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Let D be a connected graph. The Dynkin complex C D(A) of a D-
algebra A was introduced by the second author to control the
deformations of quasi-Coxeter algebra structures on A. In the
present paper, we study the cohomology of this complex when
A is the group algebra of a Coxeter group W and D is the Dynkin
diagram of W . We compute this cohomology when W is finite and
prove in particular the rigidity of quasi-Coxeter algebra structures
on kW . For an arbitrary W , we compute the top cohomology group
and obtain a number of additional partial results when W is affine.
Our computations are carried out by filtering the Dynkin complex
by the number of vertices of subgraphs of D . The corresponding
graded complex turns out to be dual to the sum of the Coxeter
complexes of all standard, irreducible parabolic subgroups of W .

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let g be a complex, semisimple Lie algebra and D the corresponding Dynkin diagram. The notion
of quasi-Coxeter algebra of type D was introduced in [TL2] to put the monodromy of the Casimir
connection of g [MTL,TL] and the quantum Weyl group representations arising from the quantum
group Uqg [Lu] on an equal footing, and allow for their comparison via a suitable deformation com-
plex.

Roughly speaking, a quasi-Coxeter algebra A of type D is an algebra which carries representa-
tions of the generalised braid group B D corresponding to D on its finite-dimensional modules. The
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deformation theory of such an algebra is controlled by a complex C D(A) concentrated in degrees
0 � p � |D| called the Dynkin complex of A.

If W is the Weyl group of g, the complex group algebra A = CW possesses quasi-Coxeter alge-
bra structures accounting respectively for the representations of B D coming from the Hecke algebra
H(W ) of W and the monodromy of Cherednik’s KZ connection [Ch] (see [TL2, Section 4] for details).

While in this case these representations may easily be shown to be equivalent, this raises nonethe-
less the question of computing the Dynkin diagram cohomology of CW and more generally of the
group algebra kW of a Coxeter group over an arbitrary ground ring k, when the underlying D-algebra
structure arises from the standard parabolic subgroups of W .

In the present paper, we answer this question when W is finite and k is a field of characteristic 0.
Along the way, we also determine the top cohomology groups for arbitrary Coxeter groups and obtain
partial results for affine ones.

We carry out our computations by filtering C D(kW ) by the number of vertices of subgraphs of D .
Interestingly, and crucially for us, the associated graded complex Gr(C D(kW )) turns out to be dual to
the sum of the Coxeter complexes of all standard, irreducible, parabolic subgroups of W . This greatly
simplifies the computation of H∗(C D(kW )) since the Coxeter complex is acyclic for affine Coxeter
groups and has cohomology in one degree only for finite ones.

We turn now to a detailed description of the paper.
In Section 2, we review the definition of the Dynkin complex of a D-algebra and define its canon-

ical filtration.
We then consider in Section 3 the case of the group algebra of a Coxeter group. In this case,

the Dynkin complex has a direct sum decomposition parametrised by the conjugacy classes of W .
Further, the graded complex Gr(C D(kW )) determined by the filtration of C D(kW ) decomposes as a
sum parametrised by connected subgraphs B of D . The summand associated to B is given by the
morphisms from the Coxeter complex of W B to kW B endowed with the adjoint action of W B .

In Section 4, we use the known description of the cohomology of the Coxeter complex for finite
and affine Coxeter groups to compute the cohomology of Gr(C D(kW )).

In Section 5, we consider finite Coxeter groups. We compute the induced differential on
H∗(Gr(C D(kW ))) and show that the resulting complex is quasi-isomorphic to C D .

We apply this result in Section 6 to prove the rigidity of quasi-Coxeter algebra structures on kW
when W is finite.

The main result of Section 7 is the construction of a basis of the top Dynkin cohomology of the
group algebra of an arbitrary Coxeter group: it is parametrised by cuspidal conjugacy classes such that
the centraliser of an element of the class is in the kernel of the sign character.

Section 8 is devoted to the determination of the Dynkin cohomology of finite Coxeter groups.
We proceed case by case, by explicit computation for W classical or of type G2 and F4, and by
using the program GAP for the remaining exceptional groups. In types A and B, we provide a very
simple formula for the corresponding generating series which, in type A turns out to be the product
of a bosonic and fermionic partition function. We show moreover that, for W classical, the Dynkin
cohomology spaces stabilise with the rank of W .

In the final Section 9, we describe the part of the Dynkin cohomology of an affine Weyl group
corresponding to conjugacy classes of elements of infinite order.

2. D-algebras and the Dynkin complex

This section reviews the definition of D-algebras and of the Dynkin complex. With the exception
of Section 2.4, the material is borrowed from [TL2].

2.1. D-algebras [TL2, Section 3]

Let D be a connected diagram, that is a nonempty undirected graph with no multiple edges or
loops. We denote the set of vertices of D by V (D) and set |D| = |V (D)|. By a subdiagram B ⊂ D we
shall mean a nonempty full subgraph of D , that is a graph consisting of a subset V (B) of vertices
of D , together with all edges of D joining any two elements of V (B). We will often abusively identify
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such a B with its set of vertices and write α ∈ B to mean α ∈ V (B). Two subdiagrams B1, B2 ⊆ D are
orthogonal if they have no vertices in common and no two vertices α1 ∈ B1, α2 ∈ B2 are joined by an
edge in D .

Let k be a fixed commutative ring with unit. By an algebra we shall mean a unital, associative
k-algebra. All algebra homomorphisms are assumed to be unital. Recall the following

Definition 2.1. A D-algebra is an algebra A endowed with subalgebras AB labelled by the connected
subdiagrams B of D such that the following holds:

• AB ⊆ AB ′ whenever B ⊆ B ′ .
• AB and AB ′ commute whenever B and B ′ are orthogonal.

If B1, B2 ⊆ D are subdiagrams with B1 connected, we denote by AB2
B1

the centraliser in AB1 of the

subalgebras ABi
2
, where Bi

2 runs over the connected components of B2.

2.2. The Dynkin complex [TL2, Section 5]

For any 0 � p � n = |D|, set

C p(A) =
⊕

α⊆B⊆D
|α|=p

A
B\α
B

where the sum ranges over all connected subdiagrams B of D and ordered subsets α = {α1, . . . ,αp} ⊆
V (B) of cardinality p and, by convention, A∅

B = AB . We denote the component of a ∈ C p(A)

along A
B\α
B by a(B;α) .

