to D(B)-projB, then M and N also belong to D(B)-projB.
(c) If M and N belong to D(B)-projB and f : M → N is a morphism of D(B)-modules, 

then the cone of f also belong to D(B)-projB.

(a) Assume that M belongs to D(B)-projB. Since it is a projective B-module, there 
exists a morphism of B-modules f : M → P (M) such that πM ◦ f = IdM . In particular, 
P (M) � Ker(πM ) ⊕M , as a B-module. So Ker(πM ) is a projective B-module.

On the other hand, I(M) is a projective D(B)-module since D(B) is selfinjective 
so it is a projective B-module and so it is an injective B-module. So, again, I(M) �
M ⊕ I(M)/ Im(iM ), so I(M)/ Im(iM ) is a projective B-module. This proves (a).

(b) is obvious.
(c) Let M and N belong to D(B)-projB and f : M → N be a morphism of 

D(B)-modules. Let Δf : M → I(M) ⊕ N , m �→ (iM (m), f(m)). Then the cone of f
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is isomorphic in D(B)-stab to (I(M) ⊕N)/ Im(Δf ). But Δf is injective, M is an injec-
tive B-module and so I(M) � M ⊕ (I(M) ⊕ N)/ Im(Δf ) as a B-module, which shows 
that (I(M) ⊕N)/ Im(Δf ) is a projective B-module. �

We denote by GrstB(D(B)) the Grothendieck group of D(B)-stabB, viewed as a trian-
gulated category. If M belongs to D(B)-projB and N is any D(B)-module, then M ⊗N

and N ⊗ M are projective B-modules [6, Proposition 4.2.12], so D(B)-stabB inherits 
a structure of monoidal category, compatible with the triangulated structure. This en-
dows GrstB(D(B)) with a ring structure. The natural map Gr(D(B)) → GrstB(D(B))
will be denoted by m �→ mstB : it is a surjective morphism of rings that factors through 
Grst(D(B)).

If λ ∈ Λ#(d), then it follows from [5, Property 1.4] that there exists a D(B)-module 
PB
λ which is projective as a B-module and such that there is an exact sequence

0 −→ Mι(λ) −→ PB
λ −→ Mλ −→ 0.

It then follows that

mstB
λ + mstB

ι(λ) = 0. (5.3)

Also, we still have

mstB
d,p = 0. (5.4)

The next theorem follows from (5.3), (5.4) and Proposition 4.3.

Theorem 5.5. The ring GrstB(D(B)) is generated by vstB
ζ and mstB

2 . Moreover,

GrstB(D(B)) =
⊕

λ∈[Λ#(d)/ι]

ZmstB
λ

and GrstB(D(B)) is a free Z-module of rank d(d − 1)/2.

Recall that Lemma 4.5 shows that, through the χi,j ’s, only d(d +1)/2 different charac-
ters of the ring Gr(D(B)) have been defined. It is not clear if CGr(D(B)) is semisimple 
in general but, for d = 2, it can be checked that it is semisimple (of dimension 4), so that 
there is a fourth character Gr(D(B)) → C which is not obtained through the χi,j ’s.

Now, a character χ : Gr(D(B)) → C factors through GrstB(D(B)) if and only if its 
kernel contains the mλ0 ’s (where λ0 runs over Λ0(d)) and the mλ + mι(λ)’s (where λ
runs over Λ#(d)). This implies the following result.

Theorem 5.6. The character χλ : Gr(D(B)) → C factors through GrstB(D(B)) if and 
only if λ ∈ Λ#(d). So the (χλ)λ∈[Λ#(d)/ι] are all the characters of GrstB(D(B)) and the 
C-algebra CGrstB(D(B)) is semisimple.
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5.3. Complements

Given C a monoidal category, we denote by Z(C ) its Drinfeld center (see [7, §XIII.4]) 
and we denote by ForC : Z(C ) → C the forgetful functor.

