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Abstract

We prove analogues for reductive algebraic groups of some results for finite groups due to Knörr
and Robinson from ‘Some remarks on a conjecture of Alperin’, J. London Math. Soc (2) 39 (1989),
48–60, which play a central rôle in their reformulation of Alperin’s conjecture for finite groups.

1. Introduction

Let G be a finite group, p a prime and k an algebraically closed field of characteristic p. By kG

we denote the modular group algebra of G. Alperin’s conjecture [1] asserts that the number of
isomorphism classes of simple kG-modules equals the sum of the number of isomorphism classes
of projective simple k[NG(P )/P ]-modules, where P is a p-subgroup of G and the sum is taken
over all p-subgroups P of G up to G-conjugacy. Knörr and Robinson [3, Theorem 3.8] reformulated
this conjecture in terms of the vanishing of an alternating sum of the number of simple modules for
normalizers of p-subgroups. More precisely, they showed that Alperin’s conjecture holds for all finite
groups if and only if their alternating sum conjecture holds for all finite groups. For finite groups of Lie
type, Alperin’s original conjecture was first proved by Cabanes [2] (see also [3, Theorem 5.3; 4; 6]).

The aim of this note is to prove analogues for reductive algebraic groups of some results of Knörr
and Robinson from [3] that are relevant in their reformulation of Alperin’s conjecture.

2. Complexes of nilpotent subalgebras of g

Let G be a connected reductive linear algebraic group defined over an algebraically closed field k.
We denote the Lie algebra of G by Lie G or by g; likewise for closed subgroups of G. For a closed
subgroup H of G, the normalizer of Lie H = h in G is defined by NG(h) = {g ∈ G | Ad g(h) ⊆ h},
where Ad g denotes the adjoint action of g ∈ G on g.

By Ru(H), we denote the unipotent radical of H and frequently write nil(h) for the nilradical
Lie (Ru(H)) of h.

We define several simplicial complexes consisting of various chains of nilpotent subalgebras of g.
They are analogues of the subcomplexes of p-subgroups in finite group theory mentioned above. To
our knowledge, they have not been studied yet in the context of reductive algebraic groups.
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Let N denote the simplicial complex associated to the partially ordered set of all chains of nilpotent
subalgebras of g. We define I to be the subcomplex of N , where for a fixed chain C in I there exists a
Borel subalgebra b of g such that each member of C is an ideal of b; equivalently, there exists a Borel
subgroup B of G such that each member of C is a B-submodule of nil(Lie B). Moreover, A is the
subcomplex of I, where each member of a given chain C is an Abelian ideal of a Borel subalgebra
associated to C. Finally, by R we denote the subcomplex of I of chains C, where each member n in
C satisfies n = nil(Lie NG(n)).

The empty chain is considered to be a (−1)-simplex in each case. We will assume that every
non-empty chain C in N considered is of the form n0 ⊂ n1 ⊂ · · · ⊂ nn, where n0 = {0}. The chain
stabilizer GC of C in G is defined to be GC := ⋂n

i=0 NG(ni ). We define the length of the chain C in
N by |C| = n, so that |C| = dim C + 1, where dim C is the dimension of C as a simplex.

The adjoint representation of G on g induces an action of G on each of the simplicial complexes
defined; for C as above and g ∈ G we define g · C to be the chain {0} = (Ad g)n0 ⊂ (Ad g)n1

⊂ · · · ⊂ (Ad g)nn. Let N /G denote the set of G-conjugacy classes of chains in N ; likewise for
the other complexes. Since all the chains we consider consist of nilpotent subalgebras of g, we may
assume that, up to G-conjugacy, any given chain lies in the nilradical nil(b) of a fixed Borel subalgebra
b of g. Thus, in particular, each of the sets of G-classes N /G, I/G, R/G and A/G is finite.

The following is the analogue of [3, Proposition 3.3] in the context of reductive algebraic groups.

PROPOSITION 2.1 Let A be an Abelian group and let f be a G-equivariant function from the set of
subgroups of G to A (that is, f is constant on conjugacy classes of subgroups of G). Then

∑

C∈N /G

(−1)|C|f (GC) =
∑

C∈I/G

(−1)|C|f (GC) =
∑

C∈R/G

(−1)|C|f (GC) =
∑

C∈A/G

(−1)|C|f (GC).

Proof . Observe that by the above remark, each of the sums is finite. We imitate the proof of [3,
Propostion 3.3]. The idea is to pair up chains which lie outside A (respectively, outside R), so that
their contributions in the above alternating sums cancel each other out.

First we show that the G-classes of chains in I \ A do not contribute to the alternating sum∑
C∈I/G(−1)|C|f (GC).
Let C be a chain n0 ⊂ n1 ⊂ · · · ⊂ nn in I \ A. Let B be a Borel subalgebra of G so that nn ⊆

u = nil(b). We pair C with a chain C ′ in I \ A as follows. Since nn is not Abelian, the commutator
subalgebra [nn, nn] is non-trivial. Let j > 0 be minimal so that [nn, nn] ⊆ nj . Observe that ñj :=
nj−1 + [nn, nn] is again a B-submodule of u. Now, if ñj �= nj , then we insert ñj (between nj−1 and
nj ) into C to obtain C ′, and if ñj = nj , then we remove nj from C to obtain C ′. In any case, C ′
again belongs to I \ A, since nn still belongs to C ′; if nn−1 + [nn, nn] = nn, then we have nn−1 = nn,
a contradiction. One readily checks that (C ′)′ = C,

∣∣C ′∣∣ = |C| ± 1, and that (g · C)′ = g · (C ′). It
follows that the chain stabilizers GC and GC ′ coincide. We may pair the contributions of the G-orbits
of C and C ′ and this shows that

∑

C∈I/G

(−1)|C|f (GC) =
∑

C∈A/G

(−1)|C|f (GC).

