Contents

Chapter 1. ALGEBRAS AND MODULES 1
1.1. **Generalities** 1
1.1.1. Modules and Algebras 1
1.1.1.1. R–modules 1
1.1.1.2. R–algebras and A–modules 1
1.1.1.3. Opposite algebra and modules–A 2
1.1.2. The language of R–linear categories and functors 3
1.1.2.1. Categories 3
1.1.2.2. Functors 4
1.1.3. Bimodules 6
1.1.3.1. Generalities 6
1.1.4. Additive and abelian R–linear categories 7
1.1.4.1. Additive R–linear categories,summands and idempotents 7
1.1.4.2. Representable and corepresentable functors 9
1.1.4.3. Summands and idempotents 9
1.1.4.4. Central idempotents and products of algebras 10
1.1.4.5. Abelian categories 11
1.1.4.6. Short exact sequences and split short exact sequences 12
1.1.4.7. Exact functors 13
1.2. **Projective modules** 14
1.2.1. Projective modules 14
1.2.2. Finitely generated projective modules 14
1.2.3. Projective modules and duality 16
1.3. **Complete reducibility, Isotypic components** 17
1.3.1. Irreducible modules : generalities 17
1.3.2. Completely reducible modules 18
1.3.2.1. Definition and characterization 19
1.3.2.2. Isotypic components 20
1.4. **Jacobson radical, semisimple algebras** 21
1.4.1. Definition of the Jacobson radical 21
1.4.2. Nakayama lemma and more proprieties 23
1.4.2.1. Nakayama’s lemma 23
1.4.2.2. Radical and Irreducible modules 23
1.4.3. Jacobson radical and semi–simple algebras 24
1.4.3.1. Yet another characterization of $\text{Rad}(A)$ 25
1.4.3.2. Socle and radical of a module 25
CHAPTER 1

ALGEBRAS AND MODULES

1.1. Generalities

1.1.1. Modules and Algebras.

Let R be a commutative ring, with a unit element.

1.1.1.1. R–modules.

An R–module is an abelian group X endowed with a ring morphism

$$R \to \text{End}(X)$$

$$\lambda \mapsto (x \mapsto \lambda x)$$

(we also set $x\lambda := \lambda x$).

A morphism $\varphi : X \to X'$ between two R–modules is a morphism of abelian groups which commutes with the actions of elements of R. The set of morphisms from X to X' is denoted by $\text{Hom}_R(X, X')$.

Convention 1. We let the elements of $\text{Hom}_R(X, X')$ act on the left of X, so that, for $\varphi \in \text{Hom}_R(X, X')$, $x \in X$ and $\lambda \in R$,

$$\varphi : x \mapsto \varphi(x) \quad \text{and} \quad \varphi(\lambda x) = \lambda \varphi(x),$$

and composing φ followed by φ' is denoted $\varphi' \cdot \varphi$.

1.1.1.2. R–algebras and A–modules.

An R–algebra is a ring A with a unity element, endowed with a ring morphism $R \to ZA$. By abuse of notation, we denote by λa the product of the image of $\lambda \in R$ by $a \in A$. Thus $\lambda a = a\lambda$.

An A–module (or a left representation of A) is a pair (X, λ) where

• X is an R–module,

• $\lambda : A \to \text{End}_R(X)$ is a morphism of R–algebras.

The morphism λ is called the structural morphism.

Remark 1.1.

When speaking of “modules”, one often omits the structural morphism (and only X is called the module), by writing

$$ax := \lambda(a)(x) \quad \text{for} \ a \in A, x \in X.$$

When speaking of “representations”, one emphasizes more the structural morphism λ (viewing then X only as “the R–module of the representation”).
1. ALGEBRAS AND MODULES

Given two \(A\)-modules (left representations of \(A\)) \((X, \lambda)\) and \((X', \lambda')\), a morphism (resp. isomorphism)
\[
\varphi : (X, \lambda) \longrightarrow (X', \lambda')
\]
is an \(R\)-linear morphism (resp. isomorphism)
\[
\varphi : X \rightarrow X' \quad \text{such that} \quad \varphi \cdot \lambda(a) = \lambda'(a) \cdot \varphi.
\]

Expressing an isomorphism with successively the “module point of view” and the “representation point of view”, we get the following descriptions :

- Two \(A\)-modules \(X\) and \(X'\) are isomorphic if and only if there exists an \(R\)-linear isomorphism \(\varphi : X \rightarrow X'\) such that \(\varphi(ax) = a\varphi(x)\).
- Two representations \(\lambda : A \rightarrow \text{End}_R(X)\) and \(\lambda' : A \rightarrow \text{End}_R(X)\) (on the same \(R\)-module \(X\)) are isomorphic if and only if there is an \(R\)-linear automorphism \(\varphi\) of \(X\) such that
 \[
 \lambda'(a) = \varphi \cdot \lambda(a) \cdot \varphi^{-1} \quad (\forall a \in A).
 \]

Convention 2. For \(X\) and \(X'\) \(A\)-modules, we let the morphisms from \(X\) to \(X'\) act *on the right*, so that the commutation with the elements of \(A\) becomes just an associativity property : for \(\varphi : X \rightarrow X'\), \(a \in A\), \(x \in X\), we have
\[
(ax)\varphi = a(x\varphi).
\]
If \(X\) and \(X'\) are \(A\)-modules, then \(\text{Hom}_A(X, X')\) denotes the \(R\)-module of \(A\)-homomorphisms from \(X\) to \(X'\).

If \(X\) is an \(A\)-module, then \(E_A X := \text{End}_A(X)\) denotes the set of \(A\)-endomorphisms of \(X\).

1.1.1.3. Opposite algebra and modules–\(A\).

The opposite algebra \(A^{\text{op}}\) is by definition the \(R\)-module \(A\) where the multiplication is defined as \((a, a') \mapsto a'a\).

A module–\(A\) (or a right representation of \(A\)) is by definition an \(A^{\text{op}}\)-module.

Let \(Y\) be a module–\(A\). Letting the elements of \(A\) (which are the elements of \(A^{\text{op}}\)) act on the right of \(Y\), we get a structural morphism
\[
\rho : A \rightarrow \text{End}_R(Y)^{\text{op}}
\]
(where \(\text{End}_R(X)^{\text{op}}\) acts on the right of \(Y\)).

We then set
\[
y a := (y) \rho(a),
\]
thus justifying the name “module–\(A\)”.
1.1. GENERALITIES

CONVENTION 3. For Y and Y' modules–A, we let the morphisms from Y to Y' act on the left, so that the commutation with the elements of A becomes just an associativity property: for $\varphi : Y \rightarrow Y'$, $a \in A$, $y \in Y$, we have

$$\varphi(ya) = (\varphi y)a.$$

We denote by $\text{Hom}(Y, Y')_A$ the R–module of morphisms of modules–A from Y to Y'.

We set $EY_A := \text{End}(Y)_A$.

1.1.2. The language of R–linear categories and functors.

We briefly introduce and recall some basic notation and definitions about R–linear categories.

1.1.2.1. Categories.

Definition 1.2. An R–linear category consists of the following three mathematical entities:

- A class $\text{Ob}(\mathfrak{A})$, whose elements are called objects (for X an object, we write $X \in \text{Ob}(\mathfrak{A})$, or even $X \in \mathfrak{A}$);
- for each pair of objects X and X', an R–module $\text{Mor}_\mathfrak{A}(X, X')$ (an element $f \in \text{Mor}_\mathfrak{A}(X, X')$ is then called a morphism with source X and target X' and denoted $f : X \rightarrow X'$);
- for each triple of objects X, X', X'', an R–bilinear map called the composition:

$$\begin{align*}
\text{Mor}_\mathfrak{A}(X', X'') \times \text{Mor}_\mathfrak{A}(X, X') &\rightarrow \text{Mor}_\mathfrak{A}(X, X'') \\
(g, f) &\mapsto g.f, \\
\end{align*}$$

such that

1. $(h.g).f = h.(g.f)$,
2. whenever $X \in \mathfrak{A}$, there is an element $\text{Id}_X \in \text{Mor}_\mathfrak{A}(X, X)$ such that, for every morphism $f : X \rightarrow X'$, we have $f.\text{Id}_X = \text{Id}_{X'} . f$.

Let us give some definitions related to properties of morphisms. A morphism $f : X \rightarrow X'$ is

- a **monomorphism** (or monic) if $f.g_1 = f.g_2$ implies $g_1 = g_2$ for all morphisms $g_1, g_2 : X'' \rightarrow X$,
- an **epimorphism** (or epic) if $g_1.f = g_2.f$ implies $g_1 = g_2$ for all morphisms $g_1, g_2 : X \rightarrow X''$,
- an **isomorphism** if there exists a morphism $g : X' \rightarrow X$ with $f.g = \text{Id}_{X'}$ and $g.f = \text{Id}_X$,
- an **endomorphism** if $X' = X$ ($\text{End}_\mathfrak{A}(X)$ denotes the R–algebra of endomorphisms of X),
- an **automorphism** if f is both an endomorphism and an isomorphism. ($\text{Aut}(X)$ denotes the group of automorphisms of X).
The opposite category \mathcal{A}^{op} of a category \mathcal{A} is the category where

- $\text{Ob}(\mathcal{A}^{\text{op}}) := \text{Ob}(\mathcal{A})$,
- $\text{Mor}_{\mathcal{A}^{\text{op}}}(X, X') := \text{Mor}_{\mathcal{A}}(X', X)$,
- for $f \in \text{Mor}_{\mathcal{A}^{\text{op}}}(X, X')$ and $g \in \text{Mor}_{\mathcal{A}^{\text{op}}}(X', X'')$, $(g.f)_{\mathcal{A}^{\text{op}}} := (f.g)_{\mathcal{A}}$.