There is an equivalence between Z(B-mod) and D(B)-mod such that the forgetful 
functor becomes the restriction functor ResD(B)

B . The canonical functors between these 
categories will be denoted by canD(B)

st : D(B)-mod → D(B)-stab, canB
st : B-mod →

B-stab and canstB : D(B)-mod → D(B)-stabB. The functor

canB
st ◦ ResD(B)

B : D(B)-mod −→ B-stab

factors through Z(B-stab) (this triangulated category needs to be defined in a homotopic 
setting, for example that of stable ∞-categories). We obtain a commutative diagram of 
functors

D(B)-mod
ResD(B)

B

F

B-mod

canB
st

Z(B-stab)
ForB-stab

B-stab .

Since any D(B)-module that is projective as a B-module is sent to the zero object 
of Z(B-stab) through F , the functor F factors through D(B)-projB and we obtain a 
commutative diagram of functors

D(B)-mod
ResD(B)

B

F

canD(B)
stB

B-mod

canB
stD(B)-stabB

F
Z(B-stab)

ForB-stab
B-stab .

Question. Is F : D(B)-stabB → Z(B-stab) an equivalence of categories?
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6. Fusion datum

6.1. Quantum traces

The element R ∈ D(B) ⊗D(B) defined in §1.6 is a universal R-matrix which endows 
D(B) with a structure of braided Hopf algebra. The category D(B)-mod is braided as 
follows: given M and N two D(B)-modules, the braiding cM,N : M ⊗N

∼−→ N ⊗M is 
given by

cM,N (m⊗ n) = τ(R)(n⊗m).

Recall that τ : D(B) ⊗D(B) ∼−→ D(B) ⊗D(B) is given by τ(a ⊗b) = b ⊗a. In particular,

cN,McM,N : M ⊗N
∼−→ M ⊗N is given by the action of τ(R)R. (6.1)

Given i ∈ Z, we have S2(b) = (z−iK)b(z−iK)−1 for all b ∈ D(B) and z−iK is group-
like, so the algebra D(B) is pivotal with pivot z−iK. This endows the tensor category 
D(B)-mod with a structure of pivotal category (see Appendix A) whose associated traces 
Tr(i)+ and Tr(i)− are given as follows: given M a D(B)-module and f ∈ EndD(B)(M), we 
have

Tr(i)+ (f) = Tr(z−iKf) and Tr(i)− (f) = Tr(fK−1zi).

Recall that Tr denotes the “classical” trace for endomorphisms of a finite dimensional 
vector space. So the pivotal structure depends on the choice of i (modulo d). The corre-
sponding twist is θi = ziθ, which endows D(B)-mod with a structure of balanced braided 
category (depending on i).

Hypothesis and notation. From now on, and until the end of this 
paper, we assume that the Hopf algebra D(B) is endowed with the 
pivotal structure whose pivot is z−1K. The structure of balanced 
braided category is given by θ1 = zθ and the associated quantum 
traces Tr(1)± are denoted by Tr±.

Given M a D(B)-module, we set dim±(M) = Tr±(IdM ).

We define

dim(D(B)) =
∑

M∈Irr D(B)

dim−(M) dim+(M).

We have
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dim(D(B)) = 2d2

(1 − ζ)(1 − ζ−1) . (6.2)

This follows easily from the fact that

dim+ Ml,p = ζ1−l−p(l)ζ and dim− Ml,p = ζp+l−1(l)ζ−1 = ζp(l)ζ . (6.3)

6.2. Characters of Gr(D(B)) via the pivotal structure

As in Appendix A, these structures (braiding, pivot) allow to define characters of 
Gr(D(B)) associated with simple modules (or bricks). Given λ ∈ Λ(d), we set

s+
Mλ

: Gr(D(B)) −→ C

[M ] �−→ (IdMλ
⊗TrM+ )(cM,Mλ

cMλ,M )

and

s−Mλ
: Gr(D(B)) −→ C

[M ] �−→ (TrM− ⊗ IdMλ
)(cM,Mλ

cMλ,M ).

