8. Convergence in probability

170B Probability Theory, Puck Rombach

Last updated: October 26, 2016

Bertsekas & Tsitsiklis: Section 5.3. Assumed knowledge: Some analysis.

We have seen in the previous topics that, if we take a sample of size \(n \), the sequence of sample means \(M_1, M_2, M_3, M_4, \ldots \) seems to “converge” in some sense to \(\mu \), but what do we mean by that exactly?

We recall the definition of convergence for deterministic sequences.

Let \(\{a_n\} \) be a sequence of real numbers, we say that

- \(\{a_n\} \text{ converges to } a \), or
- \(\lim_{n \to \infty} a_n = a \), or
- \(a_n \to a \text{ as } n \to \infty \),

if

\[\forall \epsilon > 0, \exists n_0 \text{, such that } |a_n - a| \leq \epsilon \forall n \geq n_0. \]

Similarly, we now define probabilistic convergence in exactly the same way as what we saw in the weak law of large numbers.

Let \(\{X_n\} \) be a sequence of random variables. We say that

- \(\{X_n\} \text{ converges to } a \text{ in probability, or} \)
- \(\text{p-lim}_{n \to \infty} X_n = a \), or
- \(X_n \xrightarrow{p} a \text{ as } n \to \infty \),

if

\[\forall \epsilon, \delta > 0, \exists n_0 \text{, such that } \mathbb{P}(|X_n - a| \geq \epsilon) \leq \delta \forall n \geq n_0, \]

or, equivalently

\[\forall \epsilon > 0, \lim_{n \to \infty} \mathbb{P}(|X_n - a| \geq \epsilon) = 0. \]

Notice that the second definition simply asks for deterministic convergence of \(\mathbb{P}(|X_n - a| \geq \epsilon) \).
Exercise 8.1. See example 5.8 from the book. Let X_n be a random variable with

$$p_{X_n}(x) = \begin{cases} \frac{1}{n} & \text{if } x = 1, \\ 1 - \frac{1}{n} & \text{if } x = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Does X_n converge in probability to a constant? Does $\mathbb{E}(X_n)$ converge deterministically to the a constant? If so, is it the same constant?

Now, answer the same questions for the sequence of random variables X_n with

$$p_{X_n}(x) = \begin{cases} \frac{1}{n} & \text{if } x = n, \\ 1 - \frac{1}{n} & \text{if } x = 0, \\ 0 & \text{otherwise,} \end{cases}$$

and then for the sequence of random variables X_n with

$$p_{X_n}(x) = \begin{cases} \frac{1}{n} & \text{if } x = n^2, \\ 1 - \frac{1}{n} & \text{if } x = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Exercise 8.2. (See also example 5.6 in the book.) Let X_1, X_2, X_3, \ldots be iid random variables, which are all continuous and uniform on $[0, 1]$. Let $Y_n = \max(X_1, X_2, \ldots, X_n)$. Does Y_n converge in probability?

Exercise 8.3. Suppose $X_n \xrightarrow{p} a$ and $Y_n = \max(X_n, b)$. Does Y_n converge in probability to a constant?

Exercise 8.4. Suppose $X_n \xrightarrow{p} a$ and $Y_n \xrightarrow{p} b$. Does the random variable $Z_n = X_n + Y_n$ converge in probability to a constant?

We show some of the following general properties of convergence in probability in the lecture and in the exercises.

Lemma 8.5. If $\{X_n\}$ and $\{Y_n\}$ are such that $X_n \xrightarrow{p} a$ and $Y_n \xrightarrow{p} b$, where $a, b \in \mathbb{R}$, then

- $cX_n + dY_n \xrightarrow{p} ca + db$,
- $|X_n| \xrightarrow{p} |a|$,
- $X_nY_n \xrightarrow{p} ab$,
- $\max(X_n, Y_n, c) \xrightarrow{p} \max(a, b, c)$.

Recommended exercises

- Example 5.6-5.8 (p.272)
- Problem 5-6 (p.288-289)
Solutions to Exercises

Solution 8.1. In all three cases, we have that $X_n \xrightarrow{p} 0$.

In the first case, $E(X_n) \rightarrow 0$.

In the second case, $E(X_n) \rightarrow 0$ (in fact, it’s always equal to 1). It is surprising that $E(X_n)$ converges to a constant deterministically, but a constant that is different from the constant that X_n converges to in probability.

In the third case, we have $E(X_n) = n$, which does not converge at all.

We learn from this example that convergence in probability of a random variable does not guarantee any behavior of the first moment of that random variable.

Solution 8.2. We would expect that $Y_n \xrightarrow{p} 1$, and we check that, indeed, for any $\epsilon > 0$,

$$
P(|Y_n - 1| \geq \epsilon) = P(Y_n \leq 1 - \epsilon)
= P(X_1 \leq 1 - \epsilon, X_2 \leq 1 - \epsilon, \ldots, X_n \leq 1 - \epsilon)
= P(X_1 \leq 1 - \epsilon) \cdot P(X_2 \leq 1 - \epsilon) \cdot \ldots \cdot P(X_n \leq 1 - \epsilon)
= (1 - \epsilon)^n \rightarrow 0.
$$

Solution 8.3. We show that $Y_n \xrightarrow{p} \max(a, b)$, which is what we would expect intuitively.

Suppose that $a \leq b$. Then,

$$
P(|Y_n - b| \geq \epsilon) = P(Y_n \geq b + \epsilon)
= P(X_n \geq b + \epsilon)
= P(X_n \geq a + b - a + \epsilon)
= P(X_n - a \geq b - a + \epsilon)
\leq P(|X_n - a| \geq b - a + \epsilon)
\leq P(|X_n - a| \geq \epsilon') \rightarrow 0,
$$

because $\epsilon' = b - a + \epsilon > 0$.

Suppose that $a > b$. Then,

$$
P(|Y_n - a| \geq \epsilon) \leq P(|X_n - a| \geq \epsilon) \rightarrow 0.
$$
Solution 8.4 We would expect that $Z_n \xrightarrow{p} a + b$. We have, for any $\epsilon > 0$,

$$
P(|Z_n - (a + b)| \geq \epsilon) = P(|X_n - a + Y_n - b| \geq \epsilon).
$$

Now, we have the following event relation:

$$
|X_n - a + Y_n - b| \geq \epsilon \subseteq |X_n - a| \geq \epsilon/2 \cup |Y_n - b| \geq \epsilon/2.
$$

Check carefully that you agree with this statement. The following also works fine:

$$
|X_n - a + Y_n - b| \geq \epsilon \subseteq |X_n - a| \geq \epsilon/4 \cup |Y_n - b| \geq 3\epsilon/4.
$$

Also, remember that, if $A \subseteq B$, then $P(A) \leq P(B)$. Also, $P(A \cup C) \leq P(A) + P(C)$. This gives us

$$
P(|Z_n - (a + b)| \geq \epsilon) \leq P(|X_n - a| \geq \epsilon/2) + P(|Y_n - b| \geq \epsilon/2) \to 0.
$$