A full subcategory \mathcal{A}' of a category \mathcal{A} is a category where

- the objects of \mathcal{A}' are some objects of \mathcal{A},
- for X and X' objects of \mathcal{A}', we have $\text{Mor}_{\mathcal{A}}(X, X') = \text{Mor}_{\mathcal{A}'}(X, X')$.

Examples 1.3.

We denote by Mod_A (category of modules–A) the R–linear category whose objects are the modules–A and where

$\text{Hom}_{\text{Mod}_A}(X, X') := \text{Hom}(X, X')_A$.

We denote by mod_A the full subcategory of Mod_A whose objects are the *finitely generated* modules–A.

We denote by AMod_A (category of A–modules) the R–linear category whose objects are the A–modules and where

$\text{Hom}_{\text{AMod}_A}(X, X') := \text{Hom}_A(X, X')$.

We denote by Amod_A the full subcategory of AMod_A whose objects are the *finitely generated* A–modules.

We have

$(\text{AMod}_A)^{\text{op}} = \text{Mod}_{A^{\text{op}}}$.

The monomorphisms (resp. epimorphisms) of AMod_A and Mod_A are the injective (resp. surjective) homomorphisms.

Remark 1.4. An R–linear category \mathcal{A} with a single object X_0 is defined by the R–algebra $A := \text{End}_{\mathcal{A}}(X_0)$.

1.1.2.2. **Functors.**

Definition 1.5. Let \mathcal{A} and \mathcal{B} be two (R–linear) categories. A (covariant) functor $F : \mathcal{A} \to \mathcal{B}$

- associates to each $X \in \text{Ob}(\mathcal{A})$ an object $F(X) \in \text{Ob}(\mathcal{B})$,
- for each pair (X, X') of objects of \mathcal{A} it defines a morphism of R–modules

$F : \text{Mor}_{\mathcal{A}}(X, X') \to \text{Mor}_{\mathcal{B}}(F(X), F(X'))$

such that

1. whenever $X \in \mathcal{A}$, $F(\text{Id}_X) = \text{Id}_{F(X)}$,
2. whenever $f : X \to X'$ and $g : X' \to X''$, then $F(g.f) = F(g).F(f)$.

A contravariant functor $F : \mathcal{A} \to \mathcal{B}$ is a (covariant) functor from \mathcal{A}^{op} to \mathcal{B}.
The image of \(F \) is the full subcategory of \(\mathcal{B} \) with set of objects \(\{ F(X) \}_{X \in \text{Ob}(A)} \).

The essential image of \(F \) is the full subcategory of \(\mathcal{B} \) whose objects are the objects of \(\mathcal{A} \) isomorphic to objects of the image of \(F \).

We say that \(F \) is
- faithful if \(\text{Mor}_A(X, X') \to \text{Mor}_B(F(X), F(X')) \) is injective for all \(X, X' \in \mathcal{A} \),
- full if \(\text{Mor}_A(X, X') \to \text{Mor}_B(F(X), F(X')) \) is surjective for all \(X, X' \in \mathcal{A} \),
- fully faithful if it is full and faithful,
- essentially surjective if the essential image of \(F \) is \(\mathcal{B} \).

Definition 1.6. Let \(F, G : \mathcal{A} \to \mathcal{B} \) be two functors. A morphism \(\varepsilon : F \to G \)
- associates to each object \(X \) of \(\mathcal{A} \) a morphism \(\varepsilon_X : F(X) \to G(X) \)
- such that, whenever \(f : X \to X' \) is a morphism in \(\mathcal{A} \), the following diagram is commutative

\[
\begin{array}{ccc}
F(X) & \xrightarrow{\varepsilon_X} & G(X) \\
F(f) \downarrow & & \downarrow G(f) \\
F(X') & \xrightarrow{\varepsilon_{X'}} & G(X')
\end{array}
\]

We say that a morphism \(\varepsilon : F \to G \) is an isomorphism if, for all object \(X \) of \(\mathcal{A} \), \(\varepsilon_X : F(X) \to G(X) \) is an isomorphism. The functors \(F \) and \(G \) are then said to be isomorphic and we write \(F \cong G \).

Example 1.7. Whenever \(X \) is an \(\mathcal{A} \)-module, the \(\mathcal{R} \)-module \(\text{Hom}_A(A, X) \) is endowed with a natural structure of \(\mathcal{A} \)-module defined by

\[
(\varphi a)(b) := \varphi(ba) \quad \text{for} \ \varphi \in \text{Hom}_A(A, X) , \ a, b \in A.
\]

It defines a functor \(\text{Hom}_A(A, \cdot) \), which is isomorphic to the functor identity.

Definition 1.8. We say that a functor \(F : \mathcal{A} \to \mathcal{B} \) is an *equivalence of categories* if there exists a functor \(G : \mathcal{A} \to \mathcal{B} \) such that \(F.G \simeq \text{Id}_\mathcal{B} \) and \(G.F \simeq \text{Id}_\mathcal{A} \).

The following two propositions are left to the reader.

Proposition 1.9. A functor \(F : \mathcal{A} \to \mathcal{B} \) is an equivalence of categories if and only if it is fully faithful and essentially surjective.

Proposition 1.10. Assume that the functor \(F : \mathcal{A} \to \mathcal{B} \) is an equivalence of categories. Then

1. Whenever \(X, X' \in \mathcal{A} \), then \(F \) induces an isomorphism

\[
\text{Hom}_\mathcal{A}(X, X') \xrightarrow{\cong} \text{Hom}_\mathcal{B}(F(X), F(X')).
\]
(2) The image under \(F \) of a monomorphism (resp. an epimorphism) is a monomorphism (resp. an epimorphism).

1.1.3. Bimodules.

1.1.3.1. Generalities.

Let \(A \) and \(B \) be two \(R \)-algebras. We denote by \(A \otimes_R B \) the algebra defined on the tensor product by the multiplication \((a_1 \otimes b_1)(a_2 \otimes b_2) := a_1a_2 \otimes b_1b_2\).

Notation 1. In what follows, whenever the ring controlling the tensor product is not specified, it means that the tensor product is over \(R \).

An \((A,B)\)-bimodule, also called \(A \)-module–\(B \), is by definition an \((A \otimes_R B^{\text{op}})\)-module.

Let \(M \) be an \(A \)-module–\(B \). For \(a \in A \), \(b \in B^{\text{op}} \), \(m \in M \), we set \(amb := (a \otimes b)m \),

thus justifying the name “\(A \)-module–\(B \)”.

Remark 1.11. With the preceding notation, one has to consider that the elements of \(R \) act the same way on both sides of \(M \) : for \(\lambda \in R \) and \(m \in M \), we have \(\lambda m = m\lambda \).

Notice that an \(A \)-module–\(B \) is naturally a \(B^{\text{op}} \)-module–\(A^{\text{op}} \), i.e., a module–\((A^{\text{op}} \otimes_R B)\).

Convention 4. The question “where do the morphisms of bimodules act ?” is solved by the following convention : a morphism of \(A \)-modules–\(B \) is treated as a morphism of \((A \otimes_R B^{\text{op}})\)-modules, i.e., acts on the right.

We set

\[\text{Hom}_A(M, M')_B := \text{Hom}_{A \otimes_R B^{\text{op}}}(M, M') \, . \]

Using the above conventions, many natural structures follow from associativity. We list just a few of them:

\[
\begin{align*}
X \in \text{AMod} \quad &\implies\quad X \in \text{AMod}_{EAX} \\
Y \in \text{Mod}_A \quad &\implies\quad Y \in \text{EY}_A \text{Mod}_A \\
M \in \text{AMod}_B \quad &\implies\quad \text{Hom}_A(M, N) \in \text{BMod}_C \\
N \in \text{AMod}_C \quad &\implies\quad \langle (m)(bfc) := (mb)fc \rangle \\
M \in \text{BMod}_A \quad &\implies\quad M \otimes_A N \in \text{BMod}_C \\
N \in \text{AMod}_C \quad &\implies\quad \text{Hom}_A(M, N) \in \text{BMod}_C \\
\end{align*}
\]
Let us set
\[
\begin{align*}
\lambda_A &: A \to \text{End}(A)_A, \quad a \mapsto (x \mapsto ax) \\
\rho_A &: A \to \text{End}_A(A), \quad a \mapsto (x \mapsto xa)
\end{align*}
\]
Then we have the following isomorphisms:
\[
\begin{align*}
\lambda_A &: A \xrightarrow{\sim} \text{End}(A)_A \\
\rho_A &: A \xrightarrow{\sim} \text{End}_A(A) \\
\lambda_A &: ZA \xrightarrow{\sim} \text{End}_A(A)_A.
\end{align*}
\]

1.1.4. Additive and abelian R–linear categories.

1.1.4.1. Additive R–linear categories, summands and idempotents.

An (R–linear) additive category is a category \mathcal{A} with a zero object (i.e., $\text{Mor}_\mathcal{A}(0, X) = \text{Mor}_\mathcal{A}(X, 0) = 0$ for all X) and such that all pairs of objects $X, X' \in \mathcal{A}$ admit

(1) a product, i.e., an object $X \amalg X'$ endowed with morphisms
\[
\text{pr}_X : X \amalg X' \to X \quad \text{and} \quad \text{pr}_{X'} : X \amalg X' \to X'
\]
such that the map
\[
\text{Mor}_\mathcal{A}(Y, X \amalg X') \to \text{Mor}_\mathcal{A}(Y, X) \times \text{Mor}_\mathcal{A}(Y, X')
\]
\[
\varphi \mapsto (\text{pr}_X \cdot \varphi, \text{pr}_{X'} \cdot \varphi)
\]
is a bijection:

\[
\begin{tikzcd}
Y \arrow[swap]{dr}{\alpha} \arrow{r}{\alpha'} & X \amalg X' \arrow{d}{\text{pr}_{X'}} \arrow{r}{\text{pr}_X} & X' \arrow{d}{\text{pr}_{X'}} \\
& X &
\end{tikzcd}
\]