The very same argument as one above, with C taken from N instead of I, shows that in fact the
G-classes of chains in N \ A do not contribute to the alternating sum

∑
C∈N /G(−1)|C|f (GC). Thus
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we obtain ∑

C∈N /G

(−1)|C|f (GC) =
∑

C∈A/G

(−1)|C|f (GC).

Finally, we show that chains in I \ R do not make a contribution to
∑

C∈I/G(−1)|C|f (GC). Let
C be a chain n0 ⊂ n1 ⊂ · · · ⊂ nn in I \ R. We pair C with a chain C ′ in I \ R as follows. Let i > 0
be minimal so that ñi := nil(Lie NG(ni )) �= ni . Since ni ⊆ ñi , we have ñi �⊆ ni , by hypothesis on i.
Now let j ≥ i be maximal so that ñi �⊆ nj . If j < n and ñi + nj = nj+1 we remove nj+1 from C

and if ñi + nj �= nj+1 or if j = n we insert ñi + nj into C to obtain C ′. In any event, C ′ still belongs
to I \ R, since ni is still a member of the resulting chain C ′. Moreover, one readily checks that
(C ′)′ = C,

∣∣C ′∣∣ = |C| ± 1, and (g · C)′ = g · (C ′). Since NG(ni ) = NG(ñi ), we obtain GC = GC ′

in any case, and we may pair the contributions of the G-orbits of C and C ′; this shows that

∑

C∈I/G

(−1)|C|f (GC) =
∑

C∈R/G

(−1)|C|f (GC).

The result now follows.

Let n be a member of a chain C in R. Then as n is normalized by a Borel subgroup of G, its
normalizer NG(n) is therefore a parabolic subgroup of G. Thus by definition, each member of a chain
C in R is the nilradical of a parabolic subalgebra of g. Consequently, the chain stabilizer GC is simply
the parabolic subgroup whose nilpotent radical is the largest member in C.

We define another complex of chains, P , consisting of chains of parabolic subgroups of G. If C

is a chain in R, then we can associate to it a chain D in P of the corresponding parabolic subgroups
in G, that are the normalizers of the members of C, and conversely for a chain D in P we can form
a chain C in R by taking the nilradicals of the parabolic subgroups in D. Note that both operations
are maps of complexes and both are order-reversing and preserve the lengths of chains. Further, since
parabolic subgroups are self-normalizing, the chain stabilizer GD of a chain D in P is simply the
smallest parabolic subgroup in D. In particular, if C in R and D in P correspond in this way, then
GC = GD . This immediately yields our next result.

PROPOSITION 2.2 Let A be an Abelian group and let f be a G-equivariant function from the set of
subgroups of G to A. Then

∑

C∈R/G

(−1)|C|f (GC) =
∑

C∈P/G

(−1)|C|f (GC).

Let B denote the spherical Tits building of G. We can view B as the complex consisting of
the parabolic subgroups of G with reversed inclusion giving the poset structure [7]. Then, as com-
plexes, P is simply the barycentric subdivision of B and thus both P and B are homotopy equivalent
(cf. [5, equation (1.4)]). Let T be a maximal torus of G and let S be a set of simple roots of G with
respect to T . For a subset I of S let PI be the (standard) parabolic subgroup of G associated with I

and note that any parabolic subgroup of G is conjugate to PI for some I ⊆ S.
Our next result follows from Proposition 2.2, the comments in the previous paragraph and the fact

that a parabolic subgroup of G is self-normalizing. For a parabolic subgroup P of G conjugate to PI

let cr(P ) denote its (semisimple) corank in G, that is, cr(PI ) = |S \ I |.
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PROPOSITION 2.3 Let A be an Abelian group and let f be a G-equivariant function from the set of
subgroups of G to A. Then

∑

C∈P/G

(−1)|C|f (GC) =
∑

P∈B/G

(−1)cr(P )f (P ) =
∑

I⊆S

(−1)|S\I |f (PI ).

REMARK 2.4 Let p > 0 be the characteristic of k and let q = pa for some integer a. For a suitable
choice of a G-equivariant function f in Proposition 2.3, the resulting sum gives the number of
isomorphism classes of projective simple kG(q)-modules, where G(q) is the finite group of Lie type
associated to G and q [3, Theorem 5.3].

REMARK 2.5 There are analogues of all the results above, using complexes of chains of unipotent
subgroups of G (with G acting by conjugation) in place of nilpotent subalgebras of g. We leave the
details to the reader.

REMARK 2.6 All the above results are independent of the characteristic of the underlying field. In
particular, they are valid even if the characteristic of k is a bad prime for G, leading to degeneracies
in the commutator relations. Amusingly, all the above results are also true in characteristic zero.
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