
Percolation on Transitive Graphs as a

Coalescent Process: Relentless Merging

Followed by Simultaneous Uniqueness
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Abstract

Consider i.i.d. percolation with retention parameter p on an in-

finite graph G. There is a well known critical parameter pc ∈ [0, 1]

for the existence of infinite open clusters. Recently, it has been

shown that when G is quasi-transitive, there is another critical value

pu ∈ [pc, 1] such that the number of infinite clusters is a.s. ∞ for

p ∈ (pc, pu), and a.s. one for p > pu. We prove a simultaneous

version of this result in the canonical coupling of the percolation

processes for all p ∈ [0, 1]. Simultaneously for all p ∈ (pc, pu), we

also prove that each infinite cluster has uncountably many ends.

For p > pc we prove that all infinite clusters are indistinguishable

by robust properties. Under the additional assumption that G is

unimodular, we prove that a.s. for all p1 < p2 in (pc, pu), every in-

finite cluster at level p2 contains infinitely many infinite clusters at

level p1. We also show that any Cartesian product G of d infinite

connected graphs of bounded degree satisfies pu(G) ≤ pc(Z
d).
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1 Introduction

We consider i.i.d. bond percolation with retention parameter p ∈ [0, 1] on

an infinite locally finite connected graph G = (V, E). This means that each

edge is independently assigned the value 1 (open) with probability p, and

the value 0 (closed) with probability 1 − p. We write PG
p , or simply Pp,

for the resulting probability measure on {0, 1}E. All our results and proofs

may be adapted to site percolation as well.

Percolation theory deals with the structure of the connected compo-

nents of open edges, especially infinite connected components (clusters).

By Kolmogorov’s zero-one law, the existence of at least one infinite cluster

has probability 0 or 1, and one defines

pc(G) = inf{p ∈ [0, 1] : PG
p (∃ an infinite cluster) = 1}.

Following Benjamini and Schramm [9], we also define

pu(G) = inf{p ∈ [0, 1] : PG
p (∃ a unique infinite cluster) = 1}.

For G = Zd, Aizenman, Kesten and Newman [1] showed that whenever an

infinite cluster exists, it is a.s. unique, so that pc = pu; subsequently, shorter

proofs were given in [14] and [11]. (With the usual abuse of notation,

we write Zd for the graph whose vertex set is Zd and whose edge set

consists of the pairs of Euclidean nearest neighbors.) For general graphs

uniqueness no longer holds, but for a large class of graphs, including the

quasi-transitive ones, (see Definition 1.1 below), the number of infinite

clusters is an a.s. constant (depending on p) which may be either 0, 1

or ∞. As noted independently by several authors, this follows from the

arguments of Newman and Schulman [27].

The pioneering paper of Grimmett and Newman [16] revealed that sur-

prising new phenomena appear when one goes beyond lattices in Euclidean

space. The work of Benjamini and Schramm [9] indicated the right level of

generality to study these phenomena, and was the impetus for much of the
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recent progress in percolation theory. Nevertheless, as we shall see in Sec-

tion 8, certain deep results for percolation in Zd (uniqueness in orthants,

and estimates of pc) have significant implications beyond the Euclidean

setting.

Write Aut(G) for the group of graph automorphisms of the graph G.

Definition 1.1 A graph G = (V, E) is called transitive if for any x, y ∈

V there exists a γ ∈ Aut(G) which maps x to y. The graph G is called

quasi-transitive if V can be partitioned into finitely many sets (orbits)

V1, . . . , Vk, so that for x ∈ Vi and y ∈ Vj, there exists γ ∈ Aut(G) mapping

x to y iff i = j.

Clearly, a transitive graph is quasi-transitive.

Benjamini and Schramm [9] conjectured that when G is quasi-transitive,

a.s. uniqueness of the infinite cluster holds for all p > pu. This was proved

for Cayley graphs (and, more generally, for quasi-transitive unimodular

graphs; see Definition 6.1) by Häggström and Peres [18], and in full gener-

ality by Schonmann [29].

Theorem 1.2 ([18], [29]) Consider bond percolation on a connected, in-

finite, locally finite, quasi-transitive graph G. Then PG
p -a.s., the number

N of infinite clusters satisfies

N =






0 if p ∈ [0, pc)

∞ if p ∈ (pc, pu)

1 if p ∈ (pu, 1] .

The parameter space [0, 1] is thus split into three qualitatively different

intervals, separated by the two critical values pc and pu. Some of the in-

tervals may be degenerate or empty (e.g., for Zd we have pc = pu, and for

trees we have pu = 1). Grimmett and Newman [16] presented the first ex-

ample of a transitive graph where all three regimes are nondegenerate: the

product of a regular tree and Z. Other examples were given by Benjamini

and Schramm [9] and Lalley [22].
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There is a natural way to couple the percolation processes for all p si-

multaneously. Equip the edges of G with i.i.d. random variables {U(e)}e∈E ,

uniform in [0, 1], and write ΨG for the resulting product measure on [0, 1]E.

For each p, the edge set {e ∈ E : U(e) ≤ p} has the same distribution

as the set of open edges under PG
p . This yields a coalescent process which

has turned out to be a fruitful object of study in Erdős–Rényi random

graph theory (see e.g. [19, 2]) and which has recently attracted more at-

tention also in percolation theory (e.g. [10]): When p = 0 every vertex is

its own connected component. As the parameter p is increased, more and

more edges become open, causing connected components to coalesce, until

finally, when p = 1 all edges are open.

By Theorem 1.2 and Fubini’s Theorem, we have ΨG-a.s. that the num-

ber of infinite clusters is ∞ for (Lebesgue-)a.e. p ∈ (pc, pu), and 1 for a.e.

p ∈ (pu, 1]. However, it is not obvious that the quantifier “a.e.” can be

strengthened to “every” in these statements. Alexander [3] demonstrated

that this strengthening holds for G = Zd and other Euclidean lattices, and

Häggström and Peres [18] handled the case where G is quasi-transitive and

unimodular. Here we prove the simultaneous version of Theorem 1.2 for

all quasi-transitive graphs.

Theorem 1.3 Let G be an infinite, locally finite, connected, quasi-transi-

tive graph, and let pc and pu be as in Theorem 1.2. Consider the coupling

ΨG of the percolation processes on G for all p ∈ [0, 1] simultaneously,

and let N(p) be the number of infinite clusters determined by the edge set

{e ∈ E : U(e) ≤ p}. With ΨG-probability 1, we then have

N(p) =






0 for all p ∈ [0, pc)

∞ for all p ∈ (pc, pu)

1 for all p ∈ (pu, 1] .