(2) a coproduct, i.e., an object $X \amalg X'$ endowed with morphisms
\[
i_X : X \to X \amalg X' \quad \text{and} \quad i_{X'} : X' \to X \amalg X'
\]
such that the map
\[
\text{Mor}_\mathcal{A}(X, Y) \times \text{Mor}_\mathcal{A}(X', Y) \to \text{Mor}_\mathcal{A}(X \amalg X', Y)
\]
\[
\varphi \mapsto (\varphi \cdot i_X, \varphi \cdot i_{X'})
\]
is a bijection:

\[
\begin{array}{ccc}
X & \xrightarrow{i_X} & X' \\
\downarrow & & \downarrow \alpha' \downarrow \\
\downarrow \alpha & & X \xleftarrow{i_X'} Y
\end{array}
\]

Lemma 1.12. Given products \((X \prod X', \text{pr}_X, \text{pr}_{X'})\) (resp. coproducts \((X \coprod X', i_X, i_{X'})\)), there exist coproducts \((X \coprod X', i_X, i_{X'})\) (resp. products \((X \prod X', \text{pr}_X, \text{pr}_{X'})\)), and we have

\[
i_X \cdot \text{pr}_X + i_{X'} \cdot \text{pr}_{X'} = \text{Id}_Y \\
\text{pr}_X \cdot i_X = \text{Id}_X, \text{pr}_{X'} \cdot i_{X'} = \text{Id}_{X'} \\
\text{pr}_X \cdot i_{X'} = 0, \text{pr}_{X'} \cdot i_X = 0.
\]

There are natural isomorphisms

\[X \prod X' \xrightarrow{\sim} X \coprod X'.\]

Sketch of proof of 1.12.

Indeed, assume for example the existence of coproduct. Then the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{0} & X' \\
\downarrow \text{Id}_X & & \downarrow \alpha' \downarrow \\
\downarrow i_X & & X \xleftarrow{i_{X'}} Y
\end{array}
\]

defines \(\text{pr}_X\), etc. \qed

Definition 1.13. For \(X\) and \(X'\) two objects of an additive category \(\mathfrak{A}\), we say that \(X'\) is a summand of \(X\) and we write \(X' \mid X\) if there exists an object \(X''\) and an isomorphism \(X \xrightarrow{\sim} X' \oplus X''\).

Definition 1.14. For \(X\) an object of an additive category \(\mathfrak{A}\), we say that \(X\) is indecomposable if there is no isomorphism between \(X\) and an object \(X' \oplus X''\) where both \(X'\) and \(X''\) are nonzero.

An additive category \(\mathfrak{A}\) is called complete if, for any set-indexed family \((X_\alpha)_{\alpha \in I}\) of objects in \(\mathfrak{A}\), there is a product

\[
\prod_{\alpha \in I} X_\alpha, (p_\alpha)_{\alpha \in I}.
\]

It is called cocomplete if for each family \((X_\alpha)_{\alpha \in I}\) of objects in \(\mathfrak{A}\), there exists a coproduct

\[
\coprod_{\alpha \in I} X_\alpha, (i_\alpha)_{\alpha \in I}.
\]
(which represents $\prod_{\alpha \in I} \text{Hom}_A(X_{\alpha}, \bullet)$ — see below).

Examples 1.15. The categories $\mathcal{A}\text{Mod}$ and Mod_A are complete and cocomplete.

The categories $\mathcal{A}\text{mod}$ and mod_A are neither complete nor cocomplete.

1.1.4.2. Representable and corepresentable functors.

A contravariant functor F defined on \mathcal{A} is **representable** if there is an object $X \in \mathcal{A}$ and an isomorphism of functors:

$$\text{Mor}_A(\bullet, X) \xrightarrow{\sim} F,$$

and note that such a property determines the object X uniquely up to a unique isomorphism.

Example 1.16. The product $X \amalg X'$ represents the product functor

$$\text{Mor}_A(\bullet, X) \times \text{Mor}_A(\bullet, X').$$

Dually, a covariant functor F defined on \mathcal{A} is corepresentable if there is an object $X \in \mathcal{A}$ and an isomorphism of functors:

$$\text{Mor}_A(X, \bullet) \xrightarrow{\sim} F,$$

and note that such a property determines the object X uniquely up to a unique isomorphism.

Example 1.17. The coproduct $X \amalg X'$ is defined as “the” object (unique up to a unique isomorphism) which represents the product functor

$$\text{Mor}_A(X, \bullet) \times \text{Mor}_A(X', \bullet).$$

1.1.4.3. Summands and idempotents.

Here we come back to the particular case of the additive category $\mathcal{A}\text{Mod}$.

Definition 1.18.

An idempotent in A is an element i with $i^2 = i$.

Two idempotents i_1 and i_2 are orthogonal if $i_1i_2 = i_2i_1 = 0$.

An idempotent i is primitive if $i \neq 0$ and i cannot be expressed as a sum of two non-zero orthogonal idempotents.

Let X be an A–module.

- If $X = X' \oplus X''$, the composition $X \rightarrow X' \hookrightarrow X$ (of the projection from X onto X' by the injection of X' into X) is an idempotent of E_AX. Conversely, an idempotent i of E_AX determines a decomposition $X = X.i \oplus X.(1 - i)$.

- More generally a decomposition $X = \bigoplus_{\alpha} X_{\alpha}$ corresponds to a family $(i_{\alpha})_\alpha$ of mutually orthogonal idempotents in E_AX such that $1 = \sum_{\alpha} i_{\alpha}$.
• The idempotent \(i \) of \(E_A X \) is primitive if and only if its image \(X . i \) (a summand of \(X \)) is indecomposable.
• The summands of the \(A \)-module \(A \) correspond to the idempotents \(i \) of \(A \). The \(A \)-module \(A i \) is indecomposable if and only if \(i \) is primitive.
• The central idempotents of \(A \) (idempotents of \(Z A \)) correspond to the summands of \(A \) as an \(A \)-module–\(A \), or, in other words, to the twosided ideals of \(A \) which are summands of \(A \).

If \(i \) is an idempotent of \(A \), the \(R \)-submodule \(i A i \) of \(A \), endowed with the composition laws of \(A \), is an algebra with unit element \(i \). The proof of the following lemma is left to the reader.

Lemma 1.19.

1. Assume that \(A \) is isomorphic to a direct product of a family of algebras \((A_i)_{i \in I} : A \xrightarrow{\sim} \prod_{i \in I} A_i .$$

Let us denote by \(e_i \) the element of \(A \) whose image in \(A_i \) is the identity and whose image in \(A_j \) for \(j \neq i \) is 0. Then

- the family \((e_i)_{i \in I}\) is a family of mutually orthogonal central idempotents in \(A \),
- \(1 = \sum_{i \in I} e_i \),

\[1.1.4.4. \text{Central idempotents and products of algebras.} \]

The following proposition is much longer to state than to prove. Its proof is left to the reader.

Proposition 1.20.

Let \(I \) be a finite set.

1. Assume that \(A \) is isomorphic to a direct product of a family of algebras \((A_i)_{i \in I} :$$
1.1. GENERALITIES

• If \(a_i := A e_i \), then \(a_i \) is a twosided ideal of \(A \), and we have

\[
A = \bigoplus_{i \in I} a_i .
\]

(2) Assume that \(A \) is a direct sum of a family \((a_i)_{i \in I}\) of twosided ideals:

\[
A = \bigoplus_{i \in I} a_i .
\]

Then

• there is a family \((e_i)_{i \in I}\) of mutually orthogonal central idempotents in \(A \) such that, for each \(i \in I \), \(a_i = A e_i \),
• if we endow \(a_i \) with the structure of algebra induced by the laws of \(A \) (with \(e_i \) as the identity element), then the projections

\[
\pi_i : A \twoheadrightarrow a_i = A e_i , \quad a \mapsto ae_i
\]

induce an algebra isomorphism

\[
A \xrightarrow{\sim} \prod_{i \in I} A e_i .
\]

(3) If this is the case, then the functors

\[
\begin{align*}
\mathcal{A} \text{Mod} & \to \mathcal{A}_i \text{mod} , \quad X \mapsto e_i X \\
\mathcal{A}_i \text{Mod} & \to \mathcal{A} \text{Mod} , \quad X_i \mapsto \text{Res}_{\pi_i} X_i
\end{align*}
\]

induce an equivalence

\[
\mathcal{A} \text{Mod} \simeq \bigoplus_{i \in I} \mathcal{A}_i \text{Mod} .
\]

1.1.4.5. Abelian categories.

Let \(\varphi : X \to X' \) be a morphism in \(\mathcal{A} \).

• The kernel \(\ker(\varphi) \) of \(\varphi \) is the object (if it exists) which represents the functor

\[
\ker (\varphi_\bullet : \text{Mor}_\mathcal{A}(\bullet , X) \to \text{Mor}_\mathcal{A}(\bullet , X')) .
\]

• The cokernel \(\text{coker}(\varphi) \) of \(\varphi \) is the object (if it exists) which represents the functor

\[
\ker (\varphi^* : \text{Mor}_\mathcal{A}(X', \bullet) \to \text{Mor}_\mathcal{A}(X , \bullet)) .
\]

• The image \(\text{im}(\varphi) \) is the kernel (if it exists) of the morphism \(X' \to \text{coker}(\varphi) \).
• The coimage \(\text{coim}(\varphi) \) is the cokernel (if it exists) of the morphism \(\ker(\varphi) \to X \).
Assume that these four objects exist. Then there is a unique morphism $\bar{\varphi}$ such that the following diagram is commutative:

![Diagram](image)

An abelian category is an additive category \mathcal{A} such that

(Ab1) every morphism admits a kernel and a cokernel,

(Ab2) for each morphism φ, the corresponding morphism $\bar{\varphi}$ is an isomorphism.

