1. Lie algebras

1.1. Generalities

1.1.1. Definitions. Let k be a field.

A Lie algebra (over k) is a k-vector space \mathfrak{g} endowed with a bilinear map $[-,-]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ such that $[a,b] = -[b,a]$ and

$$[a,[b,c]] + [b,[c,a]] + [c,[a,b]] = 0$$

for all $a,b,c \in \mathfrak{g}$.

Let \mathfrak{g} be a Lie algebra and \mathfrak{h} a k-subspace of \mathfrak{g}. We say that \mathfrak{h} is

- a Lie subalgebra of \mathfrak{g} if $[a,b] \in \mathfrak{h}$ for all $a,b \in \mathfrak{h}$.
- an ideal of \mathfrak{g} if $[a,b] \in \mathfrak{h}$ for all $a \in \mathfrak{g}$ and $b \in \mathfrak{h}$.

Let A be a k-algebra. This is a Lie algebra with $[a,b] = ab - ba$. This gives a functor from algebras to Lie algebras. It has a left adjoint, the universal enveloping algebra functor $\mathfrak{g} \mapsto U(\mathfrak{g})$.

Example 1.1. Let V be a vector space. The Lie algebra $\text{End}_k(V)$ is denoted by $\mathfrak{gl}(V)$. When $V = k^n$, we put $\mathfrak{gl}_n(k) = \mathfrak{gl}(k^n)$. We denote by $\mathfrak{sl}_n(k)$ the Lie subalgebra of $\mathfrak{gl}_n(k)$ of matrices with trace 0.

Example 1.2. Let A be a k-vector space endowed with a bilinear map $A \times A \to A$, $(a,b) \mapsto a \cdot b$. A derivation of A is a k-linear endomorphism D of A such that $D(a \cdot b) = D(a) \cdot b + a \cdot D(b)$. The set $\text{Der}(A)$ of derivations of A is a Lie subalgebra of $\mathfrak{gl}(A)$.

Date: February 11, 2018.
Proposition 1.3. Let \mathfrak{g} be a Lie algebra. Given $x \in \mathfrak{g}$, define $\text{ad} x : \mathfrak{g} \to \mathfrak{g}$, $y \mapsto [x, y]$. This is a derivation of \mathfrak{g}. The corresponding map $\mathfrak{g} \to \text{Der}(\mathfrak{g})$ is a morphism of Lie algebras.

Given \mathfrak{g} a Lie algebra and V, V' two k-subspaces of \mathfrak{g}, we denote by $[V, V']$ the k-subspace of \mathfrak{g} generated by elements $[v, v']$ with $v \in V$ and $v' \in V'$.

We denote by $\mathfrak{n}_s(V)$ the set of elements $x \in \mathfrak{g}$ such that $[x, v] \in V$ for all $v \in V$. This is a Lie subalgebra of \mathfrak{g}.

Lemma 1.4. Let \mathfrak{h} be an ideal of \mathfrak{g}. Then $[\mathfrak{g}, \mathfrak{h}]$ is an ideal of \mathfrak{g}.

We write $Z(\mathfrak{g}) = \{x \in \mathfrak{g} | \text{ad} x = 0\}$ for the center of \mathfrak{g}.

We say that \mathfrak{g} is abelian if $[x, y] = 0$ for all $x, y \in \mathfrak{g}$.

If \mathfrak{a} and \mathfrak{b} are two ideals of \mathfrak{g} and $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b}$, then $[x, y] = 0$ for all $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$, i.e., \mathfrak{g} is the direct sum (and the direct product) of its ideals \mathfrak{a} and \mathfrak{b}.

1.1.2. Representations. Given a k-vector space V, a representation of \mathfrak{g} on V is a morphism of Lie algebras $\mathfrak{g} \to \mathfrak{gl}(V)$.

Let $V = \mathfrak{g}$. The adjoint representation $\text{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is defined by $\text{ad}(g) : g' \mapsto [g, g']$. Its kernel is $Z(\mathfrak{g})$.

1.2. Nilpotent Lie algebras. From now on, all Lie algebras to be considered will be assumed to be finite-dimensional.

1.2.1. Let \mathfrak{g} be a Lie algebra. The descending central series are the ideals defined by $C^1 \mathfrak{g} = \mathfrak{g}$ and $C^n \mathfrak{g} = [\mathfrak{g}, C^{n-1} \mathfrak{g}]$ for $n \geq 2$.