This is an immediate consequence of the following result in conjunction

with Theorem 1.2.
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Theorem 1.4 Let G be an infinite, locally finite, connected, quasi-transi-

tive graph. With ΨG-probability 1, for all p1 < p2 in (pc, 1], every infinite

p2-cluster contains an infinite p1-cluster.

This sharpens a result of Schonmann [29], which gives the same assertion

except that the order of the quantifiers “with ΨG-probability 1” and “for

all p1 < p2” is interchanged.

Theorems 1.3 and 1.4 imply that as the parameter p increases, infinite

clusters are “born” only at, or immediately after, level pc. For larger p,

infinite clusters grow and merge, but no new ones are formed from finite

clusters. Our next result shows that infinite clusters “merge relentlessly” in

the intermediate regime (pc, pu). We can only prove this result for quasi-

transitive graphs under the additional assumption of unimodularity (see

Definition 6.1), but we believe it holds for all quasi-transitive graphs.

Theorem 1.5 Let G be an infinite, locally finite, connected, quasi-transi-

tive unimodular graph, and let pc and pu be as in Theorem 1.2. Then, with

ΨG-probability 1, for any p1 < p2 in (pc, pu), any infinite cluster at level p2

contains infinitely many infinite clusters at level p1.

The next result also concerns the intermediate regime (pc, pu). Say that

two infinite self-avoiding paths ξ1 and ξ2 in the same infinite cluster C are

equivalent if for any finite set {e1, . . . , en} of edges in C, both paths are

eventually in the same connected component of C \ {e1, . . . , en}. Equiva-

lence classes of self-avoiding paths in C are called ends of C. The following

theorem is proved in Section 4.

Theorem 1.6 Let G be an infinite, locally finite, connected, quasi-transi-

tive graph. Then, ΨG-a.s., for all p ∈ (pc, pu) every infinite p-cluster has

precisely 2ℵ0 many ends.

The proof extends to the case p = pu if there are multiple infinite clusters

at that level; thus, this theorem confirms Conjecture 5 of Benjamini and

Schramm [9] (except for the case p = pc, if infinitely many infinite clusters
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can exist there). The fixed-p unimodular case was first proved in an early

version of [18].

When there are infinitely many infinite clusters, can they be qualita-

tively different? To make this question precise, we need some definitions.

Definition 1.7 Let G = (V, E) be a quasi-transitive graph. By a subgraph

of G, we mean a collection of edges. A set Q of subgraphs of G is called

a property if for every p ∈ (0, 1) and every vertex x, the event that the

open cluster of x at level p belongs to Q is Pp-measurable.

• Q is an invariant property if for every γ ∈ Aut(G) and E0 ∈ Q,

necessarily γ(E0) ∈ Q.

• Q is monotone if whenever E1 ∈ Q and E1 ⊂ E2, then also E2 ∈ Q.

• Q is robust if for for every infinite connected subgraph C of G and

every edge e ∈ C, we have the equivalence: C ∈ Q iff there is an

infinite connected component of C \ {e} that satisfies Q.

Suppose that Q is a robust property and C is an infinite cluster satisfying

Q. If an edge adjacent to C is opened, then the resulting cluster will satisfy

Q, and if an edge in C is closed, then at least one of the resulting infinite

clusters will satisfy Q.

Transience (for simple random walk) is a robust, monotone, invariant

property of subgraphs that has been studied extensively. An invariant

property of interest, that is robust but not monotone, is

{C : ∃ infinitely many encounter points in C}

(see [11], [8], or the end of the present paper for the definition and sig-

nificance of encounter points). A monotone invariant property for which

robustness is not known is {C : pc(C × Z) < p0}, where p0 < 1 is fixed.

Following a question of O. Schramm (personal communication), Hägg-

ström and Peres [18] showed that for G quasi-transitive and unimodular,

if Q is any monotone invariant property, then Pp-a.s, infinite clusters with
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and without Q cannot coexist, except possibly at one value of p. This

result was substantially improved by Lyons and Schramm [24], who showed

there is no exceptional p, and the monotonicity assumption on Q can be

dropped. Thus on quasi-transitive unimodular graphs, [24] shows that

infinite clusters are indistinguishable by invariant properties. As noted

there, this strong result fails without unimodularity; see Section 6.

Nevertheless, on any quasi-transitive graph, infinite clusters cannot

be distinguished by robust invariant properties. The following theorem

is proved in Section 5.

Theorem 1.8 Let G be an infinite, locally finite, connected, quasi-transi-

tive graph, and let p ∈ (pc, pu]. If Q is a robust invariant property of

subgraphs of G such that

Pp(∃ an infinite cluster satisfying Q) > 0, then Pp-a.s., all infinite clus-

ters in G satisfy Q.

Next, we present an upper bound on pu for products of infinite graphs.

For d graphs {Gi = (Vi, Ei)}d
i=1, define the product graph G = G1 ×

· · · × Gd as the graph with vertex set V = V1 × · · · × Vd, and edge set

E consisting of pairs (x1, . . . , xd) and (y1, . . . , yd) such that xi and yi are

neighbors in Gi for exactly one coordinate i ∈ {1, . . . , d}, and xj = yj for

all other coordinates j. Clearly, a product of two or more quasi-transitive

graphs is quasi-transitive.. Some of the most natural examples (such as

the Grimmett–Newman example) arise this way.

Theorem 1.9 Let G1, . . . , Gd be infinite connected graphs with bounded

degree, and let G be their product G1×· · ·×Gd. Then, for bond percolation

on G with parameter p > pc(Z
d), we have PG

p -a.s. that the number of

infinite clusters is exactly 1. Moreover, in the coupling ΨG, uniqueness of

the infinite cluster holds a.s. simultaneously for all p > pc(Z
d).

In particular, if G1, . . . , Gd are infinite connected graphs with bounded

degree, then

pu(G1 × · · · × Gd) ≤ pc(Z
d).
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The rest of the paper is organized as follows. In the next section we

state an extension of Theorem 1.4. We prove this extension in Section 3,

by combining the approach of Schonmann [29] with invasion percolation

ideas. Theorem 1.6 on ends is established by similar means in Section

4. We prove Theorem 1.8 (indistinguishability by robust properties) in

Section 5. In Section 6, we define unimodularity and recall a technique

known as the mass-transport method, which we then use in Section 7

to prove Theorem 1.5. In Section 8 we prove Theorem 1.9, building on

classical results for percolation in Zd, and a result in [29]. Lower bounds

on pu are also discussed there.

Section 9 contains examples, remarks, and unsolved problems.