Examples 1.21. The categories $\mathcal{A} \text{Mod}$ and Mod_A are abelian.

The categories $\mathcal{A} \text{mod}$ and mod_A are abelian if and only if A is noetherian.

In an abelian category, the following properties are immediate consequences of the definitions.

- A monomorphism is a morphism whose kernel is zero.
- An epimorphism is a morphism whose cokernel is zero.

1.1.4.6. **Short exact sequences and split short exact sequences.**

The proof of the following proposition is left to the reader. It is written in the category $\mathcal{A} \text{Mod}$, so that the morphisms act on the right.

Proposition 1.22.

Let

\[(1.1) \quad 0 \to X' \xrightarrow{\alpha'} X \xrightarrow{\alpha''} X'' \to 0\]

be a short exact sequence in $\mathcal{A} \text{Mod}$.

The following assertions are equivalent.

(i) The exists a morphism $\beta' : X \to X'$ such that $\beta' \alpha' = \text{Id}_{X'}$.

(ii) There exists a morphism $\beta'' : X'' \to X$ such that $\beta'' \alpha'' = \text{Id}_{X''}$.

(iii) There exist morphisms $\beta' : X \to X'$ and $\beta'' : X'' \to X$ such that $\alpha' \beta' + \alpha'' \beta'' = \text{Id}_X$.

(iv) There exists an isomorphism $\sigma : X \xrightarrow{\sim} X' \oplus X''$ such that the following diagram is commutative:

\[
\begin{array}{ccc}
0 & \xrightarrow{} & X' & \xrightarrow{\alpha'} & X & \xrightarrow{\beta'} & X'' & \xrightarrow{} & 0 \\
& & \downarrow{\sigma} & & \downarrow{\sigma} & & \downarrow{\sigma} & & \\
0 & \xrightarrow{} & X' & \xrightarrow{} & X' \oplus X'' & \xrightarrow{} & X' & \xrightarrow{} & 0
\end{array}
\]

Moreover, if the above properties hold, then the sequence

\[(1.2) \quad 0 \to X'' \xrightarrow{\beta''} X \xrightarrow{\beta'} X' \to 0\]

is also exact.
1.1. GENERALITIES

If the above properties hold, we say that the sequence 1.1 (resp. the sequence 1.2) is split.

1.1.4.7. Exact functors.

Definition 1.23. A functor $F : _{A}\text{Mod} \to _{B}\text{Mod}$ is **exact** if whenever $X' \to X \to X''$ is exact in $_{A}\text{Mod}$, then $F(X') \to F(X) \to F(X'')$ is exact in $_{B}\text{Mod}$.

The functor F is exact if and only if the image under F of any short exact sequence in $_{A}\text{Mod}$ is a short exact sequence in $_{B}\text{Mod}$.

Definition 1.24.

- A (covariant) functor $F : _{A}\text{Mod} \to _{B}\text{Mod}$ is **left exact** if whenever $0 \to X' \to X$ is exact in $_{A}\text{Mod}$, then $0 \to F(X') \to F(X)$ is exact in $_{B}\text{Mod}$.
- A (covariant) functor $F : _{A}\text{Mod} \to _{B}\text{Mod}$ is **right exact** if whenever $X \to X'' \to 0$ is exact in $_{A}\text{Mod}$, then $F(X) \to F(X'') \to 0$ is exact in $_{B}\text{Mod}$.
- A contravariant functor $F : _{A}\text{Mod} \to _{B}\text{Mod}$ is left exact (resp. right exact) if the corresponding functor $(_{A}\text{Mod})^{\text{op}} \to _{B}\text{Mod}$ is left exact (resp. right exact).

Thus a functor is exact if and only if it is both left and right exact.

Example 1.25 (Homomorphisms and tensor products as functors). Let M be an A–module–B. Then

- The functor $\text{Hom}_{A}(M, \cdot) : _{A}\text{Mod} \to _{B}\text{Mod}$ is covariant and left exact, i.e., if $0 \to X' \to X \to X''$ is exact, the sequence $0 \to \text{Hom}_{A}(M, X') \to \text{Hom}_{A}(M, X) \to \text{Hom}_{A}(M, X'')$ is exact.
- The functor $\text{Hom}_{A}(\cdot, M) : _{A}\text{Mod} \to \text{Mod}_{B}$ is contravariant and left exact, i.e., if $X' \to X \to X'' \to 0$ is exact, the sequence $0 \to \text{Hom}_{A}(X'', M) \to \text{Hom}_{A}(X, M) \to \text{Hom}_{A}(X', M)$ is exact.
- The functor $M \otimes_{B} \cdot : _{B}\text{Mod} \to _{A}\text{Mod}$ is covariant and right exact, i.e., if $Y' \to Y \to Y'' \to 0$ is exact, the sequence $M \otimes_{B} Y' \to M \otimes_{B} Y \to M \otimes_{B} Y'' \to 0$ is exact.
- The functor $\cdot \otimes_{A} M : \text{Mod}_{A} \to \text{Mod}_{B}$ is covariant and right exact, i.e., if $X' \to X \to X'' \to 0$ is exact, the sequence $X' \otimes_{A} M \to X \otimes_{A} M \to X'' \otimes_{A} M \to 0$ is exact.
1.2. Projective modules

1.2.1. Projective modules.
The following proposition is well-known and its (easy) proof is left to the reader – moreover, it will be proved below in the case of finitely generated modules.

Proposition 1.26. Let M be an A–module. The following properties are equivalent:

(i) The functor $\text{Hom}_{A}(M, \bullet) : \mathcal{A}\text{Mod} \to \mathcal{E}_{A}\mathcal{M}\text{Mod}$ is exact.

(ii) Whenever X and Y are A–modules, $\varphi : X \to Y$ is an epimorphism, and $\psi : M \to Y$ is a morphism, there is a morphism $\hat{\psi} : M \to X$ such that $\hat{\psi}\varphi = \psi : X \to Y$.

(iii) M is isomorphic to a direct summand of a free A–module.

The module M is said to be projective if the preceding equivalent properties are satisfied.

1.2.2. Finitely generated projective modules.

Lemma 1.27. Let X, Y and M be A–modules.

(1) The image of
$$\text{Hom}_{A}(X, M) \otimes_{R} \text{Hom}_{A}(M, Y) \longrightarrow \text{Hom}_{A}(X, Y)$$

consists of those morphisms $X \to Y$, which factorize through M^{n}, for some natural integer n.

(2) If M is an A–module–B, the preceding map factorizes through a map
$$\text{Hom}_{A}(X, M) \otimes_{B} \text{Hom}_{A}(M, Y) \longrightarrow \text{Hom}_{A}(X, Y)$$

Proof. Let
$$x = \sum_{i=1}^{n} \alpha_{i} \otimes \beta_{i} \in \text{Hom}_{A}(X, M) \otimes_{R} \text{Hom}_{A}(M, Y).$$

The image of x in $\text{Hom}_{A}(X, Y)$ is $\sum_{i=1}^{n} \alpha_{i}\beta_{i}$. The maps α_{i} ($1 \leq i \leq n$), respectively β_{i} ($1 \leq i \leq n$), describe a unique map $\alpha : X \to M^{n}$, respectively $\beta : M^{n} \to Y$. Their composition $\alpha\beta$ is equal to $\sum_{i=1}^{n} \alpha_{i}\beta_{i}$, which proves the assertion (1).

The proof of (2) is left to the reader. □ □
The A–dual of an A–module X is the module–A defined by
$$X^\vee := \text{Hom}_A(X, A).$$
We define the map $\tau_{X,Y}$ as the composition
$$\tau_{X,Y} : X^\vee \otimes_A Y \rightarrow \text{Hom}_A(X, Y).$$
We also set
$$\tau_X := \tau_{X,X}.$$
Applying 1.27 to the particular case where $M = A$, we see that

Lemma 1.28. The image of $\tau_{X,Y}$ consists of those morphisms which factorize through A^n, for some n.

Definition 1.29. The elements of the image of $\tau_{X,Y}$ are called the projective maps from X to Y. We denote the set of all projective maps from X to Y by $\text{Hom}^\text{pr}_A(X, Y)$.

By 1.28, we see that $\text{Hom}^\text{pr}_A(X, Y)$ is a ‘twosided ideal’ in $\text{Hom}_A(X, Y)$, i.e., if $f \in \text{Hom}^\text{pr}_A(X, Y)$, $g \in \text{Hom}_A(Y, Z)$ and $h \in \text{Hom}_A(W, X)$, then $fg \in \text{Hom}^\text{pr}_A(X, Z)$ and $hf \in \text{Hom}^\text{pr}_A(W, Y)$.

The following omnibus theorem is classical.

Theorem—Definition 1.30. Let M be an A–module. The following assertions are equivalent.

(i) M is finitely generated, and whenever φ is a surjective morphism from the A–module X onto the A–module Y and ψ is a morphism of M to Y, then there exists a morphism ρ of M to X such that $\rho \varphi = \psi$.

(ii) M is finitely generated, and the functor $\text{Hom}_A(M, \cdot) : A\text{Mod} \rightarrow \text{End}_A(M)$ is an exact functor.

(iii) M is finitely generated, and any surjection with image M is split.

(iv) M is a direct summand of a free module, i.e., $M \mid A^n$, for some integer n.

(v) The map $\tau_M : M^\vee \otimes_A M \rightarrow \text{Hom}_A(M, M)$ is onto.

(vi) The map $\tau_{X,M} : X^\vee \otimes_A M \rightarrow \text{Hom}_A(X, M)$ is an isomorphism for all A–modules X.

(vii) The map $\tau_{M,X} : M^\vee \otimes_A X \rightarrow \text{Hom}_A(M, X)$ is an isomorphism for all A–modules X.

