LIE GROUPS AND LIE ALGEBRAS 229B

RAPHAËL ROUQUIER

UCLA, Winter 2018

Contents

1. Lie algebras 1
 1.1. Generalities 1
 1.2. Nilpotent Lie algebras 2
 1.3. Solvable Lie algebras 2
 1.4. Semi-simple Lie algebras 3
 1.5. Cartan subalgebras 4
 2. Semi-simple Lie algebras 5
 2.1. Cartan subalgebras and roots 5
 2.2. Root systems 5

1. Lie algebras

1.1. Generalities.

1.1.1. Definitions. Let k be a field.

A Lie algebra (over k) is a k-vector space g endowed with a bilinear map $[-,-]: g \times g \to g$ such that $[a,b] = -[b,a]$ and

$$[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0$$

for all $a, b, c \in g$.

Let g be a Lie algebra and h a k-subspace of g. We say that h is

- a Lie subalgebra of g if $[a, b] \in h$ for all $a, b \in h$.
- an ideal of g if $[a, b] \in h$ for all $a \in g$ and $b \in h$.

Let A be a k-algebra. This is a Lie algebra with $[a,b] = ab - ba$. This gives a functor from algebras to Lie algebras. It has a left adjoint, the universal enveloping algebra functor $g \mapsto U(g)$.

Example 1.1. Let V be a vector space. The Lie algebra $\text{End}_k(V)$ is denoted by $\mathfrak{gl}(V)$. When $V = k^n$, we put $\mathfrak{gl}_n(k) = \mathfrak{gl}(k^n)$. We denote by $\mathfrak{sl}_n(k)$ the Lie subalgebra of $\mathfrak{gl}_n(k)$ of matrices with trace 0.

Example 1.2. Let A be a k-vector space endowed with a bilinear map $A \times A \to A$, $(a, b) \mapsto a \cdot b$. A derivation of A is a k-linear endomorphism D of A such that $D(a \cdot b) = D(a) \cdot b + a \cdot D(b)$. The set $\text{Der}(A)$ of derivations of A is a Lie subalgebra of $\mathfrak{gl}(A)$.

Date: February 20, 2018.
Proposition 1.3. Let \mathfrak{g} be a Lie algebra. Given $x \in \mathfrak{g}$, define $\text{ad} x : \mathfrak{g} \to \mathfrak{g}$, $y \mapsto [x, y]$. This is a derivation of \mathfrak{g}. The corresponding map $\mathfrak{g} \to \text{Der}(\mathfrak{g})$ is a morphism of Lie algebras.

Given \mathfrak{g} a Lie algebra and V, V' two k-subspaces of \mathfrak{g}, we denote by $[V, V']$ the k-subspace of \mathfrak{g} generated by elements $[v, v']$ with $v \in V$ and $v' \in V'$.

We denote by $\mathfrak{n}_\mathfrak{g}(V)$ the set of elements $x \in \mathfrak{g}$ such that $[x, v] \in V$ for all $v \in V$. This is a Lie subalgebra of \mathfrak{g}.

Lemma 1.4. Let \mathfrak{h} be an ideal of \mathfrak{g}. Then $[\mathfrak{g}, \mathfrak{h}]$ is an ideal of \mathfrak{g}.

We write $Z(\mathfrak{g}) = \{x \in \mathfrak{g} | \text{ad} x = 0\}$ for the center of \mathfrak{g}.

We say that \mathfrak{g} is abelian if $[x, y] = 0$ for all $x, y \in \mathfrak{g}$.

If \mathfrak{a} and \mathfrak{b} are two ideals of \mathfrak{g} and $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b}$, then $[x, y] = 0$ for all $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$, i.e., \mathfrak{g} is the direct sum (and the direct product) of its ideals \mathfrak{a} and \mathfrak{b}.

1.1.2. Representations. Given a k-vector space V, a representation of \mathfrak{g} on V is a morphism of Lie algebras $\mathfrak{g} \to \mathfrak{gl}(V)$.

