**E.R. Hedrick Assistant Professor** at the Department of Mathematics, UCLA.

My main research interests are probability theory and mathematical physics.

I received my Ph.D. from
ETH Zurich. My advisor was Professor Alain-Sol
Sznitman.

Here is my CV.

Department of Mathematics

University of California, Los Angeles

520, Portola Plaza

Los Angeles, CA 90095-1555

E-mail: rodriguez@math.ucla.edu

Phone: +1 310 206 9974

Office: MS 6172

- with J. Fröhlich: Some applications of the Lee-Yang theorem

*J. Math. Phys.***53**, 095218, pp. 1-15 (2012).

- with A.-S. Sznitman: Phase transition and level set percolation for the Gaussian free field

*Commun. Math. Phys.***320**(2), pp. 571-601 (2013).

- Level set percolation for random interlacements and the Gaussian free field

*Stoch. Proc. Appl.***124**(4), pp. 1469-1502 (2014).

- with A. Drewitz: High-dimensional asymptotics for percolation of Gaussian free field level sets

*Electron. J. Probab.***20**(47), pp. 1-39 (2015).

- A 0-1 law for the massive Gaussian free field

*Probab. Theory Rel. Fields*,**169**(3-4), pp. 901-930 (2016).

- with J. Fröhlich: On cluster properties of classical ferromagnets in an external magnetic field

*J. Stat. Phys*.**166**(3-4), pp. 828-840*(Special issue on the occasion of David Ruelle's and Yakov Sinai's 80'th birthdays)*, (2017).

- Decoupling inequalities for the Ginzburg-Landau ∇φ models

*Preprint, submitted*, 34 pages (2016).

- with M. Biskup. Limit theory for random walks in degenerate time-dependent random environments.

*J. Funct. Anal.,*to appear, DOI: 10.1016/j.jfa.2017.12.002, 56 pages (2017).

- On pinned fields, interlacements, and random walk on (ℤ/Nℤ)
^{2}.

*Preprint, submitted*, 33 pages (2017).

- with A. Drewitz and A. Prévost. The sign clusters of the massless free
field percolate on ℤ
^{d}, d≥3 (and more).

*Preprint, submitted*, 36 pages (2017).