Definition 2.2. The group of Dynkin p-cochains on A is the subspace C D p(A) ⊂ C p(A) of elements a
such that

a(B;σα) = (−1)σ a(B;α)

where, for any σ ∈ Sp , σ {α1, . . . ,αp} = {ασ(1), . . . ,ασ(p)}.2

Note that

C D0(A) =
⊕
B⊆D

Z(AB) and C Dn(A) � AD

For 1 � p � n − 1, define a map dp
D : C p(A) → C p+1(A) by

(dDa)(B;α) =
p+1∑
i=1

(−1)i−1(a(B;α\αi) − a
(�B\αi

α\αi
;α\αi)

) (1)

where α = {α1, . . . ,αp+1}, �B\αi
α\αi

is the connected component of B \ αi containing α \ αi if one such

exists and the empty set otherwise, and we set a(∅;−) = 0. For p = 0, define d0
D : C0(A) → C1(A) by

2 In [TL2] Dynkin chains are defined with values in any D-bimodule M over A. We shall only need to consider M = A in this
paper and therefore restrict attention to this case.
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d0
Da(B;αi) = aB − aB\αi

where aB\αi is the sum of aB2 with B2 ranging over the connected components of B \ αi . Finally, set
dn

D = 0. The map dD leaves C D(A) invariant and satisfies d2
D = 0. The cohomology H D(A) of C D(A)

with respect to dD is called the Dynkin diagram cohomology of A.

2.3. Restriction [TL2, Section 5.2]

Let D ′ be a connected subgraph of D . We have a morphism of complexes

ResD
D ′ : C D(A) → C D(AD ′)

A
B\α
B 
 a �→

{
a if B ⊂ D ′

0 otherwise

2.4. The canonical filtration on C D(A)

Endow each chain group C p(A) with the N-grading given by

C p
q (A) =

⊕
α⊂B⊂D

|α|=p, |B|=q

A
B\α
B

where p � q � n, and set C D p
q (A) = C D p(A) ∩ C p

q (A). Since |�B\αi
α\αi

| < |B|, the Dynkin differential dD

maps C D p
q (A) to

C D p+1
�q (A) =

n⊕
r=q

C D p+1
r (A)

This gives a decreasing N-filtration on the Dynkin complex of A. The E2-term of the corresponding
spectral sequence is the cohomology of C D(A) with respect to the differential

(
d0

Da
)
(B;α)

=
p+1∑
i=1

(−1)i−1a(B;α\αi) (2)

3. The Dynkin complex of a Coxeter group

3.1. Description

Let W be an irreducible Coxeter group with system of generators S = {si}i∈I and let D be the
Coxeter graph of (W , S). For any subgraph B ⊆ D with vertex set I B ⊆ I , let W B ⊆ W be the standard
parabolic subgroup generated by si , i ∈ I B .

Regard the group algebra A = kW as a D-algebra by setting AB = kW B . By choosing a total order
on the vertices of D , we can identify the corresponding Dynkin complex with

C D p =
⊕

α⊂B⊂D
|α|=p

kW B
W B\α

where α now ranges over the unordered subsets of V (B) and the W B\α-fixed points in kW B are
taken with respect to the diagonal (adjoint) action. The Dynkin differential on kW B

W B\α is the map
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kW B
W B\α →

⊕
β∈B\α

kW B
W B\(α∪{β}) ⊕

⊕
B⊂B ′⊂D
β∈B ′\α:

B=�B′\{β}
α

kW B ′ W B′\(α∪{β})

given by (∑
β

(−1)pos(β,α∪{β})−1can,
∑
B ′,β

(−1)pos(β,α∪{β})can

)

where can is the canonical inclusion map and for any β ∈ β ⊂ V (D), pos(β,β) ∈ {1, . . . , |β|} is the
position of β relative to the total order on β .

3.2. Decomposition by conjugacy classes

Let C be the set of conjugacy classes of W . For any c ∈ C , set

C D p
c =

⊕
α⊂B⊂D
|α|=p

k(W B ∩ c)W B\α

where, for any set X , k(X) is the vector space with basis X . Then C Dc = ⊕
p C D p

c is a subcomplex
of C D and

C D =
⊕
c∈C

C Dc

We denote the cohomology of the corresponding complex by H Dc(kW ).

3.3. Filtration

When filtered as in Section 2.4, the associated graded complex Gr(C D) (=the E1-term of the
spectral sequence) is the sum over all connected subdiagrams B ⊆ D of the subcomplexes C D B given
by

C D p
B =

⊕
α⊂B, |α|=p

kW B
W B\α

�
⊕

α⊂B, |α|=p

HomW B

(
k(W B/W B\α),kW B

)
(3)

Recall that the Coxeter complex CC B of W B is the (homology) complex

CC B
p =

⊕
α⊂B, |α|=p

k(W B/W B\α)

with differential given by

∂C (wW B\α) =
p∑

(−1)i−1 wW (B\α)∪{αi}

i=1
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where α = {α1, . . . ,αp} with α1 < · · · < αp . The following immediate result identifies the B-
component C D B of Gr(C D) with the dual of the Coxeter complex of W B with values in kW B .

Proposition 3.1. The isomorphism (3) induces an isomorphism of complexes

C D B � HomW B

(
CC B ,kW B

)
4. The cohomology of C D B

Assume henceforth that k is a field of characteristic 0.

4.1. Finite Coxeter groups

Assume in this subsection that W B is finite. Let S B be the unit sphere in the Euclidean reflection
representation of W B , and cellulate S B by its intersections with the chambers of W B . Then, the
Coxeter complex CC B is the cellular homology complex of S B , reduced and shifted by one [Hu]. Thus,
H p(CC B) is zero if p < |B| and the sign representation ε of W B otherwise, so that, by Proposition 3.1,
we have

H p(C D B) �
{

kW B
ε if p = |B|

0 otherwise
(4)

where kW B
ε ⊂ kW B is the subspace transforming like the sign representation ε of W B .

Consider kW B
ε[−|B|], a complex concentrated in degree |B|. We have a morphism of complexes

iB : kW B
ε[−|B|] → C D B given by the inclusion

kW B
ε ↪→ kW B = kW B

W B\B

in degree |B|. Let AltB : kW B → kW B
ε be the projection given by

AltB( f ) = 1

|W B |
∑

w∈W B

ε(w)w f w−1

Since AltB is zero on
∑

α∈B kW B
W B\α , it defines a morphism of complexes ρB : C D B → kW B

ε[−|B|].
Summarising, we have the following proposition.

Proposition 4.1. If W B is finite, the maps iB : kW B
ε[−|B|] → C D B and ρB : C D B → kW B

ε[−|B|] are quasi-
isomorphisms such that ρB ◦ iB = id.

4.2. Affine Coxeter groups

Assume now that W B is an affine Coxeter group, and let E B be the Euclidean space of dimension
|B| − 1 cellulated by the alcoves of W B . The Coxeter complex CC B is the cellular homology com-
plex of E B , reduced and shifted by one [Hu], and is therefore acyclic. Its terms of positive degree
are induced from the trivial representation of finite (parabolic) subgroups of W B and are therefore
projective. Thus, CC B is a projective resolution of the trivial W B -module. It follows from this, and
Proposition 3.1, that

H p(C D B) �
{

Extp−1
W B

(k,kW B) if p � 2

0 otherwise
(5)

where kW B is endowed with the adjoint action of W B .
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5. The E2-term of the Dynkin complex of a Coxeter group

5.1. Finite Coxeter groups

We assume in this section that the Coxeter group W is finite.
Consider the complex

HC =
⊕
B⊆D

kW B
ε (6)

where kW B
ε appears in degree |B|, endowed with the differential d# given by

d# =
∑

B ′
(−1)(B ′;B) · AltB ′ : kW B

ε →
⊕
B⊂B ′

|B ′|=|B|+1

kW B ′ε (7)

where, given B ′ ⊆ D with ordered set of vertices α1 < · · · < αq and B ⊂ B ′ such that B ′ \ B = {αi}, we
set (B ′; B) = i.