Let $V = \mathfrak{g}$. The adjoint representation $\text{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is defined by $\text{ad}(g) : g' \mapsto [g, g']$. Its kernel is $Z(\mathfrak{g})$.

1.2. Nilpotent Lie algebras. From now on, all Lie algebras to be considered will be assumed to be finite-dimensional.

1.2.1. Let \mathfrak{g} be a Lie algebra. The descending central series are the ideals defined by $C^1 \mathfrak{g} = \mathfrak{g}$ and $C^n \mathfrak{g} = [\mathfrak{g}, C^{n-1} \mathfrak{g}]$ for $n \geq 2$.

TFAE:

1. there is n such that $C^n \mathfrak{g} = 0$
2. there is n such that $(\text{ad} x_1) \cdots (\text{ad} x_n) = 0$ for all $x_1, \ldots, x_n \in \mathfrak{g}$.
3. there is a chain of ideals $0 = \mathfrak{a}_0 \subset \cdots \subset \mathfrak{a}_n = \mathfrak{g}$ such that $\mathfrak{a}_i/\mathfrak{a}_{i-1} \subset Z(\mathfrak{g}/\mathfrak{a}_{i-1})$ for all i (iterated central extension of abelian Lie algebras).

A Lie algebra satisfying these equivalent conditions is called nilpotent.

Exercise 1.1. The Lie algebra \mathfrak{g} of strictly upper triangular matrices in \mathfrak{gl}_n is nilpotent. Determine the ideals $C^i \mathfrak{g}$.

1.2.2. Let V be a finite-dimensional vector space over k. A full flag in V is a sequence of subspaces $0 = V_0 \subset V_1 \subset \cdots \subset V_n = V$ such that $\dim V_i = i$.

Theorem 1.5 (Engel). Consider $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ a representation such that $\rho(x)$ is nilpotent for all $x \in \mathfrak{g}$. Then, there is a full flag V_\ast in V such that $\rho(x)(V_i) \subset V_{i-1}$ for all $x \in \mathfrak{g}$ and all i.

Corollary 1.6. \mathfrak{g} is nilpotent iff $\text{ad}(x)$ is nilpotent for all $x \in \mathfrak{g}$.

1.3. Solvable Lie algebras. The derived series of \mathfrak{g} are the ideals defined by $D^1 \mathfrak{g} = \mathfrak{g}$ and $D^n \mathfrak{g} = [D^{n-1} \mathfrak{g}, D^{n-1} \mathfrak{g}]$ for $n \geq 2$.

TFAE:

- There is n such that $D^n \mathfrak{g} = 0$
- \mathfrak{g} is a successive extension of abelian Lie algebras.

A Lie algebra satisfying these equivalent conditions is called solvable.
Exercise 1.2. The Lie algebra \(\mathfrak{g} \) of upper triangular matrices in \(\mathfrak{gl}_n \) is solvable. Determine the ideals \(D^i \mathfrak{g} \).

Theorem 1.7 (Lie). Assume \(k \) is algebraically closed and has characteristic 0. Let \(\rho : \mathfrak{g} \to \mathfrak{gl}(V) \) be a representation of \(\mathfrak{g} \) with \(V \) a finite-dimensional vector space. If \(\mathfrak{g} \) is solvable, there is a full flag \(V_i \) of \(V \) such that \(\rho(x)(V_i) \subseteq V_i \) for all \(x \in \mathfrak{g} \) and all \(i \).

Corollary 1.8. \(\mathfrak{g} \) solvable, \(k \) arbitrary (\(\text{char} 0 \)). Then, \([\mathfrak{g}, \mathfrak{g}]\) is nilpotent.

1.4. Semi-simple Lie algebras.

1.4.1. Bilinear forms. Let \(\rho : \mathfrak{g} \to \mathfrak{gl}(V) \) be a representation. A bilinear form \(\beta : V \times V \to k \) is \(\mathfrak{g} \)-invariant if \(\beta(\rho(x)v_1, v_2) = -\beta(v_1, \rho(x)v_2) \) for all \(x \in \mathfrak{g} \) and \(v_1, v_2 \in V \).