These are morphisms of rings (see Proposition A.4). The main result of this section is 
the following.

Theorem 6.4. Given λ ∈ Λ(d), we have

s+
Mλ

= χ−λ and s−M(l,p)
= χ(0,1)−λ.

Proof. Write λ = (l, p) and

γi,j,k = ζ(i−k)(i+j)−i(i+1)/2

(i)!ζ
.

We have

τ(R)R = 1
d2

d−1∑
i,i′,j,j′,k,k′=0

γi,j,kγi′,j′,k′ζi(k
′−j′)(z−k′

F i′EiKk′+j) ⊗ (z−kEi′F iKj′+k).

We need to compute the endomorphism of Ml,p given by

(IdMl,p
⊗TrM+ )(τ(R)R|Ml,p⊗M ).

Since Ml,p is simple, this endomorphism is the multiplication by a scalar �, and so it is 
sufficient to compute the action on e(l,p)

1 ∈ Ml,p. Therefore, all the terms (in the big sum 
giving τ(R)R) corresponding to i �= 0 disappear (because Ee

(l,p)
1 = 0). Also, since we are 
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only interested in the coefficient on e(l,p)
1 of the result (because the coefficients on other 

vectors will be zero), all the terms corresponding to i′ �= 0 also disappear. Therefore,

� = 1
d2

∑
j,j′,k,k′∈Z/dZ

ζ−kj−k′j′(ζ2p+l−1)−k′
(ζp+l−1)k

′+jTr(z−1Kz−kKj′+k|M ).

So it remains to compute the element

b = 1
d2

∑
j,j′,k,k′∈Z/dZ

ζ−kj−k′j′(ζ2p+l−1)−k′
(ζp+l−1)k

′+jz−k−1Kj′+k+1

of D(B). Since

b = 1
d2

∑
j′,k∈Z/dZ

( ∑
j,k′∈Z/dZ

ζl(p+l−1−k)ζk
′(−p−j′)

)
z−k−1Kj′+k+1,

only the terms corresponding to k = l + p − 1 and j′ = −p remain, hence

b = z−l−pKl.

So s+
Mλ

= χ−ι(λ) = χ−λ, as expected.
The other formula is obtained via a similar computation. �
We denote by S± = (S±

λ,λ′)λ,λ′∈Λ(d) the square matrix defined by

S±
λ,λ′ = Tr±(cMλ′ ,Mλ

◦ cMλ,Mλ′ ).

Similarly, we define T± to be the diagonal matrix (whose rows and columns are indexed 
by λ ∈ Λ(d)) and whose λ-entry is

T±
λ = ωλ(θ∓1

1 ).

Let us first give a formula for S±
λ,λ′ and T±

λ .

Corollary 6.5. Let (l, p), (l′, p′) ∈ Λ(d). We have

S+
(l,p),(l′,p′) = ζ

1 − ζ
ζ−ll′−lp′−pl′−2pp′

(1 − ζll
′
), T+

(l,p) = ζ−p(p+l),

S−
(l,p),(l′,p′) = ζ2p+l+2p′+l′−1

1 − ζ
ζ−ll′−lp′−pl′−2pp′

(1 − ζll
′
) and T−

(l,p) = ζp(p+l).

Proof. This follows immediately from formulas (2.3), (4.4), (6.3) and Theorem 6.4. �
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6.3. Fusion datum associated with D(B)-stabB

Let E denote a set of representatives of ι-orbits in {1, 2, . . . , d −1} ×Z/dZ. We define

dimstB(D(B)) =
∑

(l,p)∈E

dim−(Ml,p) dim+(Ml,p).

This can be understood in terms of super-categories, as explained recently by Laca-
banne [8]. We have

dimstB(D(B)) = 1
2 dim(D(B)) = d2

(1 − ζ)(1 − ζ−1) .

So dimstB D(B) is a positive real number and we denote by 
√

dimstB D(B) its positive 

square root. Since 1 − ζ−1 = −ζ−1(1 − ζ), there exists a unique square root 
√
−ζ of −ζ

such that

√
dimstB(D(B)) = d

√
−ζ

1 − ζ
.