2 Uniform percolation and semi-transitive

graphs

In this section we will extend Theorem 1.4. To state this extension, we

will need the notion of uniform percolation from [29]. The ball B(x, R) of

radius R centered at x ∈ V , is defined as the set of edges in G which have

both endpoints within (graph-theoretic) distance R from x.

Definition 2.1 A graph G = (V, E) exhibits uniform percolation at

level p if

lim
R→∞

inf
x∈V

Pp(some infinite p-cluster intersects B(x, R)) = 1 . (1)

It is easy to see that any quasi-transitive graph exhibits uniform per-

colation at all levels p > pc. In fact, this holds in the larger class of

semi-transitive graphs.

Definition 2.2 A graph G = (V, E) is called semi-transitive if there is

a finite set VF ⊂ V such that for any vertex x ∈ V , there is a vertex y ∈ VF

and an injective graph homomorphism of G that maps y to x.



Percolation on transitive graphs 9

The simplest examples of semi-transitive graph that are not quasi-

transitive are the nearest-neighbor graph on the positive integers Z+, and

d-ary trees where the root has degree d and all other vertices have degree

d + 1. More generally, the “super-periodic” trees that discussed in Lyons

and Peres [23] are semi-transitive; an example is the subtree of the binary

tree consisting of all vertices such that the path from the root to v has at

least as many left turns as right turns. These trees are closely related to

the “super self-similar” sets studied by Falconer [13]. A class of graphs,

mentioned in [29], which are semi-transitive but not quasi-transitive, are

products G × Z+, where G is quasi-transitive.

The next result extends Theorem 1.4.

Theorem 2.3 Let G be an infinite connected graph with bounded degree,

that exhibits uniform percolation at level p∗. With ΨG-probability 1, for

all p1 < p2 in (p∗, 1], every infinite p2-cluster contains some infinite p1-

cluster. In particular, there is ΨG-a.s. a unique infinite cluster at level p

for all p > max(pu, p∗).

This will be proved in the next section using invasion percolation. Here,

we show how it implies a generalization of Theorem 1.4.

Proof of Theorem 1.4, generalized to semi-transitive G: Let p >

pc(G). Since the existence of an infinite cluster has Pp-probability 1, we

have for each fixed x ∈ V that

lim
R→∞

Pp(some infinite p1-cluster intersects B(x, R)) = 1 .

The infimum in (1) is attained for some y in the finite set VF specified in

Definition 2.2, and it follows that (1) holds for any p > pc(G). Invoking

Theorem 2.3 completes the proof.

Theorem 1.3 may fail in the semi-transitive setting, because there ex-

ist semi-transitive graphs where with positive probability, the number of

infinite clusters is finite but greater than one. (An example of this, due to

O. Schramm, is described in the final section.) Nevertheless, Theorem 1.3

does extend to semi-transitive graphs G where Aut(G) has an infinite orbit
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(e.g. G = G1 ×G2 where G1 is quasi-transitive and G2 is semi-transitive),

since a standard argument shows that in such graphs G, for each parameter

p the number of infinite clusters is 0, 1 or ∞ a.s.

3 Invasion hits infinite percolation clusters

A key idea in proving Theorem 2.3 is to use invasion percolation, which

is a sequential construction based on the same uniform random variables

{U(e)}e∈E as the canonical coupling of the ordinary percolation processes.

Here we give only a brief description of invasion percolation; we refer to

Chayes, Chayes and Newman [12] for a general introduction to the model,

and to [25, 28] for some interesting recent applications in statistical me-

chanics.

The invasion cluster of a vertex x ∈ V is built up sequentially by

constructing an increasing sequence of edge sets Ix
1 ⊂ Ix

2 ⊂ · · · as follows.

Let Ix
1 consist of the single edge e which minimizes U(e) among all edges

incident to x. When Ix
i is constructed, Ix

i+1 is taken to be Ix
i ∪ {e}, where

e is the edge which minimizes U(e) among all edges e that are not in Ix
i

but are adjacent to some edge in Ix
i . The invasion cluster of x is the edge

set

Ix
∞ =

∞⋃

i=1

Ix
i .

Proposition 3.1 Let G = (V, E) be an infinite, connected graph with

bounded degrees. If G exhibits uniform percolation at level p∗, then ΨG-

a.s. for any p > p∗ and any x ∈ V , the invasion cluster Ix
∞ intersects some

infinite p-cluster.

This proposition was proved by Chayes, Chayes and Newman [12] for Zd,

by Alexander [4] for other Euclidean graphs, and by O. Schramm (per-

sonal communication) for transitive unimodular graphs. Before proving

Proposition 3.1, we explain how it implies Theorem 2.3.
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Proof of Theorem 2.3: For p ∈ [0, 1] and a vertex x, let C(x, p) denote

the cluster at level p containing x. Also let Ωx,p denote the event that (i)

all the edges in G are assigned distinct labels U(e), and (ii) the invasion

cluster Ix
∞ hits some infinite p-cluster. Fix p > p∗ and an edge labeling

{U(e)}e∈E in Ωx,p. For any parameter p2 > p such that the cluster C(x, p2)

is infinite, it must contain the invasion cluster Ix
∞, and hence C(x, p2) must

intersect some infinite p-cluster C(y, p). Obviously, C(x, p2) then intersects

some infinite p1-cluster for any p1 ∈ [p, p2). Proposition 3.1 ensures that

ΨG(∩x,pΩx,p) = 1, where the intersection ranges over all x ∈ V and all

rational p > p∗, and this proves the theorem.

The proof of Proposition 3.1 is based on an adaptation to invasion

percolation of the proof of the main result in [29]. The following lemma is

needed.

Lemma 3.2 Let G = (V, E) be an infinite, connected graph with bounded

degrees, and let R > 0 be an integer. With ΨG-probability 1, the invasion

cluster Ix
∞ contains a ball of radius R.

Proof: Denote by D the maximum degree of vertices in G. The standard

inequality

pc(G) ≥
1

D − 1
> 0 (2)

(see, e.g., [15]), will be used at the end of the proof. Let (v1, v2, . . .) be

an arbitrary enumeration of the vertex set V . For n = 1, 2, . . ., set Ln =

n(2R + 1), and define

τn := min{k : Ix
k comes within distance R from some y ∈ V \ B(x, Ln)} .