Remark 1.9. Assume \(k = \mathbb{C} \). Let \(G \) be a complex Lie group with Lie algebra \(\mathfrak{g} \) and let \(\psi : G \to \text{GL}(V) \) be a representation of \(G \) whose associated Lie algebra representation is \(\rho \). The bilinear form \(\beta \) is \(G \)-invariant if and only if \(\beta(\psi(g)v_1, \psi(g)v_2) = \beta(v_1, v_2) \) for all \(g \in G \) and \(v_1, v_2 \in V \). Equivalently: \(\beta(\psi(g)v_1, v_2) = \beta(v_1, \psi(g^{-1})v_2) \) for all \(g, v_1, v_2 \). This equality implies the \(\mathfrak{g} \)-equivariance of \(\beta \).

Fix a representation and a \(\mathfrak{g} \)-invariant bilinear form. Given \(L \subseteq V \), let \(L^\perp = \{ v \in V | \beta(l, v) = 0 \ \forall l \in L \} \).

Consider the adjoint representation \(\text{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g}) \). A bilinear form \(\alpha : \mathfrak{g} \times \mathfrak{g} \to k \) is \(\mathfrak{g} \)-invariant (for the adjoint representation) if and only if \(\alpha([x, y], z) = \alpha(x, [y, z]) \) for all \(x, y, z \in \mathfrak{g} \).

The bilinear form given by \(\beta(x, y) = \text{Tr}_\mathbb{C}(\text{ad} x \text{ ad} y) \) is called the Killing form. It is \(\mathfrak{g} \)-invariant. If \(\mathfrak{a} \) is an ideal of \(\mathfrak{g} \), then \(\mathfrak{a}^\perp \) is also an ideal. Note also that the restriction of the Killing form of \(\mathfrak{g} \) to \(\mathfrak{a} \) is the Killing form of \(\mathfrak{a} \).

Exercise 1.3. Show that if \(\mathfrak{g} \) is nilpotent, then \(\beta = 0 \).

1.4.2. Radical and semi-simple Lie algebras. Note that given \(\mathfrak{a}_1 \) and \(\mathfrak{a}_2 \) two solvable ideals of \(\mathfrak{g} \), then \(\mathfrak{a}_1 + \mathfrak{a}_2 \) is a solvable ideal.

Definition 1.10. The radical \(\text{rad}(\mathfrak{g}) \) is the largest solvable ideal of \(\mathfrak{g} \).

Definition 1.11. \(\mathfrak{g} \) is semi-simple if \(\text{rad}(\mathfrak{g}) = 0 \).

Note that \(\mathfrak{g} \) is semi-simple if and only if it has no non-zero abelian ideal.

Theorem 1.12. \(\mathfrak{g} \) is semisimple iff the Killing form is non degenerate.

Theorem 1.13 (Cartan). Let \(V \) be a vector space and \(\mathfrak{g} \) be a Lie subalgebra of \(\mathfrak{gl}(V) \). Then \(\mathfrak{g} \) is solvable if and only if \(\text{Tr}_V(xy) = 0 \) for all \(x \in \mathfrak{g} \) and \(y \in [\mathfrak{g}, \mathfrak{g}] \).

Exercise 1.4. Let \(\mathfrak{g} = \mathfrak{gl}_n(\mathbb{C}) \). Show that the Killing form is \(\beta(x, y) = 2n\text{tr}(xy) - 2\text{tr}(x)\text{tr}(y) \). Deduce that \(\mathfrak{sl}_n(\mathbb{C}) \) is semi-simple for \(n \geq 2 \).

Proposition 1.14. \(\text{rad}(\mathfrak{g}) = [\mathfrak{g}, \mathfrak{g}]^\perp \).

Proposition 1.15. Let \(\mathfrak{g} \) be a semisimple Lie algebra and \(\mathfrak{a} \) an ideal. Then, \(\mathfrak{a}^\perp \) is an ideal and \(\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}^\perp \).