We denote by SstB = (Sλ,λ′)λ,λ′∈E the square matrix defined by

SstB
λ,λ′ =

S+
λ,λ′√

dimstB(D(B))
.

We denote by T stB the diagonal matrix whose λ-entry is T+
λ (for λ ∈ E ). It follows from 

Corollary 6.5 that

SstB
(l,p),(l′,p′) =

√
−ζ

d
ζ−ll′−lp′−pl′−2pp′

(ζll
′ − 1) and T stB

(l,p) = ζ−p(l+p). (6.6)

The root of unity 
√
−ζ appearing in this formula has been interpreted in terms of super-

categories by Lacabanne [8]: it is due to the fact that our category is not spherical. 
Finally, note that

SstB
(l,p),(l′,p′) = −SstB

ι(l,p),(l′,p′) = −SstB
(l,p),ι(l′,p′) = SstB

ι(l,p),ι(l′,p′). (6.7)

7. Comparison with Malle Z-fusion datum

We refer to [10] and [3] for most of the material of this section. We denote by E (d)
the set of pairs (i, j) of integers with 0 � i < j � d − 1.
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7.1. Set-up

Let Y = {0, 1, . . . , d} and let π : Y → {0, 1} be the map defined by

π(i) =

⎧⎨
⎩

1 if i ∈ {0, 1},

0 if i� 2.

We denote by Ψ(Y, π) the set of maps f : Y → {0, 1, . . . , d − 1} such that f is strictly 
increasing on π−1(0) = {2, 3, . . . , d} and strictly increasing on π−1(1) = {0, 1}. Since f is 
injective on {2, 3, . . . , d}, there exists a unique element k(f) ∈ {0, 1, . . . , d −1} which does 
not belong to f({2, 3, . . . , d}). Note that, since f is strictly increasing on {2, 3, . . . , d}, 
the element k(f) determines the restriction of f to {2, 3, . . . , d}. So the map

Ψ(Y, π) −→ E (d) × {0, 1, . . . , d− 1}

f �−→ (f(0), f(1),k(f))
(7.1)

is bijective. For f ∈ Ψ(Y, π), we set

ε(f) = (−1)|{(y,y
′)∈Y×Y | y<y′ and f(y)<f(y′)}|.

We put by V =
⊕d−1

i=0 Cvi and we denote by S the square matrix (ζij)0 � i,j � d−1, 
which will be viewed as an automorphism of V . Note that S is the character stable of 
the cyclic group μd. We set δ(d) = det(S ) =

∏
0 � i<j � d−1(ζj − ζi). Recall that

δ(d)2 = (−1)(d−1)(d−2)/2dd.

Given f ∈ Ψ(Y, π), let

vf = (vf(0) ∧ vf(1)) ⊗ (vf(2) ∧ vf(3) ∧ · · · ∧ vf(d)) ∈
(∧2

V
)
⊗
(∧d−1

V
)
.

Note that (vf )f∈Ψ(Y,π) is a C-basis of 
(∧2

V
)
⊗
(∧d−1

V
)
. Given f ′ ∈ Ψ(Y, π), we put

((∧2
S

)
⊗
(∧d−1

S
))

(vf ′) =
∑

f∈Ψ(Y,π)

Sf,f ′vf .

In other words, (Sf,f ′)f,f ′∈Ψ(Y,π) is the matrix of the automorphism 
(∧2 S

)
⊗
(∧d−1 S

)
of 

(∧2
V
)
⊗
(∧d−1

V
)

in the basis (vf )f∈Ψ(Y,π).

Lemma 7.2. Let f , f ′ ∈ Ψ(Y, π). We define

i = f(0), j = f(1), k = k(f),
i′ = f ′(0), j′ = f ′(1), k′ = k(f ′).
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We have

Sf,f ′ = (−1)k+k′ δ(d)
d

ζ−kk′
(ζii

′+jj′ − ζij
′+ji′).