(viii) The map τ_M is an isomorphism.

Proof. Short proof of 1.30

(i) \Rightarrow (ii). (i) implies that the functor $\text{Hom}_A(M, \cdot)$ is right exact. Since it is always left exact, it is exact.

(ii) \Rightarrow (iii). One applies the functor $\text{Hom}_A(M, \cdot)$ and uses a preimage of 1_M to define a splitting.

(iii) \Rightarrow (iv). Because M is finitely generated over A, it is an image, hence a summand, of A^n for some n.

(iv) \Rightarrow (v). Since $M \mid A^n$, we know that Id_M is in the image of τ_M. Furthermore, τ_M is a map in $\text{End}_A(M)\text{Mod}_{\text{End}_A(M)}$ and consequently it is onto.

(v) \Rightarrow (vi). We exhibit the inverse of $\tau_{X,M}$. By (v) there exists an element $\sum_{i=1}^n n_i \otimes m_i$ such that $\tau_M(\sum_{i=1}^n n_i \otimes m_i) = 1_M$. We define the map

$$\psi : \text{Hom}_A(X, M) \to X^\vee \otimes_A M$$

by $\alpha \mapsto \sum_{i=1}^n \alpha n_i \otimes m_i$. This map ψ satisfies $\psi \circ \tau_{X,M} = \text{Id}_{\text{Hom}_A(X,M)}$ and $\tau_{X,M} \circ \psi = \text{Id}_{X^\vee \otimes_A M}$.

(v) \Rightarrow (vii). Using the same element $\sum_{i=1}^n n_i \otimes m_i$ as above, one can give an explicit formula of the inverse of $\tau_{M,X}$, namely

$$\text{Hom}_A(M, X) \to M^\vee \otimes_A X$$

$$\alpha \mapsto \sum_{i=1}^n n_i \otimes m_i \alpha.$$

The implications (vi) \Rightarrow (v) and (vii) \Rightarrow (v) are trivial because $\tau_M = \tau_{M,M}$.

(vii) \Rightarrow (i). Since $M^\vee \otimes_A \bullet$ is a right exact functor, the map φ in (i) induces a surjection

$$M^\vee \otimes_A X \xrightarrow{\varphi^*} M^\vee \otimes_A Y.$$

But $M^\vee \otimes_A X$ and $M^\vee \otimes_A Y$ are respectively isomorphic to $\text{Hom}_A(M, X)$ and $\text{Hom}_A(M, Y)$, and so φ induces a surjection

$$\text{Hom}_A(M, X) \xrightarrow{\varphi^*} \text{Hom}_A(M, Y).$$

Now, any preimage of ψ satisfies the condition on ρ in (i).

Moreover, since the identity of M is a projective map, M is a summand of some A^n, hence is finitely generated.

(vii) \Rightarrow (viii) is trivial, as well as (viii) \Rightarrow (v). $\square \quad \square$

We denote the full subcategory of $A\text{mod}$ consisting of all the projective A–modules by $A\text{proj}$. If M is an (A,B)-bimodule which is projective as an A–module, then we write $M \in A\text{mod}_B \cap A\text{proj}$, by abuse of notation.

Similarly, we denote by proj_A the category of finitely generated projective right A–modules (“projective modules–A”).

Notice also that the R–module of projective maps $\text{Hom}_A^\text{pr}(X, Y)$ may be defined as the set of those morphisms from X to Y which factorize through a projective A–module.

1.2.3. Projective modules and duality.

We recall that for an A–module X, we denote by X^\vee its A–dual, a module-A. Now if Y is a module–A, we denote by Y^\vee its dual–A, an A–module.
If \(\varphi : X \to X' \) is a morphism in \(\mathcal{A} \text{Mod} \), then the map

\[\varphi^\vee : X'^\vee \to X^\vee, \quad (y' : X' \to A) \mapsto (\varphi \cdot y' : X \to A) \]

is a morphism in \(\text{Mod}_A \). Hence we have a contravariant functor

\[\mathcal{A} \text{Mod} \to \text{Mod}_A, \quad X \to X^\vee, \]

as well as a contravariant functor

\[\text{Mod}_A \to \mathcal{A} \text{Mod}, \quad Y \to Y^\vee. \]

We have a natural morphism of \(A \)-modules

\[X \to (X^\vee)^\vee, \quad x \mapsto (y \mapsto xy). \]

The next proposition follows easily from the fact that finitely generated projective modules are nothing but summands of free modules with finite rank.

Proposition 1.31.

(a) Whenever \(X \) is a finitely generated projective \(A \)-module (resp. \(Y \) is a finitely generated projective module–\(A \)), then \(X^\vee \) is a finitely generated projective module–\(A \) (resp. \(Y^\vee \) is a finitely generated projective \(A \)-module).

(b) If \(X \in \mathcal{A} \text{proj} \), the natural morphism \(X \mapsto (X^\vee)^\vee \) is an isomorphism and the functors \(X \mapsto X^\vee \) and \(Y \mapsto Y^\vee \) induce inverse isomorphisms between \(\mathcal{A} \text{proj} \) and \(\text{proj}_A \).

1.3. Complete reducibility, Isotypic components

Throughout this paragraph, we denote by \(k \) a (commutative) field.

We call division algebra over \(k \) (or division \(k \)-algebra) a \(k \)-algebra, finite dimensional as a \(k \)-vector space, which is a (non necessarily commutative) field (in other words, a field whose center contains \(k \)).

Let \(A \) a \(k \)-algebra which is finite dimensional as a \(k \)-vector space.

We have an equivalence of categories between \(\mathcal{A} \text{mod} \) and \(\text{mod}_A \) defined by the \(k \)-duality functor

\[X \mapsto X^* = \text{Hom}(X, k), \quad (\varphi : X_1 \to X_2) \mapsto (\varphi^* : X^*_2 \to X^*_1). \]

Whenever \(X \) is a finitely generated \(A \)-module or module–\(A \), and \(X_1 \) is a submodule of \(X \), we denote by \(X^*_1 \) its orthogonal in \(X^* \) : it is a submodule of \(X^* \), and \(X^*_1 \perp = X_1 \).

1.3.1. Irreducible modules : generalities.

For the convenience of the reader, we repeat the definition given in chapter 1.

Definition 1.32. Let \(S \) be an \(A \)-module. We say that \(S \) is irreducible (or “simple”) if \(S \neq 0 \) and if the only submodules of \(S \) are 0 and \(S \).
One may of course give an analogous definition for modules–A.

The following first properties of irreducible modules are easy to check.

(I1) Let S and T be irreducible A–modules. Then, either S and T are isomorphic, and $\text{Hom}_A(S, T)$ consists of 0 and of isomorphisms, or S and T are not isomorphic, and $\text{Hom}_A(S, T) = 0$. In particular, the algebra $E_A S := \text{Hom}_A(S, S)$ is a division k–algebra.

(I2) Let S be irreducible. Whenever s is a non–zero element of S, we have $S = As$. Thus every irreducible module is isomorphic to a quotient of $A A$, a finite dimensional k–vector space and a finitely generated A–module,

(I3) A submodule S of an A–module X is irreducible if and only if it is a minimal nonzero submodule. Every A–module has an irreducible submodule.

Indeed, since A is finite dimensional over k, every cyclic A–module has finite dimension over k, hence every A–module has submodules of finite dimension. It follows that every A–module has submodules of minimal nonzero dimension : such submodules are minimal submodules.

(I4) A quotient of an A–module X is irreducible if and only if it is the quotient of X by a maximal submodule. In particular every A–module with finite dimension over k has an irreducible quotient.

(I5) Whenever X is an A–module with finite dimension over k, there is a finite sequence

$$0 = X_0 \subset X_1 \subset \cdots \subset X_n = X$$

of submodules of X such that every quotient X_i/X_{i-1} is an irreducible A–module.

(I6) If $\varphi : X \twoheadrightarrow S$ is a surjective morphism from X onto an irreducible module S, and if $0 = X_0 \subset \cdots \subset X_n = X$ is a composition series of X, there exists a unique $i \geq 1$ such that φ maps X_i onto S and X_{i-1} onto 0. In particular we have $S \cong X_i/X_{i-1}$.

(I7) Every irreducible module is a composition factor of A (viewed as an A–module), and there is only a finite number of isomorphism classes of irreducible A–modules.

(I8) The k–duality functor sends an irreducible A–module on an irreducible module–A.

We denote by $\text{Irr}(\text{mod-}A)$ (or simply by $\text{Irr}(A)$) the (finite) set of isomorphism classes of irreducible A–modules.

1.3.2. Completely reducible modules.
1.3. COMPLETE REDUCIBILITY, ISOTYPIC COMPONENTS

1.3.2.1. Definition and characterization.

Proposition–Definition 1.33.
Let X be an A–module.

(1) The following properties are equivalent:
 (i) X is a direct sum of irreducible submodules.
 (ii) X is a sum of irreducible submodules.
 (iii) Every submodule X' of X is a summand in X, i.e., there exists a submodule X'' such that $X = X' \oplus X''$.

(2) Definition: A module X which satisfies the above equivalent assertions is called completely reducible, or semi-simple.

Proof of Proposition 1.33.
It relies on the following lemma.

Lemma 1.34.
Let X be an A–module. Assume that there exists a family $(S_i)_{i \in I}$ of irreducible submodules of X such that $X = \sum_{i \in I} S_i$. Let X' be a submodule of X. Then there exists a subset J of I such that
$$X = X' \oplus \left(\sum_{j \in J} S_j \right).$$

Proof of Lemma 1.34.
We can choose (by Zorn lemma) J maximal such that
$$\left(\sum_{j \in J} S_j \right) \cap X' = 0.$$
Let us then prove that $X = X' + \left(\sum_{j \in J} S_j \right)$. For that, it suffices to prove that for all $i \in I - J$ we have $S_i \subseteq X' + \left(\sum_{j \in J} S_j \right)$. But if this is not the case, we have $S_i \cap (X' + \left(\sum_{j \in J} S_j \right)) = 0$ (since S_i is irreducible), from which we deduce
$$\left(\sum_{j \in J \cup \{i\}} S_j \right) \cap X' = 0,$$
a contradiction.