TFAE:

1. there is n such that $C^n \mathfrak{g} = 0$
2. there is n such that $(\text{ad} x_1) \cdots (\text{ad} x_n) = 0$ for all $x_1, \ldots, x_n \in \mathfrak{g}$.
3. there is a chain of ideals $0 = \mathfrak{a}_0 \subset \cdots \subset \mathfrak{a}_n = \mathfrak{g}$ such that $\mathfrak{a}_i / \mathfrak{a}_{i-1} \subset Z(\mathfrak{g}/\mathfrak{a}_{i-1})$ for all i (iterated central extension of abelian Lie algebras).

A Lie algebra satisfying these equivalent conditions is called nilpotent.

Exercise 1.1. The Lie algebra \mathfrak{g} of strictly upper triangular matrices in \mathfrak{gl}_n is nilpotent. Determine the ideals $C^i \mathfrak{g}$.

1.2.2. Let V be a finite-dimensional vector space over k. A full flag in V is a sequence of subspaces $0 = V_0 \subset V_1 \subset \cdots \subset V_n = V$ such that $\dim V_i = i$.

Theorem 1.5 (Engel). Consider $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ a representation such that $\rho(x)$ is nilpotent for all $x \in \mathfrak{g}$. Then, there is a full flag V_\bullet in V such that $\rho(x)(V_i) \subset V_{i-1}$ for all $x \in \mathfrak{g}$ and all i.

Corollary 1.6. \mathfrak{g} is nilpotent iff $\text{ad}(x)$ is nilpotent for all $x \in \mathfrak{g}$.

1.3. Solvable Lie algebras. The derived series of \mathfrak{g} are the ideals defined by $D^1 \mathfrak{g} = \mathfrak{g}$ and $D^n \mathfrak{g} = [D^{n-1} \mathfrak{g}, D^{n-1} \mathfrak{g}]$ for $n \geq 2$.

TFAE:

- There is n such that $D^n \mathfrak{g} = 0$
- \mathfrak{g} is a successive extension of abelian Lie algebras.

A Lie algebra satisfying these equivalent conditions is called solvable.
Exercise 1.2. The Lie algebra \mathfrak{g} of upper triangular matrices in \mathfrak{gl}_n is solvable. Determine the ideals $D^i\mathfrak{g}$.

Theorem 1.7 (Lie). Assume k is algebraically closed and has characteristic 0. Let $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ be a representation of \mathfrak{g} with V a finite-dimensional vector space. If \mathfrak{g} is solvable, there is a full flag V_i of V such that $\rho(x)(V_i) \subset V_{i}$ for all $x \in \mathfrak{g}$ and all i.

Corollary 1.8. \mathfrak{g} solvable, k arbitrary (char 0). Then, $[\mathfrak{g}, \mathfrak{g}]$ is nilpotent.

1.4. Semi-simple Lie algebras.

1.4.1. Bilinear forms. Let $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ be a representation. A bilinear form $\beta : V \times V \to k$ is \mathfrak{g}-invariant if $\beta(\rho(x)v_1, v_2) = -\beta(v_1, \rho(x)v_2)$ for all $x \in \mathfrak{g}$ and $v_1, v_2 \in V$.

Remark 1.9. Assume $k = \mathbb{C}$. Let G be a complex Lie group with Lie algebra \mathfrak{g} and let $\psi : G \to \text{GL}(V)$ be a representation of G whose associated Lie algebra representation is ρ. The bilinear form β is G-invariant if and only if $\beta(\psi(g)v_1, \psi(g)v_2) = \beta(v_1, v_2)$ for all $g \in G$ and $v_1, v_2 \in V$. Equivalently: $\beta(\psi(g)v_1, v_2) = \beta(v_1, \psi(g^{-1})v_2)$ for all g, v_1, v_2. This equality implies the \mathfrak{g}-equivariance of β.

Fix a representation and a \mathfrak{g}-invariant bilinear form. Given $L \subset V$, let $L^\perp = \{v \in V | \beta(l, v) = 0 \forall l \in L\}$.

Consider the adjoint representation $\text{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$. A bilinear form $\alpha : \mathfrak{g} \times \mathfrak{g} \to k$ is \mathfrak{g}-invariant (for the adjoint representation) if and only if $\alpha([x, y], z) = \alpha(x, [y, z])$ for all $x, y, z \in \mathfrak{g}$.

The bilinear form given by $\beta(x, y) = \text{Tr}(\text{ad } x \text{ ad } y)$ is called the Killing form. It is \mathfrak{g}-invariant. If \mathfrak{a} is an ideal of \mathfrak{g}, then \mathfrak{a}^\perp is also an ideal. Note also that the restriction of the Killing form of \mathfrak{g} to \mathfrak{a} is the Killing form of \mathfrak{a}.