Proof. The computation of the action of 
∧2 S is easy, and gives the term ζii

′+jj′ −
ζij

′+ji′ . It remains to show that the determinant of the matrix S (k, k′) obtained from 
S by removing the k-th row and the k′-th column is equal to (−1)k+k′

ζ−kk′
δ(d)/d. 

For this, let S ′(k) denote the matrix whose k-th row is equal to (1, t, t2, . . . , td−1)
(where t is an indeterminate) and whose other rows coincide with those of S . Then 
(−1)k+k′ det(S (k, k′)) is equal to the coefficient of tk′ in the polynomial det(S ′(k)). 
This is a Vandermonde determinant and

det(S ′(k)) =
∏

0 � i<j � d−1
i�=k,j �=k

(ζj − ζi) ·
k−1∏
i=0

(t− ζi) ·
d−1∏

i=k+1

(ζi − t)

= δ(d)
d−1∏
i=0
i�=k

(t− ζi)
(ζk − ζi) .

Since

d−1∏
i=0
i�=k

(t− ζi) = td − 1
t− ζk

=
d−1∑
i=0

tiζ(d−1−i)k,

we have

det(S (k, k′)) = (−1)k+k′
δ(d)ζ

(d−1−k′)k

dζ(d−1)k = (−1)k+k′ δ(d)
d

ζ−kk′
,

as desired. �
7.2. Malle Z-fusion datum

Let

Ψ#(Y, π) = {f ∈ Ψ(Y, π) |
∑
y∈Y

f(y) ≡ d(d− 1)
2 mod d}.

Given f ∈ Ψ#(Y, π), we define

Fr(f) = ζ
d(1−d2)
∗

∏
y∈Y

ζ
−6(f(y)2+df(y))
∗ ,

where ζ∗ is a primitive (12d)-th root of unity such that ζ12
∗ = ζ.
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We denote by T diagonal matrix (whose rows and columns are indexed by Ψ#(Y, π)) 
equal to diag(Fr(f))f∈Ψ#(Y,π). We denote by S = (Sf,g)f,g∈Ψ#(Y,π) the square matrix 
defined by

Sf,g = (−1)d−1

δ(d) ε(f)ε(g) Sf,g.

Note that Sf,f0,1 �= 0 for all f ∈ Ψ#(Y, π) (see Lemma 7.2).

Proposition 7.3 (Malle [10], Cuntz [3]). With the previous notation, we have:

(a) S4 = (ST )3 = [S2, T ] = 1.
(b) tS = S and tS S = 1.
(c) For all f , g, h ∈ Ψ#(Y, π), the number

Nh
f,g =

∑
i∈Ψ#(Y,π)

Si,fSi,gSi,h

Si,f0,1

belongs to Z.

The pair (S, T ) is called the Malle Z-fusion datum.

7.3. Comparison

We wish to compare the Z-fusion datum (S, T ) with the ones obtained from the 
tensor categories D(B)-mod and D(B)-stab. For this, we will use the bijection (7.1) to 
characterize elements of Ψ#(Y, π). Given k ∈ Z, we denote by kres the unique element 
in {0, 1, . . . , d − 1} such that k ≡ kres mod d.

Lemma 7.4. Let f ∈ Ψ(Y, π). Then f ∈ Ψ#(Y, π) if and only if k(f) = (f(0) + f(1))res. 
Consequently, the map

Ψ#(Y, π) −→ E (d)

f �−→ (f(0), f(1))

is bijective

Proof. We have

∑
y∈Y

f(y) = f(0) + f(1) + d(d− 1)
2 − k(f)

and the result follows. �
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Given (i, j) ∈ E (d), we denote by fi,j the unique element of Ψ#(Y, π) such that 
fi,j(0) = i and fi,j(1) = j. We have

Fr(fi,j) = ζij (7.5)

and, if (i, j), (i′, j′) ∈ Λ(d), then

Sfi,j ,fi′,j′ = (−1)(i+j)res+(i′+j′)res

d
ε(fi,j)ε(fi′,j′)(ζij

′+ji′ − ζii
′+jj′). (7.6)

Proof. The second equality follows immediately from Lemmas 7.2 and 7.4. Let us prove 
the first one. By definition, Fr(fi,j) = ζα∗ , where

α = d(1 − d2) − 6
∑
y∈Y

(fi,j(y)2 + dfi,j(y)).

