NIELSEN NUMBERS OF n-VALUED FIBER MAPS

Robert F. Brown
Department of Mathematics
University of California
Los Angeles, CA 90095
e-mail: rfb@math.ucla.edu

November 12, 2008

Abstract

The Nielsen number for *n*-valued multimaps, defined by Schirmer, has been calculated only for the circle. A concept of *n*-valued fiber map on the total space of a fibration is introduced. A formula for the Nielsen numbers of *n*-valued fiber maps of fibrations over the circle reduces the calculation to the computation of Nielsen numbers of single-valued maps. If the fibration is orientable, the product formula for single-valued fiber maps fails to generalize, but a "semi-product formula" is obtained. In this way, the class of *n*-valued multimaps for which the Nielsen number can be computed is substantially enlarged.

Subject Classification 55M20, 54C60

1 Introduction

A multifunction $\phi \colon X \multimap Y$ is a function such that $\phi(x)$ is a subset of Y for each $x \in X$. For S a subset of Y, the set $\phi^{-1}(S)$ consists of the points $x \in X$ such that $\phi(x) \subseteq S$ and the set $\phi_+^{-1}(S)$ consists of the points $x \in X$ such that $\phi(x) \cap S \neq \emptyset$. A multifunction ϕ is said to be upper semicontinuous if U open in Y implies $\phi^{-1}(U)$ is open in X. It is lower semicontinuous if U open in Y implies $\phi_+^{-1}(U)$ is open in X.

An n-valued multimap $\phi \colon X \multimap Y$ is a function such that $\phi(x)$, for each $x \in X$, is an unordered subset of n points of Y and ϕ is both upper and lower semi-continuous. Schirmer introduced the Nielsen fixed point theory of n-valued multimaps in a series of papers [16], [17], [18]. The main result, there called the "minimum theorem" ([18], Theorem 5.2) states that if $\phi \colon X \multimap X$ is an n-valued multimap of a compact triangulated manifold of dimension at least 3, then ϕ is n-valued multimap homotopic to an n-valued multimap

 $\psi \colon X \longrightarrow X$ that has exactly $N(\phi)$ fixed points, where $N(\phi)$ is the Nielsen number defined in [17].

Schirmer's papers were not concerned with the calculation of the Nielsen number. There are only two examples in those papers, both are 2-valued multimaps of the circle, for which the Nielsen number is given. In [4], in addition to extending the minimum theorem to n-valued multimaps of the circle, we determined the Nielsen numbers for all the n-valued multimaps of the circle as follows. We defined the degree of an n-valued multimap $\phi \colon S^1 \multimap S^1$ and proved that if ϕ is of degree d, then $N(\phi) = |n - d|$. This concept of degree, which is presented in Section 4 below, extends the classical definition for a single-valued map $f \colon S^1 \to S^1$ and thus the result generalizes the well-known formula N(f) = |1 - d| for f of degree d.

The purpose of this paper is to expand substantially the class of n-valued multimaps for which the Nielsen number can be computed. The type of multimap we consider, which we call an n-valued fiber map, is $\Phi \colon E \longrightarrow E$, defined on the total space of a fibration $p: E \to B$. In Section 2, we define n-valued fiber maps and establish their basic properties. In Section 3, we show that the covering homotopy property of fibrations holds in the setting of n-valued multimaps. As a consequence, we extend a fix-finiteness theorem for n-valued multimaps, due to Schirmer, to n-valued fiber maps. The main result of the paper, presented in Section 4, concerns fibrations in which the base space B is the circle. Under this hypothesis, we obtain an addition formula that reduces the calculation of the Nielsen number $N(\Phi)$ to the calculation of Nielsen numbers of single-valued functions. (The class of single-valued maps for which the Nielsen number can be calculated is quite large; see for instance [9] and [11].) In Section 5, we consider orientable fibrations over the circle. Nielsen numbers of single-valued fiber maps of such fibrations satisfy a product formula that does not hold in general for n-valued multimaps. However, we are able to show that a "semi-product formula" does hold and we find additional hypotheses under which the product formula is valid.