Note that this complex is concentrated in degrees � 2 since, for |B| = 1, we have kW B
ε =

kS2
ε = 0.

Consider the application φ : C D → HC given by

kW B
W B\α 
 a �→ AltB(a) (8)

Proposition 5.1. The application φ is a quasi-isomorphism of complexes.

Proof. Let a ∈ kW B
W B\α . We have φdD(a) = 0 = φ(a) if α �= B . On the other hand, if α = B , we have

φdD(a) =
∑

B⊂B ′⊂D
|B ′|=|B|+1

(−1)pos(B ′\B,B ′) Alt(a) = dDφ(a)

so that φ is compatible with the differential.
Consider the filtration on HC given by (HC�q)

p = HC p for p � q and (HC�q)
p = 0 for p < q.

The morphism φ is a morphism of filtered complexes. Via the canonical isomorphisms of Section 3,
the induced morphism φ̄p : C D�p/C D�p+1 → HC�p/HC�p+1 becomes the sum over connected
subdiagrams B of D of cardinality p of the morphisms ρB of Section 4.1. It follows that φ̄p is a
quasi-isomorphism by Proposition 4.1. The proposition follows. �

Let D ′ be a connected subgraph of D and HC ′ the corresponding complex. Via the isomorphisms φ

above, the restriction map of Section 2.3 becomes

ResD
D ′ : HC → HC ′

kW ε
B 
 a �→

{
a if B ⊂ D ′

0 otherwise

Remark 5.2. It seems an interesting problem to determine whether the complex (6)–(7) is the cellular
cochain of a C W -complex or the Morse complex of a smooth manifold naturally associated to W .
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5.2. Finite part

Assume now that W is an arbitrary Coxeter group. We proceed as in Section 5.1 for the subspace
of C D corresponding to subdiagrams B ⊆ D such that W B is finite.

Let C D inf ⊂ C D be the subcomplex

C D inf =
⊕
B⊆D:

|W B |=∞

C D B

Let

HC f =
⊕
B⊂D:|W B |<∞

kW B
ε

where B runs over connected subdiagrams of D which are Dynkin. Here, kW B
ε is in degree |B|,

endowed with the differential d# given by∑
B ′

(−1)(B ′;B) · AltB : kW B
ε →

⊕
B⊂B ′

|B ′|=|B|+1

kW B ′ε

Consider the application

φ : C D → HC f

kW B
W B\α 
 a �→

{
AltB(a) if α = B and |W B | < ∞
0 otherwise

As in Proposition 5.1, one checks that φ is a morphism of complexes.

Proposition 5.3. There is a distinguished triangle

C D inf
can−−→ C D

φ−→ HC f �

Proof. One shows as in Proposition 5.1 that the map C D/C Dinf → HC f induced by φ is a quasi-
isomorphism. �
6. Rigidity of quasi-Coxeter algebra structures on kW

We apply below the results of Section 5 to show that quasi-Coxeter algebra structures on kW
are rigid if W is finite. We begin by reviewing the definition of quasi-Coxeter algebras and their
deformations.

6.1. Quasi-Coxeter algebras [TL2, Section 3]

Let R be a commutative ring with unit. Recall that a quasi-Coxeter algebra structure on RW is given
by endowing it with the following data:

• Local monodromies: for each i ∈ I , an invertible element Si ∈ RWαi
∼= RZ2;

• Elementary associators: for each connected subdiagram B ⊆ D and vertices αi �= α j ∈ B , an in-
vertible element Φ(B;αi ,α j) ∈ RW ;
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satisfying the following axioms:

• Orientation:

Φ(B;α j ,αi) = Φ−1
(B;αi ,α j)

• Support:

Φ(B;αi ,α j) ∈ RW B
B\{αi ,α j}

• Braid relations: for any connected subdiagram B ⊆ D consisting of two vertices αi,α j such that
the order mij of si s j ∈ W is finite, the following holds:

Ad(Φ(B;αi ,α j))(Si) · S j · · · = S j · Ad(Φ(B;αi ,α j))(Si) · · · (9)

where the number of factors on each side is equal to mij ;

as well as an additional axiom called the generalised pentagon relations, see [TL2, Section 3.17].
The above axioms are designed so that the elements Si and Φ(B;αi ,α j) define a representation of

the Tits braid group BW on any W -module, with isomorphic quasi-Coxeter algebra structures yielding
equivalent representations of BW , see [TL2, Section 3.14].

6.2. Deformations of quasi-Coxeter algebra structures [TL2, Section 5]

Let now R = k[[h̄]] be the ring of formal power series in a variable h̄. Let

({Si}, {Φ(B;αi ,α j)}
)

and
({

S ′
i

}
,
{
Φ ′

(B;αi ,α j)

})
be quasi-Coxeter algebra structures on RW = kW [[h̄]] such that, mod h̄

Φ(B;αi ,α j) = 1 = Φ ′
(B;αi ,α j)

Assume further that Si = S ′
i for any αi ∈ D , and that the two structures coincide mod h̄n for some

n � 1, that is that

Φ ′
(B;αi ,α j)

= Φ(B;αi ,α j) + h̄nϕ(B;αi ,α j) mod h̄n+1 (10)

for any αi �= α j ∈ B ⊆ D , where ϕ(B;αi ,α j) ∈ kW B
B\{αi ,α j} .

Then, by [TL2, Theorem 5.22], ϕ = {ϕ(B;αi ,α j)} is a 2-cocycle in the Dynkin complex C D(kW ) and

the two structures are isomorphic mod h̄n+1 if, and only if, ϕ is a coboundary.

6.3. Rigidity

Let {Si}i∈I be elements such that

Si ∈ kWαi [[h̄]] and Si = si mod h̄

Theorem 6.1. Assume that W is finite. Then there exists, up to isomorphism, at most one quasi-Coxeter algebra
structure on kW [[h̄]] with local monodromies given by the elements Si and associators equal to 1 mod h̄.
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Proof. Let ϕ ∈ C D2(kW ) be the infinitesimal defined by (10). The linearisation of the braid rela-
tions (9) reads, for any connected subdiagram B ⊆ D with vertex set {αi,α j}

AltB(ϕ(B;αi ,α j)) = 0

where AltB : kW B → kW B
ε is the antisymmetrisation operator.