Since the invasion cluster Ix
∞ is infinite, τn is a.s. finite for every n. For

each n, define yn to be the vertex in V \ B(x, Ln) at minimal distance

from Ix
τn

(in case of a tie, yn is the one with minimal index in the above

enumeration). Finally, consider the events

An = {U(e) < pc for all e ∈ B(yn, R)} .
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Since there are a.s. no infinite p-clusters for p < pc, on An the invasion

cluster Ix
∞ must contain the ball B(yn, R). Thus it suffices to prove that

ΨG
(
∩∞

i=1 Ac
i

)
= 0. Note that Ix

τn
and B(yn, R) “touch” but do not inter-

sect, and that the invasion process up to time τn gives no information about

edges in B(yn, R). The conditional probability of An given Ac
1, . . . , A

c
n−1

and the invasion process up to time τn , is therefore at least pDR+1

c . There-

fore

ΨG
(
∩n

i=1 Ac
i

)
≤
(
1 − pDR+1

c

)n
,

and the right-hand side tends to 0 as n → ∞ by (2).

Proof of Proposition 3.1: Fix p∗, p and x as in the proposition. Define

the random variable ξx
p∗ as the number of edges that have one endpoint

in Ix
∞ and the other in some infinite p∗-cluster. Our proof consists of first

showing that

ΨG(ξx
p∗ = ∞) = 1 (3)

and then showing that for p > p∗,

ΨG(Ix
∞ intersects some infinite p-cluster | ξx

p∗ = ∞) = 1 . (4)

Letting p ↓ p∗ through a countable sequence then proves the proposition.

By the uniform percolation assumption, we can, for any ε > 0, pick an

R so large that

inf
y∈V

ΨG(some infinite p∗-cluster intersects B(y, R)) ≥ 1 − ε . (5)

Let τ denote the smallest k for which Ix
k contains a ball of radius R; by

Lemma 3.2, τ < ∞ a.s.

For an edge set E0 ⊂ E, set

V (E0) = {y ∈ V : y is an endpoint of some e ∈ E0} .

If E0 is finite and contains some ball of radius R, then by (5) we have

with probability at least 1 − ε that some vertex in V (E0)
c at distance 1

from V (E0) has an open path to infinity at level p∗ via vertices in V (E0)
c
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only. Since the invasion cluster up to time τ gives no information about

the set of edges not adjacent to Ix
τ , we may apply the above reasoning

with E0 = Ix
τ to deduce that the conditional probability that there is some

infinite p∗-cluster within distance 1 from Ix
τ is at least 1 − ε. This shows

that ΨG(ξx
p∗ = 0) ≤ ε, and since ε was arbitrary we have

ΨG(ξx
p∗ = 0) = 0 . (6)

The next step is to rule out the possibility of having ξx
p∗ = n for any finite

n. Note that on the event (ξx
p∗ = n) we can move into the event (ξx

p∗ = 0)

by changing the status of finitely many edges. It is easy to see that this

implies that if ΨG(ξx
p∗ = n) > 0, then ΨG(ξx

p∗ = 0) > 0 holds as well. But

this would contradict (6), so we have

ΨG(ξx
p∗ = n) = 0 (7)

for any n < ∞, and (3) is established.

To prove (4), consider the following “coloring followed by invasion per-

colation” procedure. First mark every edge blue which is in some infinite

p∗-cluster. Then mark every edge red which is not blue but is adjacent to

some blue edge. Given the coloring information, start to build the invasion

cluster at x in the usual way. For the event (ξx
p∗ = ∞) to happen, the

invasion cluster has to meet (become adjacent to) infinitely many colored

edges. If the invasion cluster ever meets any of the blue edges, then we are

done (i.e. the invasion cluster intersects some infinite p-cluster), because

the invasion cluster must then eventually contain the encountered blue edge

unless it penetrates some infinite p∗-cluster elsewhere. Otherwise (still on

the event (ξx
p∗ = ∞)) the invasion cluster has to meet infinitely many red

edges. Suppose now that a given red edge e is met for the first time. Then

the conditional distribution of U(e) (given the coloring information and the

invasion cluster so far) is uniform on (p∗, 1]. Thus the event that U(e) < p

(which obviously implies that Ix
∞ intersects some infinite p-cluster) has

conditional probability p−p∗
1−p∗

> 0. Since this conditional probability is the
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same every time a red edge is encountered by the invasion cluster for the

first time, we have (4), and the proof is complete.

4 Uncountably many ends

Proof of Theorem 1.6: We shall prove that for any p1 < p2 in (pc, pu)

we have

ΨG(∀p ∈ [p1, p2], all infinite p-clusters have 2ℵ0 ends) = 1 . (8)

Sending p1 ↓ pc and p2 ↑ pu through countable sequences then proves the

theorem.

Fix p1 and p2 as above, and set p0 = pc+p1

2
. To prove (8), it is (due to

Theorem 1.4) enough to show, for any x0 ∈ V , that

ΨG(Hx0

p0,p1,p2
) = 0 (9)

where Hx0

p0,p1,p2
is the event that x0 is in an infinite p0-cluster and for some

p ∈ [p1, p2] it is in an infinite p-cluster with less than 2ℵ0 ends. Also

define H̃x0

p0,p1,p2
as the event that x0 is in an infinite p0-cluster and for

some p ∈ [p1, p2] it is in an infinite p-cluster with just one end. If a

given realization η ∈ [0, 1]E of the variables {U(e)}e∈E is in Hx0

p0,p1,p2
, then

(arguing as in Benjamini and Schramm [9], p. 76) one can change finitely

many of the variables to obtain a realization η′ which is in H̃x0

p0,p1,p2
. Thus,

(9) follows easily once we show

ΨG(H̃x0

p0,p1,p2
) = 0 . (10)

Let Lx,R,k be the event that there are at least k infinite p2-clusters

which contain infinite p1-clusters that intersect B(x, R). Fix k ≥ 1. Since

p2 ∈ (pc, pu), and each infinite p2-cluster contains some infinite p1-cluster

ΨG-a.s., for every x ∈ V we have limR→∞ ΨG(Lx,R,k). Thus given ε > 0,

for every x ∈ V there is an R such that

ΨG(Lx,R,k) ≥ 1 − ε. (11)
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Since G is quasi-transitive, there exists an R that satisfies (11) for all

x ∈ V . (R may depend on p1, p2, k and ε, but not on x.) Fix such an

R, and grow the invasion cluster of x0 until the first time τ for which Ix0

τ

contains some ball of radius R; Lemma 3.2 ensures that this happens a.s.

for some finite τ . Let ∂Ix0

τ be the set of edges in E \ Ix0

τ that are adjacent

to Ix0

τ . Using (11) and arguing as in the proof of Proposition 3.1, we have

that

ΨG(Ax0

k | the invasion process up to time τ) ≥ 1 − ε ,

where Ax0

k is the event that the percolation process restricted to the edge

set E \ (Ix0

τ ∪ ∂Ix0

τ ) has at least k infinite p1-clusters that

(i) are contained in separate p2-clusters, and

(ii) contain some vertex at distance 1 from Ix0

τ .