We now prove proposition 1.33.
(i) \Rightarrow (ii) : clear.
(ii) \Rightarrow (iii) : results from lemma 1.34.
(iii) \Rightarrow (i) : First, let us remark that if a module satisfies (iii), then any submodule satisfies (iii) as well.

Let us choose a family $(S_i)_{i \in I}$ maximal subject to the condition $\sum_{i \in I} S_i = \oplus_{i \in I} S_i$. We shall prove that $X = \oplus_{i \in I} S_i$. By hypothesis, we know that there exists a submodule X' such that $X = (\oplus_{i \in I} S_i) \oplus X'$. We must prove that $X' = 0$. If this is not the case, X' contains an irreducible module, a contradiction with the maximality of the family $(S_i)_{i \in I}$.

\square
Proposition 1.35. Let \(X \) be a completely reducible \(A \)-module. An \(A \)-module \(X' \) is isomorphic to a submodule of \(X \) if and only if \(X' \) is isomorphic to a quotient of \(X \).

Proof. This is a consequence of the characterization (iii) (see 1.33 above) of completely reducible modules.

1.3.2.2. Isotypic components.

Definition 1.36. Let \(X \) be an \(A \)-module, and let \(S \) be an irreducible \(A \)-module.

1. We call \(S \)-isotypic component of \(X \) and we denote by \(\text{Iso}(S, X) \) the sum of all submodules of \(X \) isomorphic to \(S \).

2. We say that \(X \) is \(S \)-isotypic if \(X = \text{Iso}(S, X) \).

Notice that an \(S \)-isotypic module is completely reducible. The following property result from the fact that a completely reducible module has same submodules and quotients.

Lemma 1.37. If \(X \) is \(S \)-isotypic, all submodules and all quotients of \(X \) are also \(S \)-isotypic.

Let us prove a few properties of the \(S \)-isotypic component.

Proposition 1.38.

1. \(\text{Iso}(S, X) \) is an \(A \)-submodule \(- E_A X \) of \(X \).

2. The morphism

\[
S \otimes_{E_A} \text{Hom}_A(S, X) \longrightarrow X , \; s \otimes \varphi \mapsto s \varphi
\]

defines an isomorphism of \(A \)-modules \(- E_A X \) between \(S \otimes_{E_A} \text{Hom}_A(S, X) \) and \(\text{Iso}(S, X) \).

Proof. (1) results from the fact that the image of an irreducible submodule of \(X \) by an \(A \)-homomorphism is either 0 or isomorphic to this submodule.

(2) For the same reason as above, whenever \(\varphi \in \text{Hom}_A(S, X) \), the image of \(\varphi \) is contained in \(\text{Iso}(S, X) \). It follows that the image of the morphism described in the assertion (2) is contained in \(\text{Iso}(S, X) \).

The assertion can be proven using Proposition 1.35.

The proof of the next proposition is left to the reader.

Proposition 1.39.

Let \(X \) be a completely reducible \(A \)-module. Let \(\text{Irr}(A) \) denote a complete set of representatives of isomorphism classes of irreducible \(A \)-modules.

1. We have

\[
X = \bigoplus_{S \in \text{Irr}(A)} \text{Iso}(S, X).
\]
1.4. Jacobson radical, semisimple algebras

(2) The morphisms (for \(S \in \text{Irr}(A) \))

\[\mu_S(x) : S \otimes_{E_A} \text{Hom}_A(S, X) \rightarrow X \]

induce an isomorphism of \(A \)-modules–

\[\bigoplus_{S \in \text{Irr}(A)} S \otimes_{E_A} \text{Hom}_A(S, X) \sim X. \]

The proof of the following proposition is straightforward.

Proposition 1.40.

Let \(X \) be a completely reducible \(A \)-module. We set \(\text{Irr}(X) := \{ S \in \text{Irr}(A) \mid \text{Iso}(S, X) \neq 0 \} \).

(1) Let \(Y \) be a submodule of \(X \). Then we have

\[\text{Iso}(S, Y) = \text{Iso}(S, X) \cap Y, \]

and so

\[Y = \bigoplus_{S \in \text{Irr}(X)} \text{Iso}(S, X) \cap Y. \]

(2) Assume that for all \(S \in \text{Irr}(X) \), \(\text{Iso}(S, X) \) is irreducible (we then say that \(X \) is “multiplicity free”). Then the map

\[I \mapsto \bigoplus_{S \in I} \text{Iso}(S, X) \]

is a bijection from the set of subsets of \(\text{Irr}(X) \) onto the set of submodules of \(Y \).

1.4. Jacobson radical, semisimple algebras

1.4.1. Definition of the Jacobson radical.

An element \(r \in A \) is said “left quasi-nilpotent” (resp. “right quasi-nilpotent”) if \(1 - r \) is left invertible (resp. right invertible), i.e., if there exists \(u \in A \) such that \(u(1 - r) = 1 \) (resp. \((1 - r)u = 1 \)). A left and right quasi-nilpotent element is said quasi-nilpotent. Notice that a nilpotent element is (left and right) quasi-nilpotent.

Proposition–Definition 1.41.

Let \(A \) be an \(R \)-algebra. The following subsets of \(A \) are well defined and are all equal:

(i) The intersection of all maximal proper left ideals of \(A \).

(i’) The intersection of all maximal proper right ideals of \(A \).

(ii) The set of elements \(r \in A \) such that \(ar \) is left quasi-nilpotent for all \(a \in A \).

(ii’) The set of elements \(r \in A \) such that \(ra \) is right quasi-nilpotent for all \(a \in A \).
The largest left ideal consisting of left quasi-nilpotent elements.

(iii') The largest right ideal consisting of right quasi-nilpotent elements.

(iv) The largest twosided ideal consisting of quasi-nilpotent elements.

The above conditions define a twosided ideal of A which is called the (Jacobson) radical of A and is denoted by $\text{Rad}(A)$.

Proof. Let us first prove the equality of the sets defined in (i), (ii) and (iii). We denote temporarily by $\text{Rad}_A(A)$ and $\text{Rad}_A(A)$ the sets defined respectively by the conditions (i) and (ii).

- If $r \in \text{Rad}_A(A)$, for all $a \in A$ we have $ar \in \text{Rad}_A(A)$, and $1 - ar$ belongs to no proper left ideal of A, which shows that $1 - ar$ is left invertible. Thus $\text{Rad}_A(A) \subseteq \text{Rad}_A(A)$.

- If $r \in \text{Rad}_A(A)$, then (by definition of $\text{Rad}_A(A)$) the left ideal generated by r consists of left quasi-nilpotent elements. Let us show that any left ideal n consisting of left quasi-nilpotent elements is contained in $\text{Rad}_A(A)$: this will show that $\text{Rad}_A(A) \subseteq \text{Rad}_A(A)$, that there is an ideal as defined in (iii) and that it coincides with $\text{Rad}_A(A)$.

 If $n \not\subseteq \text{Rad}_A(A)$, there exists a maximal left ideal a such that $n \not\subseteq a$, whence $n + a = A$. So there exists $n \in n$ and $a \in a$ with $1 = n + a$, which shows that a is left invertible, a contradiction.

Lemma 1.42.

(1) Any right ideal consisting of right quasi-nilpotent elements consists in fact of (left and right) quasi-nilpotent elements.

(2) For $a, a' \in A$, the element aa' is quasi-nilpotent if and only if the element $a'a$ is quasi-nilpotent.

Proof. (1) Let n be such a right ideal. For $n \in n$, let us denote by $1 - n'$ a right inverse of $1 - n$. From the equality $(1 - n)(1 - n') = 1$, we deduce that $n' = n n' - n$, hence $n' \in n$. It follows that $1 - n'$ has a right inverse. Thus $1 - n'$ has a left inverse and a right inverse, hence is invertible and so is its inverse $1 - n$.

(2) An elementary computation shows that if $(1 - a'a)c = 1$, then $(1 - aa')(1 + ac a') = 1$. □

The ideal $\text{Rad}(A)_A$ (by the equivalence of (i') and (iii')) consists of right quasi-nilpotent elements, hence by the preceding lemma 1.42 it consists of elements r such that ar is quasi-nilpotent for all $a \in A$. By the equality of the sets defined by (i) and (iii), it follows that $\text{Rad}(A)_A \subseteq \text{Rad}(A)$. By symmetry, we deduce that $\text{Rad}(A)_A = \text{Rad}(A)_A$. This shows that the set defined by the above conditions is a twosided ideal. The condition (iv) is now obviously fulfilled. □

Let A^\times denote the group of unit of an algebra A. Notice that the set

$$1 + \text{Rad}(A) := \{ 1 + r \mid r \in \text{Rad}(A) \}$$
is a normal subgroup of A^\times.

Proposition 1.43.

We have the following short exact sequence

$$1 \to 1 + \text{Rad}(A) \to A^\times \to (A/\text{Rad}(A))^\times \to 1.$$

Proof. It suffices to prove the surjectivity of $A \times 1 + \text{Rad}(A) \to A/\text{Rad}(A)$. Let $a \in A$ such that its image in $A/\text{Rad}(A)$ is invertible. So there is $a' \in A$ such that $aa' \in 1 + \text{Rad}(A)$, which shows that aa' is invertible and thus a is invertible. □

1.4.2. Nakayama lemma and more proprieties.

1.4.2.1. Nakayama’s lemma.

Proposition 1.44 (Nakayama lemma).

Let X be a finitely generated A–module.