Exercise 1.3. Show that if \mathfrak{g} is nilpotent, then $\beta = 0$.

1.4.2. Radical and semi-simple Lie algebras. Note that given \mathfrak{a}_1 and \mathfrak{a}_2 two solvable ideals of \mathfrak{g}, then $\mathfrak{a}_1 + \mathfrak{a}_2$ is a solvable ideal.

Definition 1.10. The radical $\text{rad}(\mathfrak{g})$ is the largest solvable ideal of \mathfrak{g}.

Definition 1.11. \mathfrak{g} is semi-simple if $\text{rad}(\mathfrak{g}) = 0$.

Note that \mathfrak{g} is semi-simple if and only if it has no non-zero abelian ideal.

Theorem 1.12. \mathfrak{g} is semisimple iff the Killing form is non degenerate.

Theorem 1.13 (Cartan). Let V be a vector space and \mathfrak{g} be a Lie subalgebra of $\mathfrak{gl}(V)$. Then \mathfrak{g} is solvable if and only if $\text{Tr}_V(xy) = 0$ for all $x \in \mathfrak{g}$ and $y \in [\mathfrak{g}, \mathfrak{g}]$.

Exercise 1.4. Let $\mathfrak{g} = \mathfrak{gl}_n(\mathbb{C})$. Show that the Killing form is $\beta(x, y) = 2n\text{tr}(xy) - 2\text{tr}(x)\text{tr}(y)$. Deduce that $\mathfrak{sl}_n(\mathbb{C})$ is semi-simple for $n \geq 2$.

Proposition 1.14. $\text{rad}(\mathfrak{g}) = [\mathfrak{g}, \mathfrak{g}]^\perp$.

Proposition 1.15. Let \mathfrak{g} be a semisimple Lie algebra and \mathfrak{a} an ideal. Then, \mathfrak{a}^\perp is an ideal and $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}^\perp$.

Definition 1.16. A Lie algebra is simple if it is non abelian and it has no non-zero proper ideal.
Proposition 1.17. Let \(g \) be a semi-simple Lie algebras. Then, there are ideals \(a_1, \ldots, a_n \) of \(g \) such that \(g = a_1 \times \cdots \times a_n \) and \(a_1, \ldots, a_n \) are simple Lie algebras. This decomposition is unique up to ordering.

Proposition 1.18. If \(g \) is semisimple, then \([g, g] = g\).

1.4.3. Enveloping algebras and Casimir. The enveloping algebra of \(g \) is the \(k \)-algebra defined by \(U(g) = T(g)/(x \otimes y - y \otimes x - [x, y])_{x,y \in g} \). The functor \(U \) is left adjoint to the canonical functor from algebras to Lie algebras.

If \(g \) is abelian, then \(U(g) = S(g) \) is a polynomial algebra.

Assume \(g \) is semi-simple and \(\rho : g \to gl(V) \) is a faithful representation. There is a \(g \)-invariant symmetric bilinear form \(\beta_{\rho} : g \times g \to k \), \((x, y) \mapsto Tr_{V}(\rho(x)\rho(y))) \). It is non-degenerate. We define \(C_{\rho} = \sum e_i f_i \in U(g) \), where \((e_i)_i \) is a basis of \(g \) and \((f_i) \) the dual basis with respect to \(\beta_{\rho} \). We have \(C_{\rho} \in Z(U(g)) \). If \(\rho \) is simple, then \(C_{\rho} \) acts by \(\frac{\dim g}{\dim V} \cdot \text{id}_V \) on \(V \)

When \(\rho \) is the adjoint representation, \(C = C_{\rho} \) is the Casimir element.

1.4.4. Complete reductibility.

Theorem 1.19. If \(g \) is semi-simple, then all finite-dimensional \(g \)-modules are semi-simple.

Theorem 1.20 (Levi). Every surjective map to a semi-simple Lie algebra splits.

Definition 1.21. \(g \) is reductive if it is the direct sum of a semi-simple Lie algebra and an abelian Lie algebra.

Theorem 1.22. The following assertions are equivalent

- \(g \) reductive
- The adjoint representation of \(g \) is semisimple
- \(g \) has a faithful semisimple representation
- \(\text{Rad}(g) = Z(g) \).

Theorem 1.23. \(g \) is semi-simple if and only if all its (finite-dimensional) representations are semi-simple.