The image of ϕ in HC2(kW ) = ⊕
B⊆D: |B|=2 kW B

ε via the morphism (8) is therefore zero so that

[ϕ] = 0 in H D2(kW ) by Proposition 3.1. �
6.4. When k = C, one can endow kW [[h̄]] with two quasi-Coxeter algebra structures having local

monodromies

Si = si · exp(π
√−1kαi h̄si)

where qαi ∈ C are a set of complex weights invariant under W [TL2, Section 4]. The first structure
comes from the standard one on the Iwahori–Hecke algebra HW obtained by quotienting the group
algebra of the braid group BW by the quadratic relations

(Si − qi)
(

Si + q−1
i

) = 0

where qi = exp(2π
√−1kαi h̄), the second one underlies the monodromy of Cherednik’s rational KZ

connection [Ch].
By [TL2, Section 4.2.2], these two structures are isomorphic. Theorem 6.1 strengthens this result

by showing that there are no other such structures with the above local monodromies.

7. Top dimensional Dynkin diagram cohomology of Coxeter groups

7.1. Sign-coinvariants of kW

Let W be a Coxeter group with system of generators S = {si}i∈I . Let V be a W -module and set

V =
∑

i

V si and Vε = V /V (11)

Proposition 7.1.

(1) V is invariant under W .
(2) For any v ∈ V and w ∈ W ,

w v = ε(w)v mod V

where ε is the sign character of W . Thus, W acts on Vε by ε.
(3) If V = ⊕

j V j is a direct sum of W -submodules, then V = ⊕
j V j . In particular,

Vε =
⊕

j

(V j)ε
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Proof. (i) Since V si = (1 + si)V , we have

s j V si = s j(1 + si)V ⊂ (1 + s j)(1 + si)V + (1 + si)V ⊂ V s j + V si

(ii) Write w = si1 · · · si
 . Then, for any v ∈ V

w v = si1 · · · si
 v

= −si2 · · · si
 v + (1 + si1)si2 · · · si
 v

= (−1)
v +

∑

j=1

(−1) j−1(1 + si j )si j+1 · · · si
 v

(iii) is clear. �
Remark 7.2. Proposition 7.1 also follows from the fact that V si = (1 + si)V so that Vε � ε ⊗kW V .

Let now V = kW endowed with the conjugation action of W and let C be the set of conjugacy
classes of W . For any c ∈ C , choose wc ∈ c and let Awc be the image of wc ∈ kW in kW ε . Let CW (wc)

be the centraliser of wc in W .

Proposition 7.3.

(1) For any Coxeter group W , we have Awc �= 0 when ε(CW (wc)) = 1 and

kW ε =
⊕
c∈C:

ε(CW (wc))=1

kAwc

(2) If W is finite, then given c such that ε(CW (wc))= 1, the element Awc = ∑
w ′∈W /CW (wc)

ε(w ′)w ′wc w ′−1

is nonzero and

kW ε =
⊕
c∈C:

ε(CW (wc))=1

kAwc

Proof. (i) Since kW = ⊕
c∈C Fc , where Fc = k(c) is the subspace spanned by elements of c, Propo-

sition 7.1 yields kW ε
W = ⊕

c∈C (Fc)ε . Since W acts transitively on c, it follows from (ii) of Proposi-
tion 7.1 that (Fc)ε is spanned by Awc and therefore at most one-dimensional. If w centralises wc ,
then, by (ii) of Proposition 7.1,

Awc = Aw wc w−1 = w Awc = ε(w)Awc

so that Awc is zero if the sign character is not trivial on the centraliser of wc . Conversely, if
ε(CW (wc)) = 1, the assignment w wc → ε(w) consistently defines a nonzero linear form on Fc which
descends to (Fc)ε so that Awc �= 0. (ii) readily follows from (i) and the fact that if W is finite, Vε � V ε

for any W -module V . �
Consider c ∈ C such that ε(CW (wc)) = 1. Then, Awc depends only on c and we put Ac = Awc .

Similarly, when W is finite we put Ac = Awc .
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7.2. Top cohomology

Assume now that W is irreducible of rank n and let D be its Coxeter graph. Let P be the collection
of proper, maximal connected subdiagrams B of D and kW P ⊂ kW the span of kW B as B varies in P .
For any c ∈ C , let Ac be the class of Ac in kW ε/(kW P ∩ kW ).

Proposition 7.4. We have a decomposition in one-dimensional subspaces

H Dn(kW ) =
⊕
c∈C:

ε(CW (wc))=1
c∩W B=∅,∀B∈P

kAwc

Proof. The top degree Dynkin differential dn
D is zero. Moreover,

dn−1
D a(D;D) =

n∑
i=1

(−1)i−1(a(D;D\αi) − a
(�D\αi

D\αi
;D\αi)

)

Since a(D;D\αi) ∈ kW si and a
(�D\αi

D\αi
;D\αi)

∈ kW�D\αi
D\αi

,

Im dn−1
D =

n∑
i=1

kW si +
∑
B∈P

kW B

The result now follows from Proposition 7.3. �
8. Finite Coxeter groups

8.1. Finite Coxeter groups of rank 2

Let W = I2(m), m � 3, be the Coxeter group with generators s, t and relations s2 = 1 = t2 and
(st)m = 1. For p = 0, . . . ,m − 1, let cp be the conjugacy class of (st)p .

Proposition 8.1.

kW ε =
� m−1

2 �⊕
p=1

kAcp

Proof. The only conjugacy classes involved in the decomposition of Proposition 7.3 are those of words
in s, t of even length and therefore those of the powers of st and ts. Since ts = s(st)s we need only
consider the classes cp , p = 1, . . . ,m − 1. Moreover, since (st)m−p = (ts)p = s(st)p s, cp = cm−p and
we may restrict our attention to 1 � p � m/2. Finally, since for m even (st)m/2 is central in W , the
only possible relevant values of p are 1, . . . , �m−1

2 �. The proposition follows from the fact that for
p = 1, . . . , �m−1

2 �, the centraliser of (st)p in W is generated by st . �
Since the differential d# (7) is zero for W of rank 2, Proposition 8.1 implies the following
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Theorem 8.2. For any m � 3,

dim H D p(
kI2(m)

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if p = 0

0 if p = 1

�m−1
2 � if p = 2

0 if p � 3

8.2. Type An

Let W = Sn+1 be the Weyl group of type An , n � 1. The conjugacy classes in W are parametrised
by partitions λ = (λ1, . . . , λk) of n + 1, with cλ the class of the product of cycles

τλ = (1 2 · · ·λ1)(λ1 + 1λ1 + 2 · · ·λ1 + λ2) · · ·
(

k−1∑
i=1

λi + 1 · · ·
k∑

i=1

λi

)

8.2.1. For any m ∈ N
∗ , let

Om = {λ � m | λi ∈ 2N + 1, ∀i and λi �= λ j, ∀i �= j} (12)

be the set of partitions of m consisting of odd, distinct parts.