If x0 is in an infinite p0-cluster, then

U(e) ≤ p0 for every e ∈ Ix0

τ . (12)

Given (12) and the invasion process up to time τ , each e ∈ ∂Ix0

τ is open at

level p1 independently with conditional probability at least p1−p0

1−p0
. If Ax0

k

happens, we may pick e1, . . . ek ∈ ∂Ix0

τ adjacent to k different p1-clusters

with the properties (i), (ii) above. These properties guarantee that if x0

is in an infinite p0-cluster and at least two of the edges e1, . . . , ek are open

at level p1, then x0 is in an infinite p-cluster with at least two ends for all

p ∈ [p1, p2]. Hence

ΨG(H̃x0

p0,p1,p2
) ≤ ε +

(
1 − p1

1 − p0

)k

+ k

(
p1 − p0

1 − p0

)(
1 − p1

1 − p0

)k−1

.

Sending ε → 0 and k → ∞ proves (10), and thus also (9) and (8), so the

proof is complete.

We end this section by noting the following very simple corollary to The-

orem 1.4. It is the natural analogue for the uniqueness regime (pu, 1) of

Theorem 1.6.
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Corollary 4.1 Let G be an infinite, locally finite, connected, semi-transi-

tive graph. Then, ΨG-a.s., for all p ∈ (pu, 1) the (unique) infinite p-cluster

has a single end.

Proof: Suppose for contradiction that with positive ΨG-probability, there

exists some p ∈ (pu, 1) for which the infinite cluster has more than one

end. Any realization η ∈ [0, 1]E of the {U(e)}e∈E variables for which

this happens at level p can be modified into a configuration η′ in which

uniqueness of the infinite cluster fails at level p, by changing the status

of just finitely many edges. It follows that with positive ΨG-probability,

there is some p ∈ (pu, 1) for which uniqueness of the infinite cluster fails,

contradicting Theorem 1.4.

5 Indistinguishability by robust properties

Proof of Theorem 1.8: Fix p0 ∈ (pc, p). Since, by Theorem 1.4, ΨG-a.s.

any infinite p-cluster contains an infinite p0-cluster, it suffices to show that

for all x ∈ V ,

ΨG[C(x, p0) is infinite and C(x, p) /∈ Q] = 0 . (13)

Define the random variable ξx as the number of edges that are adjacent

to, or contained in, Ix
∞ and are also adjacent to, or contained in, some

infinite p-cluster which satisfies Q. We will establish (13) by proving the

following two statements:

ΨG[ξx < ∞] = 0 , (14)

and

ΨG[C(x, p0) is infinite, ξx = ∞ and C(x, p) /∈ Q] = 0 . (15)

We first prove (14). By the 0-1 law for automorphism-invariant events,

ΨG[∃ an infinite p-cluster satisfying Q] = 1 .
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Therefore, for any ε > 0, we can pick an R so that

inf
y∈V

ΨG
(
no infinite p-cluster with property Q intersects B(y, R)

)
< ε .

(16)

Let τ be the smallest m for which Ix
m contains a ball of radius R; by Lemma

3.2, τ < ∞ a.s.

For an edge set E0 ⊂ E, let ∂E0 be the set of edges outside E0 that

are adjacent to E0, and denote by S(E0) the set of edges in ∂E0 that are

adjacent to an infinite connected component of {e /∈ ∂E0 : U(e) ≤ p}

which has property Q.

If a finite edge set E0 intersects an infinite p-cluster that has property

Q, then robustness of Q implies that S(E0) 6= ∅. Therefore, any finite edge

set E0 that contains a ball of radius R, satisfies ΨG
(
S(E0) = ∅

)
< ε by

(16).

Since the invasion cluster Ix
τ gives no information about the labels on

edges not in Ix
τ ∪ ∂Ix

τ , we may apply the above reasoning with E0 = Ix
τ to

deduce that ΨG
(
S(Ix

τ ) = ∅
)

< ε. In particular, ΨG(ξx = 0) < ε, and since

ε was arbitrary, ΨG(ξx = 0) = 0 . On the event (ξx = n), we can move into

the event (ξx = 0) by changing the labels U(e) on finitely many edges to

be greater than p; it follows that ΨG(ξx = n) = 0 for any n < ∞, and (14)

is established.

To prove (15), observe that if C(x, p0) is infinite, then Ix
∞ ⊆ C(x, p0).

Therefore, if also ξx = ∞ and C(x, p) /∈ Q, then the following event, which

we call F , must happen: C(x, p) /∈ Q but there are infinitely many edges in

∂C(x, p0) which are adjacent to p-clusters C ∈ Q such that C∩C(x, p0) = ∅.

To establish (15), it suffices to show that ΨG(F ) = 0. To prove this, write

Cℓ(x, p0) for the collection of edges that can be reached from x by a path

which is open at level p0 and is contained in the ball B(x, ℓ). Consider the

event Fℓ,k that C(x, p) /∈ Q and ∂Cℓ(x, p0) contains at least k edges that are

adjacent to infinite p-clusters C ∈ Q such that C ∩ C(x, p0) = ∅. Clearly,

for every k,

F ⊆ ∪∞
ℓ=1Fℓ,k , whence ΨG(F ) ≤ lim

ℓ→∞
ΨG(Fℓ,k) .
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The proof will therefore be complete once we establish that for any ℓ, k,

ΨG(Fℓ,k) ≤

(
1 − p

1 − p0

)k

. (17)

Clearly,

Fℓ,k ⊆
{
C(x, p) /∈ Q and |S(Cℓ(x, p0))| ≥ k

}
.

(In fact these events coincide, but we do not need this.) Therefore, by

robustness of Q,

Fℓ,k ⊆
{
|S(Cℓ(x, p0))| ≥ k and ∀e ∈ S(Cℓ(x, p0)) U(e) ≥ p

}
. (18)

Denote by Fℓ the σ-field generated by Cℓ(x, p0) and the labels {U(e) :

e /∈ ∂Cℓ(x, p0)}. Then S(Cℓ(x, p0)) is Fℓ-measurable, and the remaining

labels {U(e) : e ∈ ∂Cℓ(x, p0)} are conditionally independent and uniform

on [p0, 1] given Fℓ. Thus (17) follows from (18).