Definition 1.16. A Lie algebra is simple if it is non abelian and it has no non-zero proper ideal.
Proposition 1.17. Let \(\mathfrak{g} \) be a semi-simple Lie algebras. Then, there are ideals \(a_1, \ldots, a_n \) of \(\mathfrak{g} \) such that \(\mathfrak{g} = a_1 \times \cdots \times a_n \) and \(a_1, \ldots, a_n \) are simple Lie algebras. This decomposition is unique up to ordering.

Proposition 1.18. If \(\mathfrak{g} \) is semisimple, then \([\mathfrak{g}, \mathfrak{g}] = \mathfrak{g} \).

1.4.3. Enveloping algebras and Casimir. The enveloping algebra of \(\mathfrak{g} \) is the \(k \)-algebra defined by \(U(\mathfrak{g}) = T(\mathfrak{g})/(x \otimes y - y \otimes x - [x, y])_{x,y \in \mathfrak{g}} \). The functor \(U \) is left adjoint to the canonical functor from algebras to Lie algebras.

If \(\mathfrak{g} \) is abelian, then \(U(\mathfrak{g}) = S(\mathfrak{g}) \) is a polynomial algebra.

Assume \(\mathfrak{g} \) is semi-simple and \(\rho : \mathfrak{g} \to \mathfrak{gl}(V) \) is a faithful representation. There is a \(\mathfrak{g} \)-invariant symmetric bilinear form \(\beta_\rho : \mathfrak{g} \times \mathfrak{g} \to k \), \((x, y) \mapsto \text{Tr}_V(\rho(x)\rho(y)) \). It is non-degenerate. We define \(C_\rho = \sum e_i f_i \in U(\mathfrak{g}) \), where \((e_i)_i \) is a basis of \(\mathfrak{g} \) and \((f_i)_i \) the dual basis with respect to \(\beta_\rho \). We have \(C_\rho \in Z(U(\mathfrak{g})) \). If \(\rho \) is simple, then \(C_\rho \) acts by \(\frac{\dim \mathfrak{g}}{\dim V} \cdot \text{id}_V \) on \(V \).

When \(\rho \) is the adjoint representation, \(C = C_\rho \) is the Casimir element.

1.4.4. Complete reductibility.

Theorem 1.19. If \(\mathfrak{g} \) is semi-simple, then all finite-dimensional \(\mathfrak{g} \)-modules are semi-simple.

Theorem 1.20 (Levi). Every surjective map to a semi-simple Lie algebra splits.

Definition 1.21. \(\mathfrak{g} \) is reductive if it is the direct sum of a semi-simple Lie algebra and an abelian Lie algebra.

Theorem 1.22. The following assertions are equivalent

- \(\mathfrak{g} \) reductive
- The adjoint representation of \(\mathfrak{g} \) is semisimple
- \(\mathfrak{g} \) has a faithful semisimple representation
- \(\text{Rad}(\mathfrak{g}) = Z(\mathfrak{g}) \).

Theorem 1.23. \(\mathfrak{g} \) is semi-simple if and only if all its (finite-dimensional) representations are semi-simple.

1.4.5. Representations of \(\mathfrak{sl}_2(C) \). Define \(V_d \) as \((d + 1)\)-dimensional representations on homogeneous polynomials of degree \(d \) in 2 variables \(x \) and \(y \). I.e, \(V_d = S^d V_1 \).

Fact: \(e \) acts by \(x \frac{\partial}{\partial y} \), \(f \) acts by \(y \frac{\partial}{\partial x} \). So, \(h(x^a y^b) = (a - b)x^a y^b \).

1.5. Cartan subalgebras. From now on, we will consider only the case \(k = C \).

Definition 1.24. A Cartan subalgebra of \(\mathfrak{g} \) is a nilpotent Lie subalgebra \(\mathfrak{h} \) such that \(n_\mathfrak{g}(\mathfrak{h}) = \mathfrak{h} \).

Proposition 1.25. Let \(\mathfrak{h} \subset \mathfrak{h}' \) be Cartan subalgebras of \(\mathfrak{g} \). Then \(\mathfrak{h} = \mathfrak{h}' \).