Proposition 8.3.

kSn+1
ε =

⊕
λ∈On+1

kAcλ

Proof. Since ε(m m + 1 · · ·m + p − 1) = (−1)p−1, the only conjugacy classes involved in the decom-
position of Proposition 7.3 are those such that each λi is odd. Moreover, since the product

(m m + 1 · · ·m + p − 1)(m′ m′ + 1 · · ·m′ + p − 1)

of two disjoint cycles of equal length is centralised by π = (m m′) · · · (m+ p −1m′ + p −1) and ε(π) =
(−1)p , the λi ’s must all be distinct. When this last condition is fulfilled, any element centralising τ λ

is of the form

ζ = (1 2 · · ·λ1)
m1(λ1 + 1λ1 + 2 · · ·λ1 + λ2)

m2 · · ·
(

k−1∑
i=1

λi + 1 · · ·
k∑

i=1

λi

)mk

for some 0 � mi � λi − 1. Since ε(ζ ) = ∏
i((−1)λi−1)mi , the partitions arising in the decomposition of

Proposition 7.3 are exactly those in On+1. �
8.2.2. Identify the connected subdiagrams of the Coxeter graph D of W with the subintervals

of [1,n] having integral endpoints so that W [i, j] � S j−i+2. For any 2 � p � n and 1 � i � n − p + 1,
let

Acλ

[i,i+p−1] = Alt[i,i+p−1]
(
τλ
[i,i+p−1]

) ∈ kW ε
[i,i+p−1] (13)

be the generator corresponding to λ ∈ O p+1. We shall need the following
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Lemma 8.4.

Alt[i,i+p]
(

Acλ

[i,i+p−1]
) =

{
Acλ∪{1}

[i,i+p] if 1 /∈ λ

0 otherwise

and

Alt[i−1,i+p−1]
(

Acλ

[i,i+p−1]
) =

{
(−1)p+1 Acλ∪{1}

[i−1,i+p−1] if 1 /∈ λ

0 otherwise

provided i � n − p and i � 2 respectively.

Proof. The first identity follows from the fact that under the inclusion S[i,i+p−1] ⊂ S[i,i+p] ,
τλ
[i,i+p−1] is mapped to τ

λ∪{1}
[i,i+p] . The second one follows from the first and the fact that, in S[i−1,i+p−1] ,

τλ
[i,i+p−1] = Ad

(
(i − 1 i · · · i + p)

)
τλ
[i−1,i+p−2]

and ε(i − 1 i · · · i + p) = (−1)p+1. �
8.2.3. Label the nodes of D as in [Bo, Planche I] and order them as α1 < · · · < αn . For any p =

1, . . . ,n, let

d#
p :

n−p+1⊕
i=1

kW [i,i+p−1]ε →
n−p⊕
j=1

kW [ j, j+p]ε

be the differential of HC , where the right-hand side is understood to be 0 if p = n. Set

O∗
p+1 = {λ ∈ O p+1 | 1 /∈ λ} (14)

Proposition 8.5. For any p = 2, . . . ,n,

Im d#
p−1 =

n−p+1⊕
i=1

⊕
λ∈O p+1:

1∈λ

kAcλ

[i,i+p−1] (15)

Ker d#
p = Im d#

p−1 ⊕
⊕

λ∈O∗
p+1

kBλ (16)

where Bλ = ∑n−p+1
i=1 Acλ

[i,i+p−1] .

Proof. Since

([i − 1, i + p − 2]; [i, i + p − 2]) = 1 and
([i, i + p − 1]; [i, i + p − 2]) = p
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Lemma 8.4 yields, for any λ ∈ O p and i = 1, . . . ,n − p + 2,

d#
p−1 Acλ

[i,i+p−2] = δ1/∈λ · (−1)p(−δi�2 · Acλ∪{1}
[i−1,i+p−2] + δi�n−p+1 · Acλ∪{1}

[i,i+p−1]
)

(17)

It follows that, for any λ ∈ O∗
p ,

d#
p−1

(
i∑

j=1

Acλ

[ j, j+p−2]

)
= (−1)p Acλ∪{1}

[i,i+p−1] (18)

which yields (15). It also follows from (17) that, for λ ∈ O∗
p+1, Bλ is the unique linear combination

of Acλ

[i,i+p−1] such that d#
p Bλ = 0, which yields (16). �

8.2.4.

Theorem 8.6. For any 0 � p � n,

dim H D p(kSn+1)cλ =
{

1 if λ = λ′ ∪ {1n−p} and λ′ ∈ O∗
p+1

0 otherwise
(19)

Proof. (19) holds for p � 2 by Proposition 8.5 and therefore for p � 0 since dim H Di(kSn+1) = 0 =
|O∗

i+1| for i = 0,1. �
8.2.5. Generating function

Theorem 8.7. Set

χA(q, t) =
∑

n�1,p�0

qnt p dim H D p(kSn+1)

Then,

χA(q, t) = 1

1 − q

∏
d�1(1 + (qt)2d+1) − 1

qt

Proof. Since H D p(kSn+1) = 0 if p = 0 or p � n + 1, we have

χA(q, t) =
∑

n�p�1

qnt p dim H D p(kSn+1)

=
∑
p�1

t pqp

1 − q

∣∣O∗
p+1

∣∣
= 1

1 − q

∏
d�1(1 + (qt)2d+1) − 1

qt

where the last identity follows from the fact that∑
m�1

zm
∣∣O∗

m

∣∣ =
∑
m�2

zm
∣∣O∗

m

∣∣ = (
1 + z3)(1 + z5)(1 + z7) · · · − 1 � (20)
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Remark 8.8. Up to a multiplication by qt , the generating function χA is the product of a Fermionic
partition function by that of a one-dimensional harmonic oscillator. It would be interesting to know
whether the direct sum

⊕
n�1,p�0

H D p(kSn+1)

possesses a natural action of an infinite-dimensional Clifford algebra similar in spirit to that on the
cohomology of the Hilbert schemes of points on a surface [Gr,Na].

8.3. Type Bn

Let now W = Sn �Z
n
2 be the Weyl group of type Bn , n � 2, and denote the generators of Z

n
2 by εi ,

i = 1, . . . ,n. The conjugacy classes in W are parametrised by ordered pairs of partitions (λ,μ) such
that |λ| + |μ| = n, where |λ| = ∑

i λi [GP, Proposition 3.4.7]. The class c(λ,μ) is that of the product
τλτ̃μ , where

τλ = (1 2 · · ·λ1)(λ1 + 1λ1 + 2 · · ·λ1 + λ2) · · · (|λ| − λk + 1 · · · |λ|) (21)

and

τ̃ μ = (|λ| + 1 · · · |λ| + μ1
)
ε|λ|+μ1 · · · (n − μ
 + 1 · · ·n)εn (22)

Proposition 8.9.

k
(
Sn � Z

n
2

)ε =
{⊕

ν�n/2 kAc(∅,2ν)
if n is even

0 if n is odd

Proof. A necessary condition for a conjugacy class c(λ,μ) to contribute to the decomposition of Propo-
sition 7.3 is that the λi be odd and the μ j even since ε(εi) = −1. Since (m m + 1 · · ·m + p − 1) is
centralised by εm · · ·εm+p−1 and ε(εm · · ·εm+p−1) = (−1)p , λ must in fact be the empty partition. In
particular, n must be even.3 There remains to show that if μ � n only contains even parts, the sign
character ε is trivial on the centraliser of τ̃ μ . This is readily reduced to the case when μ only has
one part which follows in turn from the following result. �
Lemma 8.10. The centraliser of (1 · · · p)εp in Sp � Z

p
2 is the group Z2p generated by (1 · · · p)εp .