I thank Daciberg Goncalves for his help with proving Theorem 5.1 and the referee for improvements in the exposition.

2 Fiber maps

Throughout the paper, we will assume that all the spaces are finite polyhedra. Projections from cartesian products will be denoted $\pi_X \colon X \times Y \to X$. A map $p \colon E \to B$ is a fibration if it

satisfies the absolute covering homotopy property. That is, given a homotopy $H: X \times I \to B$ and a map $f: X \times \{0\} \to E$ such that pf(x) = H(x,0) for all $x \in X$, there exists a homotopy $F: X \times I \to E$ such that F(x,0) = f(x) and pF(x,t) = H(x,t) for all $(x,t) \in X \times I$.

Let $p: E \to B$ and $p': E' \to B'$ be fibrations. A pair of maps $f \colon E \to E', \bar{f} \colon B \to B'$ such that $p'f = \bar{f}p$ is a morphism of fibrations ([6], p. 390), more commonly called a fiber map f with induced map f ([14], p. 75). If f(b) = b then f takes the fiber $p^{-1}(b)$ to itself and the restriction of f to the fiber is denoted by $f_b : p^{-1}(b) \to p^{-1}(b)$. We extend the class of fiber maps to the setting of n-valued multimaps in the following manner. An n-valued multimap $\Phi \colon E \multimap E'$ will be called an *n*-valued fiber map if there is an induced multimap, an n-valued multimap $\phi: B \longrightarrow B'$ such that $p'\Phi = \phi p$, that is, the unordered sets $p'\Phi(e)$ and $\phi p(e)$ are identical for each $e \in E$. An *n*-valued fiber map Φ has the properties: (1) if $e_1, e_2 \in E$ such that $p(e_1) = p(e_2)$, then $p\Phi(e_1) = p\Phi(e_2)$ and (2) for each $e \in E$, if $\Phi(e) = \{e'_1, e'_2, \dots, e'_n\}$, then $p(e'_i) \neq p(e'_i)$ for all $i \neq j$. If $p: E \to B$ is an open map, for instance a fiber bundle, then these properties are sufficient for an n-valued multimap $\Phi \colon E \longrightarrow E'$ to be an n-valued fiber map.

An *n*-valued multimap $\psi: X \multimap Y$ is *w-split*, for some *w* with $2 \le w \le n$, if there exist n_j -valued multimaps $\psi_j: X \multimap Y$ for $j = 1, 2, \ldots, w$, where $n_1 + n_2 + \cdots + n_w = n$, such that

$$\psi(x) = \{\psi_1(x), \psi_2(x), \dots, \psi_n(x)\}\$$

for all $x \in X$. If ψ is an *n*-split *n*-valued multimap so that the ψ_j are single-valued maps, then ψ is just called a *split n*-valued multimap.

The following classical result from [2] is an important tool in the study of n-valued multimaps.

Lemma 2.1. (Splitting Lemma) Let $\phi: X \multimap Y$ be an n-valued multimap and let

$$\Gamma_{\phi} = \{(x, y) \in X \times Y \colon y \in \phi(x)\}\$$

be the graph of ϕ . Then $\pi_X \colon \Gamma_{\phi} \to X$ is a covering space. It follows that if X is simply connected, then any n-valued multimap $\phi \colon X \multimap Y$ is split.

The Splitting Lemma permits us to relate the splitting of an *n*-valued multimap to the structure of its graph, as follows.

Proposition 2.1. If the graph Γ_{ϕ} of an n-valued multimap $\phi \colon X \multimap Y$ has w path components, then ϕ is w-split.