1. If $\text{Rad}(A)X = X$, then $X = 0$.
2. Let E be a subset of X whose image in $X/\text{Rad}(A)X$ is a generating set. Then E is a generating set for X.
3. Let $\varphi : Y \to X$ be a morphism of A–modules. Then φ is onto if and only if the composition of φ by the canonical surjection $X \to X/\text{Rad}(A)X$ is onto.

Proof. (1) Let m be the smallest integer such that X can be generated by m elements. Assume $X \neq 0$, hence $m \geq 1$, and let (x_1, x_2, \ldots, x_m) be a set of generators of X. If $\text{Rad}(A)X = X$, then in particular $x_m \in \text{Rad}(A)X$ and there exist elements $r_1, r_2, \ldots, r_m \in \text{Rad}(A)$ such that $x_m = r_1x_1 + r_2x_2 + \cdots + r_mx_m$. It follows that $(1 - r_m)x_m = r_1x_1 + \cdots + r_{m-1}x_{m-1}$, and since $1 - r_m$ is invertible, x_m is a linear combination of x_1, \ldots, x_{m-1}, hence X is generated by x_1, \ldots, x_{m-1}, a contradiction.

(2) Let us denote by X' the submodule of X generated by E. By hypothesis, we have $X' + \text{Rad}(A)X = X$, which can be reinterpreted as $\text{Rad}(A)(X/X') = X/X'$. By the first assertion, it follows that $X/X' = 0$, hence $X = X'$.

(3) : Call E the image of φ and apply (2). □

1.4.2.2. Radical and Irreducible modules.

Definition 1.45. An A–module is said to be irreducible if it has exactly two submodules, i.e., if $S \neq 0$ and the only nonzero submodule of S is S.

Lemma 1.46.

Up to isomorphism, the irreducible A–modules are the modules A/m for m a maximal left ideal of A.
24 1. ALGEBRAS AND MODULES

Proof. Notice that if S is irreducible, then whenever $s \in S$, $s \neq 0$, we have $As = S$. So an irreducible A–module is an image of A, hence of the shape A/\mathfrak{m} where \mathfrak{m} is a left ideal of A. The ideal \mathfrak{m} is maximal if and only if the module $A\mathfrak{m}$ has exactly two submodules. □

Proposition 1.47.

$\text{Rad}(A)$ is the annihilator of all irreducible A–modules, i.e., the following assertions are equivalent for $a \in A$:

(i) $a \in \text{Rad}(A)$,
(ii) Whenever S is an irreducible A–module, we have $aS = 0$.

Proof. Let us first prove that the annihilator of all irreducible A–modules is contained in $\text{Rad}(A)$. Indeed, if a annihilates $A\mathfrak{m}$, then $aA \subset \mathfrak{m}$, hence in particular $a \in \mathfrak{m}$. Thus if a annihilates A/\mathfrak{m} for all maximal left ideal \mathfrak{m}, we see that a belongs to $\bigcap \mathfrak{m}$, i.e., belongs to $\text{Rad}(A)$.

Conversely, if S is irreducible, S is finitely generated and by Nakayama’s lemma we have $\text{Rad}(A)S \neq S$, hence $\text{Rad}(A)S = 0$. □

Let i be an idempotent of A. Recall that iAi inherits a structure of algebra whose unity element is i.

Proposition 1.48.

We have $\text{Rad}(iAi) = i\text{Rad}(A)i = iAi \cap \text{Rad}(A)$.

Proof. It is clear that $i\text{Rad}(A)i = iAi \cap \text{Rad}(A)$.

In order to prove that $\text{Rad}(iAi) \subset i\text{Rad}(A)i$, it suffices to prove that $\text{Rad}(iAi) \subset \text{Rad}(A)$. Let us prove that $\text{Rad}(iAi)$ annihilates all irreducible A–modules.

Let S be an irreducible A–module. If $iS = 0$, then $\text{Rad}(iAi)S \neq 0$. Assume $iS \neq 0$. Let us check that iS is an irreducible iAi–module. Indeed, assume that S' is a nonzero iAi–submodule of iS; by the irreducibility of S, we have $AS' = iS$, hence $iAiS' = S$. Since iS is irreducible, it is annihilated by $\text{Rad}(iAi)$, hence S is annihilated by $\text{Rad}(iAi)$.

Let us now prove that $i\text{Rad}(A)i \subset \text{Rad}(iAi)$. Let $r \in \text{Rad}(A)$. Hence $iri \in \text{Rad}(A)$ and there exists $t \in A$ such that $(1-iri)(1-b) = 1$, i.e., $1-b-iri+iribi = 0$. Multiplying on both sides by i yields

$$i - ibi - iri + iribi = 0,$$

which shows that $(i-iri)$ is (right) invertible in iAi. Since $i\text{Rad}(A)i$ is a twosided ideal in iAi, this shows indeed that $i\text{Rad}(A)i \subset \text{Rad}(iAi)$. □

1.4.3. Jacobson radical and semi–simple algebras.

Throughout this section, we assume that A is a finite dimension k–algebra where k is a field.
1.4. JACOBSON RADICAL, SEMISIMPLE ALGEBRAS

1.4.3.1. Yet another characterization of $\text{Rad}(A)$.

We have the following supplementary characterization of the radical.

Proposition 1.49.

Let k be a (commutative) field, and let A be a k–algebra, finite dimensional over k. Then $\text{Rad}(A)$ is the largest two-sided nilpotent ideal of A.

Proof. It suffices to prove that $\text{Rad}(A)$ is nilpotent, so it suffices to prove that, whenever $n \geq 0$ is an integer, then

$$\text{Rad}(A)^n \neq 0 \implies \text{Rad}(A)^{n+1} \subset \text{Rad}(A)^n.$$

That implication is an immediate consequence of Nakayama’s lemma. \qed

1.4.3.2. Socle and radical of a module.

Definitions 1.50. Whenever X is a finitely generated A–module.

1. We denote by $\text{Rad}_A(X)$ (or simply $\text{Rad}(X)$) and we call radical of X the intersection of all the maximal proper submodules of X.

2. We denote by $\text{Soc}_A(X)$ (or simply $\text{Soc}(X)$) and we call socle of X the sum of all the minimal nonzero submodules of X.

Similarly, whenever Y is a module–A, we define its radical $\text{Rad}(Y)_A$ and its socle $\text{Soc}(Y)_A$.

Note that a nonzero submodule of X is minimal if and only if it is irreducible, and that similarly a proper submodule of X is maximal if and only if its quotient is irreducible.

Proposition 1.51.

Let X be a finitely generated A–module.

1. **Socle, radical and duality:**
 - (a) the orthogonal of $\text{Soc}_A(X)$ in X^* is $\text{Rad}(X^*)_A$,
 - (b) the orthogonal of $\text{Rad}_A(X)$ in X^* is $\text{Soc}(X^*)_A$.

2. **Socle, radical and complete reducibility:**
 - (a) $\text{Rad}(X)$ is the smallest submodule of X providing a semisimple quotient,
 - (b) $\text{Soc}(X)$ is the largest completely reducible submodule of X.

3. **Socle and radical as bimodules:**

 If M is a A–module–B, $\text{Soc}_A(M)$ and $\text{Rad}_A(M)$ are A–submodules–B of M.

Proof. The assertions (1) are obvious.

In order to prove (2), it follows that it suffices to prove that $\text{Soc}(X)$ is the largest completely reducible submodule of X, which is immediate.
Since the image of an irreducible module by an A–morphism is either 0 or an irreducible module, we see that, whenever M is an A–module–B, $\text{Soc}_A(M)$ is an A–submodule–B. It follows by duality that $\text{Rad}(M^*)_A$ is a B–submodule–A of M^*. Interchanging right and left, and M and M^*, shows then that $\text{Rad}_A(M)$ is an A–submodule–B of M. □

The following proposition is an immediate consequence of the definitions.

Proposition 1.52.

The Jacobson radical $\text{Rad}(A)$ *coincides with the radical* $\text{Rad}_A(A)$ *of* A *as an* A–*module and with the radical* $\text{Rad}(A)_A$ *of* A *as a module–* A.

\(\dagger\) **Attention** (\(\dagger\)) It is not true in general that $\text{Soc}_A(A) = \text{Soc}(A)_A$ (see the example after 1.54). We shall see, nevertheless, that this equality holds for symmetric algebras.

1.4.3.3. *Semi–simple algebras : Definition.*

Let us first notice that, since $\text{Rad}(A) = \text{Rad}_A(A)$, the A–module $A/\text{Rad}(A)$ is completely reducible (Similarly, the module–$A A/\text{Rad}(A)$ is completely reducible).

Proposition 1.53.

(1) Whenever X is an A–module, we have $\text{Rad}(X) = \text{Rad}(A)X$.

(2) X is completely reducible if and only if $\text{Rad}(A)X = 0$.

(3) We have $\text{Rad}(A/\text{Rad}(A)) = 0$.

Proof. (1) Since $X/\text{Rad}(X)$ is completely reducible and since $\text{Rad}(A)$ annihilates all irreducible modules, we have $\text{Rad}(A)X \subseteq \text{Rad}(X)$. Reciprocally, $X/\text{Rad}(A)X$ is a homomorphic image of the A–module $(A/\text{Rad}(A))^{(I)}$ (for some set I), hence is completely reducible. This shows that $\text{Rad}(X) \subseteq \text{Rad}(A)X$.

(2) results immediately from (1) and from the definition of $\text{Rad}(X)$.

(3) By what precedes applied to the A–module A, we have $\text{Rad}(A/\text{Rad}(A)) = \text{Rad}(A)(A/\text{Rad}(A)) = 0$. □

Corollary 1.54.