Proof. If w ∈ Sp � Z
p
2 centralises (1 · · · p)εp , its projection in Sp centralises (1 · · · p) and is therefore

equal to (1 · · · p)s for some 0 � s � p − 1. Thus ((1 · · · p)εp)−s w centralises (1 · · · p)εp and lies in Z
p
2

from which it readily follows that it is either equal to 1 or to ε1 · · ·εp = ((1 · · · p)εp)p . �
3 This also follows from the fact that the central element ζ = ε1 · · ·εn is of sign (−1)n so that

kW ε ⊆ {
f ∈ kW

∣∣ ζ f ζ = (−1)n f
}

is zero if n is odd.
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Proposition 8.11. For any 0 � p � n, we have

dim H D p(kW Bn )cλ,μ =

⎧⎪⎨⎪⎩
1 if (μ = 0 and λ = λ′ ∪ {1n−p−1} with λ′ ∈ O∗

p+1)

or (λ = (1n−p) and μ = 2ν with ν � p/2)

0 otherwise

In particular,

dim H D p(W Bn ) = dim H D p(kSn) + δp∈2N∗ · P (p/2)

where P is the partition function.

Proof. Identify the connected subdiagrams of the Coxeter graph D of W with the subintervals of [1,n]
having integral endpoints so that

W [i, j] �
{

S j−i+2 if j � n − 1

Sn−i+1 � Z
n−i+1
2 if j = n

For 1 � p � n − 1 and 1 � i � n − p, let

Acλ

[i,i+p−1] ∈ kW ε
[i,i+p−1]

be the generator corresponding to λ ∈ O p+1, as in (13). By Proposition 8.9, Alt[i,n](Acλ

[i,n−1]) = 0. Since,
in addition kW [n−p+1,n]ε is zero whenever p is odd and of dimension |{ν � p/2}| = P (p/2) when p is
even, the complex (

⊕
B⊆D kW B

ε;d#) of Section 5 decomposes as the direct sum of the corresponding
complex for Sn and a complex concentrated in positive, even degrees with chain groups of dimension
δp∈2N∗ · P (p/2). �
Theorem 8.12. Set χB(q, t) = ∑

n�2, p�0 qnt p dim H D p(kW Bn ). Then,

χB(q, t) =
∏

d�1(1 + (qt)2d+1) − 1

(1 − q)t
+

∏
d�1(1 − (qt)2d)−1 − 1

1 − q

Proof. This follows from Proposition 8.11, Theorem 8.7 and the fact that∑
m�0

zm P (m) =
∏
d�1

(
1 − zd)−1 �

8.4. Type Dn

Let Z
n
2,+ ⊂ Z

n
2 be the kernel of the sign character and W = Sn � Z

n
2,+ the Weyl group of type Dn ,

n � 3. The conjugacy classes in W fall into two types [GP, Proposition 3.4.12]:

type I. These are labelled by ordered pairs (λ,μ) of partitions such that |λ|+|μ| = n and the number
of parts [μ] of μ is even. The corresponding class c(λ,μ) is that of the product τλτ̃μ , where
τλ , τ̃ μ are given by (21)–(22).

type II. These are labelled by partitions λ of n all of whose parts are even, with cλ,II the class of

τλ,II = (1 2 · · ·λ1) · · · (n − λk−1 − λk + 1 · · ·n − λk)(n − λk + 1 · · ·n)εn−1εn
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8.4.1.

Proposition 8.13.

(
kSn � Z

n
2,+

)ε =
⊕

0�m�n
λ∈Om

μ∈On−m:
[μ]∈2N

kAc(λ,μ) ⊕
{⊕

ν�n/2: [ν]∈2N
kAc(∅,2ν)

if n is even

0 if n is odd
(23)

Proof. Conjugacy classes of type II do not contribute to the decomposition of Proposition 7.3 since
τλ,II is centralised by

w = (n − λk + 1 · · ·n)εn−1εn

and ε(w) = (−1)λk−1 = −1. Consider now a class c(λ,μ) of type I which contributes to the decom-
position of Proposition 7.3. As in Proposition 8.3, the λi must be odd and distinct if λ is nonempty.
Moreover, since for any 1 � i < j � 


wi, j =
(

|λ| +
i−1∑
a=1

μa + 1 · · · |λ| +
i∑

a=1

μa

)
ε|λ|+∑i

a=1 μa

·
(

|λ| +
j−1∑
a=1

μa + 1 · · · |λ| +
j∑

a=1

μa

)
ε|λ|+∑ j

a=1 μa
∈ W

centralises τλτ̃μ and ε(wi, j) = (−1)μi+μ j , all μi must be of the same parity. Finally, since for λ1 odd,

w = (1 2 · · ·λ1)ε1 · · ·ελ1 · (|λ| + 1 · · · |λ| + μ1
)
ε|λ|+μ1

lies in W , centralises τλτ̃μ and ε(w) = (−1)μ1−1, all μi must be odd, and therefore distinct, if λ is
nonempty.

There remains to show that if c is a conjugacy class appearing on the right-hand side of (23), then
ε is trivial on the centraliser of any element of c. If c = c(∅,μ) with all μi even, the centraliser of τ̃ μ

in Z
n
2 � Sn lies in the kernel of ε by Proposition 8.9. A fortiori, this is true in Z

n
2,+ � Sn . If, on the

other hand, c = c(λ,μ) , where λ and μ are either empty or consist of odd, distinct parts, it follows
from Lemma 8.14 below that the component σ ∈ Sn of any w ∈ W centralising τλτ̃μ is of the form

(1 2 · · ·λ1)
m1 · · · (|λ| − λk + 1 · · · |λ|)mk

· (|λ| + 1 · · · |λ| + μ1
)m′

1 · · · (n − μ
 + 1 · · ·n)m′



so that ε(w) = ε(σ ) = 1. �
Lemma 8.14. The centraliser of (1 · · · p)(p + 1 · · ·2p)ε2p in S2p � Z

2p
2 is the product of the centralisers

of (1 · · · p) and (p + 1 · · ·2p)ε2p in S{1,...,p} � Z
p
2 and S{p+1,...,2p} � Z

p
2 respectively.
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8.4.2. Label now the nodes of the Dynkin diagram D of W as in [Bo, Planche IV], so that αn−2 is
the trivalent node of D if n � 4, and order them as α1 < · · · < αn−2 < αn−1 < αn . For any 1 � i � j �
n − 2, let [i, j] ⊂ D be the connected subdiagram with vertices αi, . . . ,α j . For any i = 1, . . . ,n − 2, let
B±

i ⊂ D be the connected subdiagrams with vertices αi, . . . ,αn−2 and αn−1 (resp. αn) and BY
i ⊆ D

the subdiagram with vertices αi, . . . ,αn . Thus,

W [i, j] � S j−i+2, W B±
i

� Sn−i+1 and W BY
i

� Sn−i+1 � Z
n−i+1
2,+

Let σ ∈ Aut(W ) be the involution induced by fixing the nodes α1, . . . ,αn−2 and permuting αn−1

and αn so that σ(W B+
i
) = W B−

i
. For any λ ∈ On−i+1, set Acλ

B−
i

= σ Acλ

B+
i

.