The construction of fi,j shows that

α = d(1 − d2) − 6(i2 + di) − 6(j2 + dj) − 6
d−1∑
k=0

(k2 + dk) + 6(((i + j)res)2 + d(i + j)res).

Write i + j = (i + j)res + ηd, with η ∈ {0, 1}. Then η2 = η and so

(i + j)2 + d(i + j) = ((i + j)res)2 + d(i + j)res + 2ηd(i + j) + 2ηd2

≡ ((i + j)res)2 + d(i + j)res mod 2d.

Therefore,

α ≡ 12ij + d(1 − d2) − 6
d−1∑
k=0

(k2 + dk) mod 12d

≡ 12ij mod 12d.

So Fr(fi,j) = ζ12ij
∗ = ζij . �

We define

ϕ : E (d) −→ Λ#(d)

(i, j) �−→ (j − i, i).

Note that ϕ(E (d)) is a set of representatives of ι-orbits in Λ#(d). We set

ϕ̃(i, j) =

⎧⎨
⎩
ϕ(i, j) if (−1)(i+j)resε(fi,j) = 1,

ι(ϕ(i, j)) if (−1)(i+j)resε(f ) = −1.
i,j
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Then ϕ̃(E (d)) is also a set of representatives of ι-orbits in Λ#(d) and the pairs of matrices 
(SstB , T stB) and (S, T ) are related by the following equality (which follows immediately 
from Corollary 6.5 and formulas (6.7), (7.5) and (7.6)):

Sfi,j ,fi′,j′ =
√

−ζ SstB
ϕ̃(i,j),ϕ̃(i′,j′) and T fi,j = T stB

ϕ̃(i,j). (7.7)

Therefore, up to the change of ζ into ζ−1, we obtain our main result.

Theorem 7.8. Malle Z-fusion datum (S, T ) can be categorified by the monoidal cate-
gory D(B)-stabB, endowed with the pivotal structure induced by the pivot z−1K and the 
balanced structure induced by zθ.

Appendix A. Reminders on S-matrices

We follow closely [6, Chapters 4 and 8].
Let C be a tensor category over C, as defined in [6, Definition 4.1.1]: C is a locally 

finite C-linear rigid monoidal category (whose unit object is denoted by 1) such that 
the bifunctor ⊗ : C × C → C is C-bilinear on morphisms and EndC (1) = C. If X is an 
object in C , its left (respectively right) dual is denoted by X∗ (respectively ∗X) and we 
denote by

coevX : 1 −→ X ⊗X∗ and evX : X∗ ⊗X −→ 1

the coevaluation and evaluation morphisms respectively.
We assume that C is braided, namely that it is endowed with a bifunctorial family of 

isomorphisms cX,Y : X ⊗ Y
∼−→ Y ⊗X such that

cX,Y⊗Y ′ = (IdY ⊗cX,Y ′) ◦ (cX,Y ⊗ IdY ′) (A.1)

and

cX⊗X′,Y = (cX,Y ⊗ IdX′) ◦ (IdX ⊗cX′,Y ), (A.2)

for all objects X, X ′, Y and Y ′ in C (we have omitted the associativity constraints).
Finally, we also assume that C is pivotal [6, Definition 4.7.8], i.e. that it is equipped 

with a family of functorial isomorphisms aX : X → X∗∗ (for X running over the objects 
of C ) such that aX⊗Y = aX ⊗ aY . Given f ∈ EndC (X), the pivotal structure allows to 
define two traces:

Tr+(f) = evX∗ ◦(aXf ⊗ IdX∗) ◦ coevX ∈ EndC (1) = C
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and

Tr−(f) = evX ◦(IdX∗ ⊗fa−1
X ) ◦ coevX∗ ∈ EndC (1) = C.