6 Unimodularity and mass transport

For x ∈ V , define the stabilizer S(x) = {γ ∈ Aut(G) : γ(x) = x}, and for

y ∈ V , define S(x)y = {γ(y) : γ ∈ S(x)}. Let |A| denote the cardinality

of a set A.

Definition 6.1 A quasi-transitive graph G is called unimodular if for

any two vertices x, y in the same orbit, we have |S(x)y| = |S(y)x|.

For equivalent definitions of unimodularity, see Trofimov [31] and Ben-

jamini, Lyons, Peres and Schramm [7]. Most quasi-transitive graphs that

come up naturally are unimodular. In particular, the Cayley graph of any

finitely generated group is transitive and unimodular. A transitive graph

T̂d which is not unimodular can be constructed by considering a regular

tree Td with degree d ≥ 3, fixing an end ξ of Td, and for each vertex x

adding an edge between x and its ξ-grandparent; see [31] or [7]. In this

example, pu = 1, and for p ∈ (pc, 1) every infinite cluster C has a unique
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vertex v(C, ξ) that is “closest” to ξ. Thus, as noted in [24], the invariant

property {C : v(C, ξ) has degree 1 in C} distinguishes some infinite clus-

ters in T̂d from others. By utilizing more of the local structure of a cluster

C as seen from v(C, ξ), any two infinite clusters in T̂d may be invariantly

distinguished.

The significance of unimodularity for us is that it allows a certain mass-

transport technique, which was introduced in percolation theory in [17] and

systematically developed in [7]. Central to the mass-transport method is

Theorem 6.2 below, which was proved (in a more general setting) in [7]. For

any graph G, every automorphism in Aut(G) acts as a measure-preserving

transformation on the probability space ({0, 1}E,PG
p ). Let m(x, y, ω) be

a nonnegative function of three variables: two vertices x, y in the same

orbit of Aut(G), and ω ∈ {0, 1}E. Intuitively, m(x, y, ω) represents the

mass transported from x to y given the configuration ω. We suppose that

m(·, ·, ·) is invariant under the diagonal action of Aut(G), i.e., m(x, y, ω) =

m(γx, γy, γω) for all x, y, ω and γ ∈ Aut(G).

Theorem 6.2 (The Mass-Transport Principle) Let G = (V, E) be a

unimodular and quasi-transitive graph. Given m(·, ·, ·) as above, let

M(x, y) =
∫

{0,1}E

m(x, y, ω) dPG
p (ω) .

Then the expected total mass transported out of any vertex x equals the

expected total mass transported into x, i.e.,

∀x ∈ V
∑

y∈V

M(x, y) =
∑

y∈V

M(y, x) . (19)

We remark that (19) fails in the nonunimodular case; see [7]. The key

element in a successful application of the mass-transport method is to

make a suitable choice of the transport function m(·, ·, ·); examples can be

found e.g. in [17, 7, 8, 18], and also in Section 7 below.
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7 Relentless merging

The main step in proving Theorem 1.5 is showing that for p ∈ (pc, pu),

any infinite p-cluster will a.s. come within distance 1 from other infinite

p-clusters in infinitely many places, as stated in the following proposition.

The result assumes quasi-transitivity and unimodularity; we conjecture the

latter condition to be removable.

Proposition 7.1 Consider bond percolation on an infinite, locally finite,

connected, quasi-transitive unimodular graph G with retention parameter

p ∈ (pc, pu). Then, PG
p -a.s., for any infinite cluster C there exist infinitely

many closed edges e with one endpoint in C and the other endpoint in some

other infinite cluster (which may depend on e).

Proof: Assume for contradiction that with positive PG
p -probability there

is some infinite cluster C which comes within distance exactly 1 from the

set of other infinite clusters in at most finitely many locations. As in

the argument for (7) in the proof of Proposition 3.1, it follows that with

positive probability there is some infinite cluster C in which exactly one

vertex x is at distance 1 from the set of other infinite clusters. Call such

an infinite cluster C a kingdom, call x its king, and consider the following

mass transport. If a vertex y is in a kingdom, and its king is in the same

orbit as y (recall Definition 1.1), then y sends unit mass to its king. If y

is in a kingdom but not in the same orbit as the king, then y sends unit

mass which it distributes equally among the vertices in its orbit which are

closest in G to the king. Otherwise, no mass is sent from y. The expected

mass sent from each vertex is then at most 1, whereas the expected mass

received has to be ∞ for some vertices. By the Mass-Transport Principle

(Theorem 6.2) we have the desired contradiction.
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Proof of Theorem 1.5: We first prove the assertion of the theorem with

the quantifiers interchanged, i.e. that

for all p1 < p2 in (pc, pu), we have ΨG-a.s. that any infinite p2-cluster

contains infinitely many infinite p1-clusters.

(20)

We know from Theorem 1.2 that any infinite p2-cluster contains some infi-

nite p1-cluster. Hence, it suffices to show that any infinite p1-cluster C gets

connected to infinitely many infinite p1-clusters disjoint from C as we raise

the percolation level to p2. Fix a vertex x, let C(x, p1) be the p1-cluster

containing x, and assume that C(x, p1) is infinite. Call an edge e pivotal

if it is closed at level p1, has one endpoint in C and the other endpoint

in some other infinite p1-cluster. By Proposition 7.1, there are ΨG-a.s. in-

finitely many pivotal edges. As we raise the level to p2, each pivotal edge

gets turned on independently with probability p2−p1

1−p1
, whence at least one

of them gets turned on a.s., so that C(x, p1) gets connected to at least one

other infinite cluster a.s.

Now pick k ≥ 2 and q1, . . . , qk such that p1 = q1 < q2 < · · · < qk = p2.

The above reasoning shows that the infinite cluster C(x, p1) gets connected

to at least one additional infinite p1-cluster for each interval (qi, qi+1), so

that C(x, p2) contains at least k − 1 infinite p1-clusters. Since k was arbi-

trary, we have established (20).

It remains to change the order of the quantifiers “for all p1 < p2” and

“ΨG-a.s.” in (20). To do this, note first that we can apply (20) to all

rational p1 < p2 in (pc, pu) simultaneously. The assertion of the theorem

now follows easily using Theorem 1.3 and the observation that for any

p1 < p2, we can find two distinct rational numbers between p1 and p2.

8 Product graphs and estimates on pu

Let us collect the results from the literature that are needed to prove

Theorem 1.9. The first one concerns percolation on the orthant Zd
+. For
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d = 2, it follows from the work of Kesten [20], while for general d it was

first obtained by Barsky, Grimmett and Newman [6].