Given \(\mathfrak{g} \) and \(\lambda \in C \), let \(\mathfrak{g}_x^\lambda \) be the \(\lambda \)-generalized eigenspace of \(\text{ad} \, x \). We have \(\mathfrak{g} = \bigoplus_\lambda \mathfrak{g}_x^\lambda \).

Lemma 1.26. Given \(\lambda, \mu \in C \), we have \([\mathfrak{g}_x^\lambda, \mathfrak{g}_x^\mu] \subset \mathfrak{g}_x^{\lambda + \mu} \). In particular, \(\mathfrak{g}_x^0 \) is a Lie subalgebra of \(\mathfrak{g} \) containing \(x \).

We have \(n_\mathfrak{g}(\mathfrak{g}_x^0) = \mathfrak{g}_x^0 \).

Definition 1.27. Define the rank of \(\mathfrak{g} \) as \(\text{rank}(\mathfrak{g}) = \max \{ \dim \mathfrak{g}_x^0 \mid x \in \mathfrak{g} \} \).

An element \(x \in \mathfrak{g} \) is regular if \(\dim \mathfrak{g}_x^0 = \text{rank}(\mathfrak{g}) \).
Theorem 1.28. If \(x \) is regular, then \(g_x^0 \) is a Cartan subalgebra of \(g \), with dimension the rank of \(g \).
Conversely, given \(h \) a Cartan subalgebra of \(g \), there is a regular element \(x \) of \(g \) such that \(h = g_x^0 \).

Theorem 1.29. Let \(G \) be the subgroup of \(\text{Aut}(g) \) generated by \(\{ \exp(\text{ad}(y)) \}_{y \in g} \). Given \(h \) and \(h' \) two Cartan subalgebras of \(g \), there is \(g \in G \) such that \(h' = g(h) \).

2. Semi-simple Lie algebras

From now on, \(g \) will be a semisimple Lie algebra.

2.1. Cartan subalgebras and roots.

2.1.1. Jordan decomposition.

Definition 2.1. An element \(x \in g \) is semi-simple if \(\text{ad} \, x \) is diagonalizable.
An element \(x \in g \) is nilpotent if \(\text{ad} \, x \) is nilpotent.

Theorem 2.2 (Jordan-Chevalley decomposition). Let \(g \) be a complex semisimple Lie algebra and let \(x \in g \). There exists unique elements \(x_s, x_n \in g \) such that \(x = x_s + x_n \), \(x_s \) is semisimple, \(x_n \) is nilpotent and \([x_s, x_n] = 0\).

2.1.2. Properties of Cartan subalgebras. Fix a Cartan subalgebra \(h \) of \(g \).

Proposition 2.3. \(h \) is abelian.
• All elements of \(h \) are semi-simple
• The Killing form on \(g \) restricts to a non-degenerate form on \(h \).

Note as a consequence that all regular elements of \(g \) are semisimple.
Given \(\alpha \in h^* \), we put \(g_\alpha = \{ x \in g \mid [y, x] = \alpha(y)x \forall y \in h \} \). We have \([g_\alpha, g_\beta] \subset g_{\alpha+\beta} \). We have \(g_0 = h \).

Definition 2.4. The set of roots of \(g \) is \(R = \{ \alpha \in h^* - \{0\} \mid g_\alpha \neq 0 \} \).

We have \(g = h \oplus \bigoplus_{\alpha \in R} g_\alpha \). The Killing form is non-degenerate on \(h \) and the subspaces \(g_\alpha \) and \(g_{-\alpha} \) are dual with respect to the Killing form.

Let \(V \) be the \(R \)-subspace of \(h^* \) spanned by \(R \).

Theorem 2.5. \((V, R)\) is a root system.