We will sometimes write TrX+ (f) or TrX− (f) for Tr+(f) and Tr−(f). We define two di-
mensions

dim+(X) = Tr+(IdX) and dim−(X) = Tr−(IdX).

To summarize, we will work under the following hypothesis:

Hypothesis and notation. We fix in this section a braided pivotal 
tensor category C as above. We denote by Gr(C ) its Grothendieck 
ring. Given X is an object in C , we denote by [X ] its class in 
Gr(C ). The set of isomorphism classes of simple objects in C will 
be denoted by Irr(C ). If X ∈ Irr(C ) and Y is any object in C , we 
denote by [Y : X] the multiplicity of X in a Jordan-Hölder series 
of Y .

Given X, Y two objects in C , we set

s+
X,Y = (IdX ⊗TrY+)(cY,XcX,Y ) ∈ EndC (X),

and

s−X,Y = (TrY− ⊗ IdX)(cY,XcX,Y ) ∈ EndC (X).

These induce two morphisms of abelian groups

s+
X : Gr(C ) −→ EndC (X)

[Y ] �−→ s+
X,Y

and
s−X : Gr(C ) −→ EndC (X)

[Y ] �−→ s−X,Y .

Definition A.3. An object X in C is called a brick if EndC (X) = C.

For instance, a simple object is a brick (and 1 is also a brick, but 1 is simple in a 
tensor category [6, Theorem 4.3.1]). Note also that a brick is indecomposable. So if C is 
moreover semisimple, then an object is a brick if and only if it is simple.

If X is a brick, then we will view s+
X,Y and s−X,Y as elements of C = EndC (X).

Proposition A.4. If X is a brick, then s+
X : Gr(C ) → C and s−X : Gr(C ) → C are 

morphisms of rings.
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Proof. Assume that X is a brick. We will only prove the result for s+
X , which amounts 

to show that

s+
X,Y⊗Y ′ = s+

X,Y s
+
X,Y ′ . (∗)

First, note that the following equality

cY⊗Y ′,XcX,Y⊗Y ′ = (cY,X ⊗ IdY ′) ◦ (IdY ⊗cY ′,XcX,Y ′) ◦ (cX,Y ⊗ IdY ′)

holds by (A.1) and (A.2). Taking IdX ⊗ IdY ⊗ TrY
′

+ on the right-hand side, one gets 
s+
X,Y ′cY,XcX,Y ∈ EndC (X ⊗ Y ) (because X is a brick). Applying now IdX ⊗ TrY+, one 

gets s+
X,Y ′s

+
X,Y IdX . Since

(IdX ⊗TrY+) ◦ (IdX ⊗ IdY ⊗TrY
′

+ ) = IdX ⊗TrY⊗Y ′

+ ,

this proves (∗). �
Proposition A.5. Let X be a brick and let X ′ be a subquotient of X which is also a brick. 
Then

s+
X = s+

X′ and s−X = s−X′ .

Proof. Indeed, the endomorphism (IdX ⊗ TrY+)(cY,XcX,Y ) of X is multiplication by a 
scalar, and this scalar can be computed on any non-trivial subquotient of X. �
Corollary A.6. Let X and X ′ be two bricks in C belonging to the same block. Then

s+
X = s+

X′ and s−X = s−X′ .

Proof. By Proposition A.5, we may assume that X and X ′ are simple. We may also 
assume that X is not isomorphic to X ′ and that Ext1C (X, X ′) = 0. Let X ∈ C such that 
there exists a non-split exact sequence

0 −→ X ′ −→ X −→ X −→ 0.

Since X �� X ′, we have EndC (X) = C, hence X is a brick. It follows from Proposition A.5
that

s+
X = s+

X = s+
X′ and s−X = s−X = s−X′ ,

as desired. �
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