Let X *be a finitely generated* A–*module. *We have

$$\text{Soc}(X) = \{ x \in X \mid (\text{Rad}(A)x = 0) \}.$$

Proof. Since, by definition, $\text{Soc}(X)$ is completely reducible, we have $\text{Rad}(A)\text{Soc}(X) = 0$. Conversely, suppose that $x \in X$ is such that $\text{Rad}(A)x = 0$. Then the A–module Ax is annihilated by $\text{Rad}(A)$ hence is completely reducible, hence is contained in $\text{Soc}(X)$. □
Example 1.55. Let us consider the k–algebra $A := \begin{pmatrix} k & k \\ 0 & k \end{pmatrix}$. Then it is easy to check that $\text{Rad}(A) = \begin{pmatrix} 0 & k \\ 0 & 0 \end{pmatrix}$, from which it follows (by 1.54, (2)) that $\text{Soc}_A(A) = \begin{pmatrix} k & k \\ 0 & 0 \end{pmatrix}$ and $\text{Soc}(A)_A = \begin{pmatrix} 0 & k \\ 0 & k \end{pmatrix}$.

Proposition–Definition 1.56.

(1) The following assertions are equivalent:

(i) $\text{Rad}(A) = 0$.

(ii) All A–modules are completely reducible.

(iii) All A–modules are projective.

(iii’) All modules–A are projective.

An algebra satisfying the above properties is called semi–simple.

(2) $\text{Rad}(A)$ is the smallest twosided ideal of A whose quotient is a semi–simple algebra.

Remark 1.57. We shall see (cf. 1.63 below) that an algebra A is semi–simple if and only if A is a completely reducible A–module–A.

1.4.3.4. Group algebra over a field.

Proposition 1.58.

Let k be a field and let G be a finite group. The following assertions are equivalent:

(i) The algebra kG is semisimple.

(ii) The characteristic of k does not divide the order $|G|$ of G.

Proof. (i)\Rightarrow(ii): Let us set $SG := \sum_{g \in G} g \in kG$. We have $SG \in ZkG$ and $(SG)^2 = |G|SG$.

Thus if the characteristic of k divides $|G|$, we see that SG is a nonzero nilpotent element of ZkG, which proves that $\text{Rad}(kG) \neq 0$ and kG is not semisimple.

(ii)\Rightarrow(i): We prove that every kG–module is completely reducible.

Let X be a kG–module, and let Y be a submodule. There is a k–linear projector $\pi : X \rightarrow Y$. Let us set $\pi_G := \frac{1}{|G|} \sum_{g \in G} g \pi g^{-1}$.

We check that π_G is a kG–linear projector from X onto Y, showing that there is a kG–submodule Y' such that $X = Y \oplus Y'$.

Indeed, it is clear that π_G is kG–linear. Let us prove that $\pi_G^2 = \pi_G$. We have $\pi_G^2 = \frac{1}{|G|^2} \sum_{g,h \in G} g \pi g^{-1} h \pi h^{-1}$. Since $g^{-1}h$ stabilizes
the image Y of π, we see that $\pi g^{-1} h \pi = g^{-1} h \pi$, which implies $\pi^2 = \pi G$.

1.5. Structure of semi–simple algebras

1.5.1. Simple algebras.

Definition 1.59. We say that the algebra A is simple if $A \neq 0$ and if its only twosided ideals are 0 and A. In other words, A is simple if and only if A is an irreducible A–module–A.

A division algebra is obviously simple.

Any matrix algebra $\text{Mat}_n(K)$ of $n \times n$ matrices with coefficients in a division k–algebra K is a simple algebra. The following result shows that any simple k–algebra is of this type.

Theorem 1.60.

1. Let A be a simple algebra. Then A is semi–simple, and there is only one isomorphism class of irreducible A–modules.

2. Let A be a semi–simple algebra with only one isomorphism class of irreducible A–modules. Then A is simple.

More precisely, let S be an irreducible A–module.

(a) The natural morphism

$$S^\vee \otimes_A S \longrightarrow E_A S$$

is an isomorphism of $E_A S$–modules–$E_A S$, and the natural morphism

$$\mu_S(A) : S \otimes_{E_A S} S^\vee \longrightarrow A$$

is an isomorphism of A–modules–A.

(b) The pair of bimodules (S, S^\vee) is a Morita pair for A and $E_A S$. More precisely, the structural morphism

$$A \rightarrow \text{End}(S)_{E_A S}$$

is an isomorphism.

In particular we have an algebras isomorphism

$$A \sim \text{Mat}_m((E_A S)^{op})$$

where m denotes the dimension of S as a right vector space over $E_A S$, and A is simple.

Thus the simple algebras are just the algebras isomorphic to matrix algebras over division k–algebra which are finite extensions of k.

1.5. STRUCTURE OF SEMI–SIMPLE ALGEBRAS

Proof. (1) Let A be simple. If S is an irreducible A–submodule of A, we have $A = \text{Iso}(S, A)$ since $\text{Iso}(S, A)$ is a twosided ideal in A. This shows that A is semi–simple and that it has only one isomorphism class of irreducible modules.

(2) By assumption we have $A = \text{Iso}(S, A)$.

(a) By 1.38, we know that $\mu_S(A) : S \otimes_{E_A S} S^\vee \longrightarrow A$ is an isomorphism.

Moreover, we know that A is isomorphic to the direct sum of (a finite number of) submodules isomorphic to S, which shows that S is a (finitely generated) projective A–module. By the characterization of finitely generated projective modules, we know that the natural morphism

$$S^\vee \otimes_A S \longrightarrow E_A S, \quad \varphi \otimes s \mapsto (x \mapsto (x\varphi)s)$$

is an isomorphism.

(b) is an immediate consequence of the properties of a Morita equivalence and of the fact that $E_A S$ is a division algebra. \hfill \Box

1.5.2. Semi–simple algebras.

Let A be semi–simple.

Let us denote by $\text{Irr}(A)$ a complete set of representatives of isomorphism classes of irreducible A–modules.

Since the A–module A is completely reducible, it is the direct sum of its isotypic components:

$$A = \bigoplus_{S \in \text{Irr}(A)} \text{Iso}(S, A).$$

Since the above decomposition is actually a decomposition of A into a direct sum of A–submodules–A (twosided ideals of A), and since the algebra of endomorphisms of A (as an A–module–A) is the center Z_A of A, this decomposition corresponds to a decomposition of 1 into a sum of mutually orthogonal idempotents in Z_A:

$$1 = \sum_{S \in \text{Irr}(A)} e_S,$$

where $e_S e_T = \delta_{S,T} e_S$, and $\text{Iso}(S, A) = Ae_S$.

The twosided ideal $\text{Iso}(S, A)$ inherits a structure of algebra, where the composition laws are those of A, and where the unit element is e_S. We then have an isomorphism of algebras

$$A \xrightarrow{\sim} \prod_{S \in \text{Irr}(A)} \text{Iso}(S, A), \quad a \mapsto (ae_S)_{S \in \text{Irr}(A)}.$$

For every $S \in \text{Irr}(A)$, the algebra $\text{Iso}(S, A)$ is simple, since it is semi–simple and it has only one irreducible module up to isomorphism (cf. theorem 1.60).

Thus we have proved the following theorem.
Theorem 1.61.

Let A be a finite dimensional k–algebra. The following assertions are equivalent:

(i) A is semisimple.

(ii) A is isomorphic to a (finite) direct product of simple algebras.

More precisely, let A be semi–simple.

1. The map

$$
\bigoplus_{S \in \text{Irr}(A)} S \otimes_{E_{A S}} S^\vee \to A , \quad \sum_{S \in \text{Irr}(A)} s \otimes f \mapsto \sum_{S \in \text{Irr}(A)} s f
$$

is an isomorphism of A–modules–A, which (for every $S \in \text{Irr}(A)$) sends the factor $S \otimes_{E_{A S}} S^\vee$ onto the twosided ideal $\text{Iso}(S, A)$ of A.

2. Each algebra $S \otimes_{E_{A S}} S^\vee$ is simple and isomorphic to $\text{End}(S)_{E_{A S}}$, and the structural morphisms

$$
\lambda_S : A \to \text{End}(S)_{E_{A S}}
$$

define an algebra isomorphism

$$
A \sim \prod_{S \in \text{Irr}(A)} \text{End}(S)_{E_{A S}} ,
$$

hence an algebra isomorphism

$$
A \sim \prod_{S \in \text{Irr}(A)} \text{Mat}_{m_S}(E_{A S})^{\text{op}}
$$

(where m_S denotes the dimension of S as a right vector space over $E_{A S}$).

Proposition 1.62.

Let $A = \bigoplus_{S \in \text{Irr}(A)} A e_S$ be a semisimple algebra. The map

$$
I \mapsto \tau_I := \bigoplus_{S \in I} A e_S
$$

is a bijection from $\text{Irr}(A)$

- onto the set of all twosided ideals of A,
- and onto the set of all quotient algebras of A.

Proof. Viewed as an $A \otimes A^{\text{op}}$–module, A is multiplicity free (see 1.40), and its isotypic components are the $A e_S$ for $S \in \text{Irr}(A)$. Thus the result is an application of 1.40.

Proposition 1.63.

The following assertions are equivalent.

(i) The algebra A is semi–simple.

(ii) Viewed as an A–module–A, A is completely reducible.
Proof. The structure theorem of semi–simple algebras shows that if A is semi–simple, it is a direct product of simple algebras, hence a direct sum of minimal twosided ideals, i.e., a direct sum of irreducible A–modules–A. Thus A is a completely reducible A–module–A.

Conversely, if A is a completely reducible A–module–A, then A is a direct sum of minimal twosided ideals. As above in the proof of theorem 1.61, we see that each of these minimal twosided ideals is endowed with a structure of simple algebra, hence is isomorphic to a bimodule of the shape $S \otimes_{E_A} S^\vee$ for some irreducible A–module S, hence is completely reducible as an A–module. This shows that A is completely reducible as an A–module, hence that A is semi–simple. \qed