Theorem 8.1 ([20], [6]) For bond percolation on Zd
+, d ≥ 2, we have

(a) pc(Z
d
+) = pc(Z

d), and

(b) for p > pc(Z
d
+), there is P

Z
d

+
p -a.s. a unique infinite cluster.

The following result is due to Schonmann [29]. There it was formulated

in the setting of quasi-transitive graphs, but that proof goes through un-

changed in the generality stated here.

Theorem 8.2 ([29]) Let G be any bounded degree graph, and pick p ∈

[0, 1]. If

lim
R→∞

inf
x,y∈V

PG
p (B(x, R) ↔ B(y, R)) = 1 , (21)

then for all p′ > p, there is PG
p′-a.s. exactly one infinite cluster.

Remark. The conclusion of this theorem can now be strengthened to

“ΨG-a.s. there is exactly one infinite cluster at each level p′ > p.”

Indeed, (21) implies uniform percolation at level p, so Theorem 2.3 applies.

In the following proof, we shall work with more than one graph, and

therefore write BG(x, R) for B(x, R) to indicate in which graph the ball

sits.

Proof of Theorem 1.9: We first prove uniqueness of the infinite cluster

on G for fixed p > pc(Z
d). By Theorem 8.2, it is sufficient to show that

(21) holds for all p > pc(Z
d). Fix such a p. Theorem 8.1 implies that

lim
R→∞

P
Z

d

+
p (B

Z
d

+
(0, R) ↔ ∞) = 1 , (22)

where (B
Z

d

+
(0, R) ↔ ∞) is the event that there is an infinite open cluster

intersecting B
Z

d

+
(0, R). Pick ε > 0, and R large enough so that

P
Z

d

+
p (B

Z
d

+
(0, R) ↔ ∞) ≥ 1 − ε .
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Now let x = (x1, . . . , xd) and y = (y1, . . . , yd) be arbitrary vertices of G.

For i = 1, . . . , d, let T i
x be some infinite self-avoiding path in Gi starting

in xi. Also let T i
y be some infinite self-avoiding path in Gi from yi which

eventually coincides with T i
x. Such a path is easily seen to exist: just take a

path from yi to xi, concatenate it with T i
x, and erase any circuits. Finally,

let zi be the first vertex on T i
x with the property that T i

x and T i
y coincide

from zi to infinity, and define T i
z to be the self-avoiding path starting at zi

that is contained in T i
x. Define the product graph G∗

x = T 1
x × · · ·T d

x , and

define G∗
y and G∗

z analogously. Note that G∗
x, G∗

y and G∗
z are all isomorphic

to Zd
+, and furthermore that they are all subgraphs of G and that G∗

z is a

subgraph both of G∗
x and of G∗

y.

Let DR,x be the event that some vertex in BG∗

x
(x, R) has an open path

to infinity in G∗
x. Define DR,y analogously, and set DR,x,y = DR,x ∩ DR,y.

Using (22), we get

PG
p (DR,x,y) ≥ 1 − 2ε .

By Theorem 8.1, we have PG
p -a.s. that G∗

x and G∗
y each have a unique

infinite cluster, and that both these infinite clusters contain the unique

infinite cluster of G∗
z. Hence, we have PG

p -a.s. on the event DR,x,y that

there is an open path in G connecting BG(x, R) and BG(y, R), so that

PG
p (BG(x, R) ↔ BG(y, R)) ≥ 1 − 2ε .

Note that this is a uniform bound for all vertices x and y in G. Since ε

was arbitrary we have (21), so the proof for fixed p is complete.

The asserted simultaneous uniqueness is implied by the remark follow-

ing Theorem 8.2.

Next, we discuss lower bounds for pu. Benjamini and Schramm [9,

Theorem 4] proved that any quasi-transitive graph G satisfies pu(G) ≥

(DρG)−1, where D is the maximal degree in G, and ρG is the spectral

radius for simple random walk on G. Their proof was based on coupling

the percolation process with a branching random walk. In fact, a simple

counting argument yields a slightly better bound.
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Given a locally finite connected graph G, let An
x,y denote the number

of paths of length n which connect x to y. It is easy to see that

λG := lim sup
n→∞

(An
x,y)

1/n

does not depend on x and y.

Proposition 8.3 Suppose that G is an infinite, locally finite, connected

graph. Then for p < λ−1
G , for any x, y ∈ V ,

PG
p [x ↔ y] ≤

(pλG)d(x,y)

1 − pλG
.

If G is also quasi-transitive, then pu(G) ≥ λ−1
G .

This bound on pu coincides with the bound in [9] for quasi-transitive graphs

with constant degree, and improves upon it if the degree is nonconstant.

Proof: Clearly,

Am+n
x,x ≥ Am

x,yA
n
y,x (23)

for any two sites x, y, and any non-negative integers m, n. Since A2k
x,x > 0,

it follows (see, e.g., Section 8 of [21]) that

lim
k→∞

(A2k
x,x)

1

2k = λ̃G = sup
k≥1

(A2k
x,x)

1

2k .

Using symmetry and (23), we obtain

∀x, y ∈ V ∀k ≥ 1 Ak
x,y ≤

(
A2k

x,x

)1/2
≤ λ̃k

G . (24)

Note that (24) implies that λG = λ̃G. Denote by [x ↔ y] the event that

there is an open path connecting the sites x and y, and let [x ↔ ∞] denote

the event that x belongs to an infinite p-cluster. Let N (k)
x,y be the number

of self-avoiding paths of length k which connect x to y. Then

Pp[x ↔ y] ≤
∞∑

k=d(x,y)

N (k)
x,y pk ≤

∞∑

k=d(x,y)

pkAk
x,y

≤
∞∑

k=d(x,y)

(pλG)k =
(pλG)d(x,y)

1 − pλG
, (25)
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provided p < λ−1
G .

Suppose now that G is quasi-transitive. In this case

θ(p) = inf
z∈V

Pp[z ↔ ∞] > 0

for any p > pc. If p > pu, then for all x, y ∈ V ,

Pp[x ↔ y] ≥ Pp[x ↔ ∞, y ↔ ∞] ≥ Pp[x ↔ ∞]Pp[y ↔ ∞] = θ(p)2 > 0 ,

(26)

where the second inequality is an instance of the Harris inequality. Com-

paring (25) to (26) gives pu ≥ λ−1
G .

Remark. O. Schramm (personal communication) has obtained a sharper

lower bound for pu. He showed that pu ≥ γ−1
G , where

γG := sup
x∈V

lim sup
k→∞

(
N k

x

) 1

k

and N k
x is the number of self-avoiding cycles that start and end at x.