2.2. Root systems.

2.2.1. Definition.

Definition 2.6. A root system is the data of an Euclidean space \(V \) and a finite subset \(R \) of \(V - \{0\} \) with the following properties:
• \(R \) generates \(V \)
• Given \(\alpha \in R \), the symmetry \(s_\alpha : v \mapsto v - 2\frac{\langle \alpha, v \rangle}{\langle \alpha, \alpha \rangle} \alpha \) leaves \(R \) invariant
• Given \(\alpha, \beta \in R \), we have \(s_\alpha(\beta) - \beta \in \mathbb{Z}\alpha \)
• \(R \cap R\alpha = \{ \alpha, -\alpha \} \).
Examples (rank 2). Take $V = \mathbb{R}^2$.

Type $A_1 \times A_1$

Type A_2

Type $B_2 = C_2$

Type G_2

Two root systems (V, R) and (V', R') are *isomorphic* if there is an isomorphism of vector spaces $\phi : V \cong V'$ with $\phi(R) = R'$ (ϕ needs not respect the Euclidean structure).

Assume $V = V_1 \oplus V_2$, $R = R_1 \bigsqcup R_2$ and R_i is a root system in V_i, the subspace of V generated by R_i, for $i = 1, 2$. We say that (V, R) is the *direct sum* of the root systems (V_1, R_1) and (V_2, R_2). A root system is *irreducible* if it is non-empty and it is not the direct sum of two non-empty root systems.

The *Weyl group* of the root system W is the subgroup of $\text{GL}(V)$ generated by the reflections s_α for $\alpha \in R$. It is a finite group (it is a subgroup of the symmetric group on R).

2.2.2. Bases.

Definition 2.7. A basis of R is a subset Δ of R that is a basis of V with the following property. Define $R^+ = R \cap (\bigoplus_{\alpha \in \Delta} \mathbb{Z}_{\geq 0} \alpha)$ (the positive roots) and $R^- = R \cap (\bigoplus_{\alpha \in \Delta} \mathbb{Z}_{\leq 0} \alpha)$ (the negative roots). The additional requirement is that $R = R^+ \bigsqcup R^-$.

Note that given R^+, the basis Δ can be recovered as the set of indecomposable elements of R^+ (those elements of R^+ that are not the sum of two elements of R^+).
Theorem 2.8. Let \(\zeta \in V^* \) such that \(\zeta(\alpha) \neq 0 \) for all \(\alpha \in R \). Then \(R^+_\zeta := \{ \alpha \in R | \zeta(\alpha) > 0 \} \) is the set of positive roots for a basis \(\Delta_\zeta \) of \(R \).

Given a basis of \(R \), we have \(\Delta = \Delta_\zeta \) for any \(\zeta \in V^* \) such that \(\zeta(\alpha) > 0 \) for all \(\alpha \in \Delta \).

Theorem 2.9. Let \(\Delta \) be a basis of \(R \). The group \(W \) is generated by \(\{ s_\alpha \}_{\alpha \in \Delta} \).

If \(\Delta' \) is a base of \(R \), then there is \(w \in W \) such that \(\Delta' = w(\Delta) \).

If \(\alpha \in R \), then there is \(w \in W \) such that \(w(\alpha) \in \Delta \).

Given \(\alpha, \beta \in R \), we put \(n(\alpha, \beta) = 2\frac{\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \).

Fix a basis \(\Delta \) of \(R \). The Cartan matrix of \(R \) is \((n(\alpha, \beta))_{\alpha, \beta \in \Delta} \). Up to permutation of rows and columns, it does not depend on the choice of the basis. We have \(n(\alpha, \alpha) = 2 \), while \(n(\alpha, \beta) \leq 0 \) for \(\alpha \neq \beta \).

Theorem 2.10. Let \((V_1, R_1) \) and \((V_2, R_2) \) be two root systems, with bases \(\Delta_1 \) and \(\Delta_2 \) and Cartan matrices \(C_1 \) and \(C_2 \). The root systems \((V_1, R_1) \) and \((V_2, R_2) \) are isomorphic if and only if there is a bijection \(\phi : \Delta_1 \rightarrow \Delta_2 \) such that \((C_2)_{(\phi(\alpha), \phi(\beta))} = C_1 \).