Proposition 8.15. The following holds for 3 � p � n,

Im d#
p−1 =

⊕
λ∈O p+1:

1∈λ

n−p−1⊕
i=1

kAcλ

[i,i+p−1]

⊕
⊕

λ∈O p+1:
1∈λ

V λ

⊕
⊕

1�m�p
λ∈Om

μ∈O p−m:
1∈λ,[μ]∈2N

kAc(λ,μ)

BY
n−p+1

(24)

where the first summand only arises if p � n − 2 and

V λ =

⎧⎪⎨⎪⎩
〈Acλ

B+
n−p

+ Acλ

B−
n−p

, Acλ

B+
n−p

− Ac(λ\{1},∅)

BY
n−p+1

, Acλ

B−
n−p

+ Ac(λ\{1},∅)

BY
n−p+1

〉 if p � n − 1

kAc(λ\{1},∅)

BY
1

if p = n
(25)

Proof. By (18), the image of the restriction of d#
p−1 to

n−p−1⊕
j=1

kW [ j, j+p−2]ε

is the span of the generators Acλ

[i,i+p−1] , i = 1, . . . ,n − p − 1, as λ runs through the elements of O p+1

containing 1. This accounts for the first summand in (24). Further, since

([n − p − 1,n − 2]; [n − p,n − 2]) = 1 and
(

B±
n−p; [n − p,n − 2]) = p

Lemma 8.4 yields, for any λ ∈ O p ,

d#
p−1

(
Acλ

[n−p,n−2]
) = (−1)p · δ1/∈λ · (−Acλ∪{1}

[n−p−1,n−2] + Acλ∪{1}
B+ + Acλ∪{1}

B−
)

n−p n−p
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Thus, if p � n − 1 and λ ∈ O p+1 contains 1,

Acλ

B+
n−p

+ Acλ

B−
n−p

∈ Im d#
p−1 (26)

To proceed, we need the following

Lemma 8.16. For any λ ∈ O p ,

AltBY
n−p+1

(
Acλ

B±
n−p+1

) = Ac(λ,∅)

BY
n−p+1

Proof. The “+” identity follows from the fact that, under the inclusion W B+
n−p+1

⊂ W BY
n−p+1

, τλ

B+
n−p+1

is

mapped to τλ

BY
n−p+1

. The “−” one follows by applying the automorphism σ and noticing that Ac(λ,∅)

BY
n−p+1

is fixed by σ . Indeed if 1 ∈ λ, τλ

BY
n−p+1

lies in W [n−p+1,n−2] and is therefore fixed by σ . If on the other

hand 1 /∈ λ, the cycle (n − λk + 1 · · ·n) is the product sn−λk+1 · · · sn−1, so that

σ(n − λk + 1 · · ·n) = sn−λk+1 · · · sn−2sn

= (n − λk + 1 · · ·n)εn−1εn

= Ad(εn−λk+1 · · ·εn−1)(n − λk + 1 · · ·n)

whence

σ Ac(λ,∅)

BY
n−p+1

= AltBY
n−p+1

(
Ad(εn−λk+1 · · ·εn−1)τ

λ

BY
n−p+1

) = Ac(λ,∅)

BY
n−p+1

since ε(εn−λk+1 · · ·εn−1) = (−1)λk−1 and λk is odd. �
Since(

B±
n−p; B±

n−p+1

) = 1,
(

BY
n−p+1; B+

n−p+1

) = p and
(

BY
n−p+1; B−

n−p+1

) = p − 1

Lemmas 8.4 and 8.16 imply that, for any λ ∈ O p ,

d#
p−1

(
Acλ

B±
n−p+1

) = (−1)p(−δ1/∈λ · Acλ∪{1}
B±

n−p
± Ac(λ,∅)

BY
n−p+1

)
(27)

Choosing λ ∈ O p such that 1 /∈ λ in (27) and using (26) accounts for the second summand in (24). To
conclude, we need the following straightforward consequence of Lemma 8.4.

Lemma 8.17. For any 4 � p � n,

AltBY
n−p+1

(
Ac(λ,μ)

BY
n−p+2

) =
{0 if 1 ∈ λ or μi ∈ 2N

∗ ∀i

(−1)|λ| · Ac(λ∪{1},μ)

BY
n−p+1

otherwise

Since d#
p−1( f ) = −AltBY

n−p+1
( f ) for any f ∈ kW BY

n−p+2

ε , Lemma 8.17 accounts for the third sum-

mand in (24). �
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8.4.3.

Proposition 8.18. The following holds for any 2 � p � n,

Ker d#
p = Im d#

p−1 ⊕
⊕

ν�p/2:
[ν]∈2N

kAc(∅,2ν)

BY
n−p+1

⊕
⎧⎨⎩

⊕
λ∈O∗

p+1
kB̃λ if p � n − 1⊕

0�m<n, λ∈O∗
m,μ∈On−m: [μ]∈2N

kAc(λ,μ)

BY
1

if p = n
(28)

where the second summand only arises if p is even and greater or equal to 3, O∗
q = {λ ∈ Oq | 1 /∈ λ} for q � 1,

O∗
0 = {∅} and

B̃λ =
n−p−1∑

i=1

Acλ

[i,i+p−1] + Acλ

B+
n−p

+ Acλ

B−
n−p

Proof. For p � 3 even, the subspace spanned by Ac(∅,2ν)

BY
n−p+1

, ν � p/2, lies in Ker d#
p by Lemma 8.17 and

is in direct sum with Im d#
p−1 by Proposition 8.15. This accounts for the second summand in (28). Let

now f ∈ Ker d#
p be such that all components of f BY

n−p+1
of type c(∅,2ν) , ν � p/2, are zero. If p = n,

f lies in the span of the elements Ac(λ,μ)

BY
1

, (λ,μ) ∈ Om × On−m and 0 � m � n. Since d#
n = 0 and

Im d#
n−1 =

⊕
λ∈O∗

n

kAc(λ,∅)

BY
1

⊕
⊕

1�m�n
λ∈Om

μ∈On−m:
1∈λ,[μ]∈2N

kAc(λ,μ)

BY
1

by Proposition 8.15, (28) holds for p = n. Assume now that p � n − 1. By Lemmas 8.16–8.17, the
restriction of d#

p is injective on the span of the elements Ac(λ,μ)

BY
n−p+1

where (λ,μ) ∈ Om × O p−m , 0 �
m � p, are such that λ does not contain 1 and μ is nonempty. The corresponding components of f

are therefore zero. Since Ac(λ,μ)

BY
n−p+1

lies in Im d#
p−1 if 1 ∈ λ by Lemma 8.17, we may therefore assume that

f BY
n−p+1

only has components along Ac(λ,∅)