The final topic of this section is the relation between the number of ends

of a quasi-transitive graph and the critical parameters pc and pu. It is well

known that a quasi-transitive graph G can only have 1, 2 or uncountably

many ends (see, e.g., Section 6 in [26]). In case the number of ends is more

than 1, one can use the converse of Theorem 8.2 to show that pu = 1. This

converse states that for quasi-transitive graphs,

∀p > pu lim
R→∞

inf
x,y∈V

PG
p

(
B(x, R) ↔ B(y, R)

)
= 1 . (27)

(This is a consequence of the Harris inequality, see Theorem 3.1 of [29]).

The removal of an appropriate finite set of sites and edges from a graph G

which has more than 1 end breaks the graph into more than one infinite

connected component. Therefore the limit in (27) cannot be 1 when p < 1,

and we must have pu = 1. If the number of ends of G is uncountable, then

pc(G) < 1, since then G has a positive Cheeger constant (see Proposition

6.2 in [26] and Theorem 2 in [9]). If G has 2 ends, then G is just a “finite

extension” of Z, so pc(G) = 1. More precisely, by the proof of Proposition
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6.1 in [26], there is a doubly infinite sequence (..., A−2, A−1, A0, A1, A2, ...)

of pairwise disjoint and isomorphic finite subgraphs of G, such that any

infinite self-avoiding path in G must intersect either all the graphs Aj with

large enough j, or all the graphs A−j with large enough j.

The case of a single end is more delicate. Babson and Benjamini [5]

proved that pu(G) < 1 if G is the Cayley graph of a finitely presented group

with one end. The question stated in [9], whether pu(G) < 1 whenever G

is a quasi-transitive graph with one end, is still unsolved.

9 Examples and questions

A variant of the following example was shown to us by O. Schramm.

Example: A semi-transitive graph where exactly 2 infinite clus-

ters can coexist. Let T be a binary tree with root ρ, i.e. T is the tree in

which ρ is incident to exactly two edges, and all other vertices are incident

to exactly three edges. Let H be the product graph T × Z with an addi-

tional distinguished vertex v∗ joined by a single edge to the vertex (ρ, 0)

of T × Z. Theorem 1.9 implies that pu(H) = pu(T × Z) < 1. Finally, let

G consist of two copies H1, H2 of H , glued together at their distinguished

vertices (so these vertices v∗
1 and v∗

2 are identified, and the resulting vertex

of G is denoted w∗). It is easy to see that G is semi-transitive, with VF

consisting of the distinguished vertex w∗ only. For all p > pu(H), it follows

that bond percolation on G can have one or two infinite clusters with pos-

itive probability: If at least one of the two edges incident to w∗ is closed,

then a.s. there are exactly two infinite clusters, one contained in H1 and

the other in H2. On the other hand, clearly the infinite clusters of H1 and

H2 can connect to each other with positive probability.

Next, we discuss briefly yet another phase transition. Let G be a

nonunimodular quasi-transitive graph, and denote by µ the left Haar mea-

sure on Aut(G). Recall the definition of stabilizer S(x) from Section 6. Say

that a cluster C with vertex set V (C) is heavy if
∑

x∈V (C) µ[S(x)] = ∞; oth-
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erwise, we say that C is light. Theorem 1.8 implies that heavy and light

infinite clusters cannot coexist at any fixed level p, so it is natural to define

ph := inf
{
p : Pp[ there is a heavy infinite cluster] > 0

}
. (28)

The mass transport method can be used effectively in heavy clusters. For

instance, Theorem 1.5 can be easily extended to nonunimodular graphs,

provided that the parameters p1, p2 considered there are greater than ph.

For the nonunimodular example T̂d mentioned in Section 6 (a tree with

additional edges leading to ξ-grandparents) it is easy to see that pc < ph =

pu = 1. On the other hand, let Tk denote the k-regular tree. For any graph

G0 with bounded degrees, if k is large enough, then G = G0 × Tk satisfies

ph(G) < pu(G) . (29)

The proof is similar to an argument in [9, Sect. 4]. Let D0 be the maximal

degree in G0, and let ρG be the spectral radius for simple random walk

on G. It is easy to see that if p > pc(Tk), then any infinite p-cluster in

G = G0 × Tk is heavy. Therefore,

λG ·ph(G) ≤ (D0+k) ·ρG ·ph(G) ≤ (D0+k) ·ρG ·pc(Tk) =
D0 + k

k − 1
ρG . (30)

Since ρG = ρG0×Tk
→ 0 as k → ∞, it follows from [9, Theorem 4], or from

Proposition 8.3 above, that for large enough k (when the right hand side

of (30) is less than 1) we have (29). We expect that there exist transitive

graphs where pc < ph < pu < 1, but we do not have an explicit example.

We end the paper with some questions:

1. Is pc < ph for every nonunimodular quasi-transitive graph? (ph is

defined in (28).)

What geometric properties of G guarantee that ph < pu?

2. Can one drop the unimodularity assumption made in Theorem 1.5

and Proposition 7.1?
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3. A graph G is said to exhibit cluster repulsion at level p if, for

i.i.d. percolation with retention parameter p on G, any two infinite

clusters can come within unit distance from each other in at most

finitely many places. Does a quasi-transitive graph necessarily exhibit

cluster repulsion for any p ∈ [0, 1]? It is not hard to show that

cluster repulsion at level p follows if the pair connectivity function

p 7→ PG
p [u ↔ v] is continuous at p for all u, v. Hence cluster repulsion

can fail at most for countably many values of p. If cluster repulsion

holds, then it follows that for every R, any two infinite clusters come

within distance R from each other at most finitely often a.s. We

have an example of a (non-semi-transitive) graph for which cluster

repulsion fails for certain p.

4. Let G be a quasi-transitive graph. A site x is an encounter point

of the cluster C if removing the edges incident to x from C yields

at least three infinite connected components. For p ∈ (pc, pu), is

Pp[∃ an infinite cluster with infinitely many encounter points] > 0?

By Theorem 1.8, this would imply that every infinite cluster has

infinitely many encounter points Pp-a.s. This question has a positive

answer in the unimodular case (see [8] or [24]), which readily extends

to heavy clusters in the nonunimodular case. A general answer would

be a significant step toward determining whether

Ppc
[∃ infinite open clusters ] = 0 (31)

for quasi-transitive graphs with a nonamenable automorphism group.

(Under the additional assumption of unimodularity, (31) is proved in

[8].)
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[17] Häggström, O. (1997) Infinite clusters in dependent automorphism
invariant percolation on trees, Ann. Probab. 25, 1423–1436.
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