1.4.5. Representations of \(\mathfrak{sl}_2(C) \). Define \(V_d \) as \((d + 1)\)-dimensional representations on homogeneous polynomials of degree \(d \) in 2 variables \(x \) and \(y \). Ie, \(V_d = S^d V_1 \).

Fact: \(e \) acts by \(x \frac{\partial}{\partial y} \), \(f \) acts by \(y \frac{\partial}{\partial x} \). So, \(h(x^ay^b) = (a - b)x^ay^b \).

1.5. Cartan subalgebras. From now on, we will consider only the case \(k = C \).

Definition 1.24. A Cartan subalgebra of \(g \) is a nilpotent Lie subalgebra \(h \) such that \(n_{g}(h) = h \).

Proposition 1.25. Let \(h \subset h' \) be Cartan subalgebras of \(g \). Then \(h = h' \).

Given \(g \) and \(\lambda \in C \), let \(g^\lambda \) be the \(\lambda \)-generalized eigenspace of \(\text{ad} x \). We have \(g = \bigoplus_{\lambda} g^\lambda \).

Lemma 1.26. Given \(\lambda, \mu \in C \), we have \([g^\lambda_x, g^\mu_y] \subset g^{\lambda + \mu} \). In particular, \(g^0_x \) is a Lie subalgebra of \(g \) containing \(x \).

We have \(n_{g}(g^0_x) = g^0_x \).

Definition 1.27. Define the rank of \(g \) as \(\text{rank}(g) = \max\{\dim g^0_x | x \in g\} \).

An element \(x \in g \) is regular if \(\dim g^0_x = \text{rank}(g) \).
Theorem 1.28. If x is regular, then g^0_x is a Cartan subalgebra of g, with dimension the rank of g.

Conversely, given h a Cartan subalgebra of g, there is a regular element x of g such that $h = g^0_x$.

Theorem 1.29. Let G be the subgroup of Aut(g) generated by $\{\exp(\text{ad}(y))\}_{y \in g}$. Given h and h' two Cartan subalgebras of g, there is $g \in G$ such that $h' = g(h)$.

2. SEMI-SIMPLE LIE ALGEBRAS

From now on, g will be a semisimple Lie algebra.

2.1. Cartan subalgebras and roots.

2.1.1. Jordan decomposition.

Definition 2.1. An element $x \in g$ is semi-simple if $\text{ad } x$ is diagonalizable.

An element $x \in g$ is nilpotent if $\text{ad } x$ is nilpotent.

Theorem 2.2 (Jordan-Chevalley decomposition). Let g be a complex semisimple Lie algebra and let $x \in g$. There exists unique elements $x_s, x_n \in g$ such that $x = x_s + x_n$, x_s is semisimple, x_n is nilpotent and $[x_s, x_n] = 0$.

2.1.2. Properties of Cartan subalgebras. Fix a Cartan subalgebra h of g.

Proposition 2.3.
- h is abelian
- All elements of h are semi-simple
- The Killing form on g restricts to a non-degenerate form on h.

Note as a consequence that all regular elements of g are semisimple.

Given $\alpha \in h^*$, we put $g_\alpha = \{ x \in g | [y,x] = \alpha(y)x \ \forall y \in h \}$. We have $[g_\alpha, g_\beta] \subset g_{\alpha + \beta}$. We have $g_0 = h$.

Definition 2.4. The set of roots of g is $R = \{ \alpha \in h^* - \{0\} | g_\alpha \neq 0 \}$.

We have $g = h \oplus \bigoplus_{\alpha \in R} g_\alpha$. The Killing form is non-degenerate on h and the subspaces g_α and $g_{-\alpha}$ are dual with respect to the Killing form.

Let V be the R-subspace of h^* spanned by R.

Theorem 2.5. (V, R) is a root system.

2.2. Root systems.

2.2.1. Definition.

Definition 2.6. A root system is the data of an Euclidean space V and a finite subset R of $V - \{0\}$ with the following properties:

- R generates V
- Given $\alpha \in R$, the symmetry $s_\alpha : v \mapsto v - 2\frac{\langle \alpha, v \rangle}{\langle \alpha, \alpha \rangle} \alpha$ leaves R invariant
- Given $\alpha, \beta \in R$, we have $s_\alpha(\beta) - \beta \in \mathbb{Z}\alpha$
- $R \cap R\alpha = \{ \alpha, -\alpha \}$.

Examples (rank 2). Take $V = \mathbb{R}^2$.

Type $A_1 \times A_1$

Type A_2

Type $B_2 = C_2$

Type G_2