BY
n−p+1

, λ ∈ O∗
p . Working modulo the first summand of Im d#

p−1

given by Proposition 8.15, we may further assume that f lies in the span of

⊕
λ∈O∗

p+1

n−p−1⊕
i=1

kAcλ

[i,i+p−1] ⊕
⊕

λ∈O p+1

(
kAcλ

B+
n−p

⊕ kAcλ

B+
n−p

) ⊕
⊕
λ∈O∗

p

kAc(λ,∅)

BY
n−p+1

(29)

Let λ ∈ O∗
p+1. It readily follows from (16) and (27) that B̃λ ∈ Ker d#

p . Next, applying (16) to the cλ-
components of f along kW [i,i+p−1]ε , i = 1, . . . ,n − p − 1 and kW B±

n−p

ε , we see that these components

are equal to aλ Acλ

[i,i+p−1] and aλ Acλ

B±
n−p

respectively, for some constant aλ . Thus, subtracting aλ B̃λ to f ,

we may assume that all these components are equal to zero and therefore that f lies in

⊕
λ∈O p+1:

(
kAcλ

B+
n−p

⊕ kAcλ

B+
n−p

⊕ kAc(λ\{1},∅)

BY
n−p+1

)
(30)
1∈λ
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By (27) and Lemma 8.17 any solution of d#
p f = 0 with values in (30) lies in the subspace⊕

λ∈O p+1: 1∈λ V λ defined by (25) and therefore in Im d#
p−1. �

8.4.4.

Theorem 8.19. For any 0 � p < n, we have

dim H D p(kW Dn )c =

⎧⎪⎨⎪⎩
1 if (c = c(1n−p,2ν) for some ν � p/2 with [ν] ∈ 2N)

or (c = c(λ∪{1n−p−1},∅)with λ ∈ O∗
p+1)

0 otherwise

and

dim H Dn(kW Dn )c =
{

1 if c = cλ,μ with λ ∈ O∗
m and μ ∈ On−m and [μ] ∈ 2N

0 otherwise

8.5. Stabilisation

Assume that W is of classical type X = A, B or D. Then, using the description of the Dynkin
cohomology of kW given in this section, one readily checks that for n � m, the restriction map on
Dynkin diagram cohomology defined in Section 2.3

ResXn
Xm

: H D p(kWXn ) → H D p(kWXm )

is an isomorphism for p � m.

8.6. Exceptional groups

8.6.1. G2
The Weyl group of type G2 = I(6) was treated in Section 8.1.

8.6.2. F4
Let W be the Weyl group of type F4 and label the connected subdiagrams of D by the subintervals

of [1,4] with integral endpoints. Thus, W [1,3] and W [2,4] are of type B3, W [1,2] and W [3,4] are of
type A2, and W [2,3] is of type B2. It follows from Propositions 8.3 and 8.9 that

kW [1,3]ε = 0, kW [2,4]ε = 0

kW [1,2]ε � k, kW [2,3]ε � k, kW [3,4]ε � k

The differential d# of HC is therefore equal to zero, so that

dim H D p(kW ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if p = 0

0 if p = 1

3 if p = 2

0 if p = 3

dim kW ε if p = 4

0 if p � 5
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8.6.3. GAP calculations
For the groups H3, H4, E6, E7 and E8, the dimension of the cohomology spaces of the complex

HC can be readily computed with the computer algebra package [GAP]. For each B , we enumerate
conjugacy classes of W B and select those whose elements have a centraliser in the kernel of ε. Then,
we compute the matrices corresponding to the differentials and determine their rank. We indicate
the results in the following table, where the columns provide dim H Di(kW ), i = 2, . . . ,n.

i = 2 3 4 5 6 7 8

E6 1 0 2 0 4
E7 1 0 2 0 7 0
E8 1 0 2 0 6 1 17
F4 3 0 5
G2 2
H3 3 0
H4 3 0 16

9. Affine Coxeter groups

The methods of Sections 4.2 and 5.2 provide a partial computation of the Dynkin cohomology of
affine Weyl groups. Let D0 be a finite crystallographic Dynkin diagram with n vertices and let D be its
completion. Let V be the reflection representation of W0 = W D0 and let Q ⊂ V be the coroot lattice,
so that W � Q � W0.

We have canonical Serre duality isomorphisms

Exti
kQ (k, M)

∼−→ Extn−i
kQ (M,k)∗ ⊗ Λn V ∗

for any finitely generated kQ -module M and any integer i. Thus, given a finitely generated kW -
module M and an integer i, we have isomorphisms

Exti
kW (k, M) � Exti

kQ (k, M)W0 � (
Extn−i

kQ (M, ε)∗
)W0 � Extn−i

kW (M, ε)∗ (31)

Let us describe the conjugacy classes of W . Given v ∈ W0, let Q v ⊆ Q be the sublattice given by

Q v = {
x − v(x)

∣∣ x ∈ Q
}

Proposition 9.1. Representatives of conjugacy classes of W are given by elements tv where v runs over rep-
resentatives of conjugacy classes of W0 and t runs over representatives of (Q /Q v)/CW0 (v).

Proof. Given t, t′ ∈ Q and v, v ′ ∈ W0, if tv and t′v ′ are conjugate in W , then v and v ′ are conjugate
in W0. Let then g = τ x with τ ∈ Q and x ∈ W0 be such that gtvg−1 = t′v . Then, x ∈ CW0 (v). We
have gtvg−1 = xtx−1 · τ · vτ−1 v−1 · v and the proposition follows. �

Let c be a conjugacy class of W , let w ∈ c and let w̄ be the image of w in W0. The quotient
CW (w) = CW (w)/Q w̄ is a subgroup of CW0 (w̄). Denoting as customary the vector space spanned by
the elements of c by k(c), we have

Exti
kW

(
k,k(c)

) � Extn−i
kW

(
k(c), ε

)∗

� Extn−i
kCW (w)

(k, ε)∗

� (
Extn−i

kQ w̄ (k,k)∗ ⊗ ε
)CW (w)

� (
Λn−i(V w̄) ⊗ ε

)CW (w)
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where the first isomorphism uses (31), the second one Frobenius reciprocity and the last one the
fact that, given a finitely-generated free abelian group L, we have the Koszul isomorphism H∗(L,k) �
Λ∗(L∗ ⊗Z k).

Theorem 9.2. If the elements in c have infinite order, then

H Di
c � (

Λn+1−i(V w̄) ⊗ ε
)CW (w)

Proof. The assumption on c shows that c ∩ W B = ∅ for any proper subset B of D . Thus, the sub-
complex C Dc defined in Section 3.2 is concentrated in degree n. The theorem now follows from
Section 4.2 and the isomorphisms above. �
Remark 9.3. If the elements of c have finite order, then c has a nonempty intersection with W B for
some proper connected subdiagram B of D [Hu]. In that case, there is a distinguished triangle

⊕
i

(
Λn−i+1(V w̄) ⊗ ε

)CW (w)[−i] → C Dc → HC f c �

where HC f c is the subcomplex of HC f given by HC f
i
c = ⊕

B k(c ∩ W B)ε and B runs over the proper
subdiagrams of D of size i.
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