Proof. Let C be a path component of Γ_{ϕ} then, since $\pi_X : C \to X$ is a local homeomorphism, it is a covering space by [15], Exercise 2.4, p. 151, with fibers of cardinality $n_C \leq n$. There is a multivalued function $\phi_C \colon X \multimap Y$ defined by $\phi_C(x) = \{ y \in \phi(x) \colon (x,y) \in C \}.$ To show that ϕ_C is lower semi-coninuous, suppose $(x_0, y_0) \in C$ and U is an open subset of Y containing y_0 . Since the projection $\pi_Y : \Gamma_{\phi} \to \Gamma_{\phi}$ Y is continuous, there is a neighborhood V of (x_0, y_0) in Γ_{ϕ} such that $(x,y) \in V$ implies $y \in U$. Let V_0 be a neighborhood of (x_0,y_0) in the open subset $V \cap C$ of Γ_{ϕ} such that the restriction of the covering space $\pi_X : \Gamma_{\phi} \to X$ to V_0 is a homeomorphism. If x is in the open subset $\pi_X(V_0)$ of X, then there exists $y \in U$ such that $(x,y) \in C$ and we have proved that ϕ_C is lower semi-continuous. For the proof that ϕ_C is upper semi-continuous, we assume that $\phi_C(x_0) \subset U$ and, for each $(x_0, y_k) \in C$, we obtain a neighborhood V_k of x_0 as we did V_0 above. Then for V the intersection of the V_k we have $\phi_C(V) \subseteq U$ to complete the proof that ϕ_C is a multimap. Now suppose that Γ_{ϕ} has w path components $\{C_1, C_2, \dots, C_w\}$. Then there are finite-valued multimaps $\phi_j : X \multimap Y$ defined by $\phi_j(x) = \{ y \in \phi(x) : (x, y) \in C_j \}$ such that $\phi = {\phi_1, \phi_2, \dots, \phi_w}$, that is, ϕ is w-split.

Splitting takes place for n-valued fiber maps, in the following manner.

Lemma 2.2. Let $p: E \to B$ and $p': E' \to B'$ be fibrations, let $\Phi: E \multimap E'$ be an n-valued fiber map and let $b \in B$, then the restriction $\Phi_b: p^{-1}(b) \multimap E'$ of Φ to $p^{-1}(b)$ is split.

Proof. For $\phi: B \multimap B'$ the induced multimap of Φ , let $\phi(b) = \{b'_1, b'_2, \ldots, b'_n\}$. Define $f_{bj}: p^{-1}(b) \to p'^{-1}(b'_j)$ by $f_{bj}(e) = \Phi(e) \cap p'^{-1}(b'_j)$, then

$$\Phi(e) = \{f_{b1}(e), f_{b2}(e), \dots, f_{bn}(e)\}\$$

and we must show that the f_{bj} are continuous. Let $e_0 \in p^{-1}(b)$ and let u' be a neighborhood of $f_{bj}(e_0)$ in $p'^{-1}(b'_j)$. Let U' be an open subset of E' such that $U' \cap p'^{-1}(b'_j) = u'$. Let $W' \subseteq B'$ be an open subset such that $W' \cap \phi(b) = b'_j$. Since Φ is lower semicontinuous, there is an open subset V of E containing e_0 such that $\Phi(e) \cap (U' \cap p'^{-1}(W')) \neq \emptyset$ for all $e \in V$. If $e \in V \cap p^{-1}(b) = v$ then $W' \cap \phi(b) = b'_j$ implies that no point of $\Phi(e)$ other than $f_{bj}(e)$ is in $U' \cap p'^{-1}(W')$ and since $f_{bj}(e) \in p'^{-1}(b'_j)$, then it must be that $f_{bj}(e) \in u'$. Thus $f_{bj}(v) \subseteq u'$ and we conclude that f_{bj} is continuous. \square

If $\Phi \colon E \multimap E$ is an *n*-valued multimap and *b* is a fixed point of the induced multimap $\phi \colon B \multimap B$, then $f_{bj} \colon p^{-1}(b) \to p^{-1}(b)$ for one

of the j = 1, 2, ..., n. We set $f_b = f_{bj}$ for that j and we have shown that f_b is continuous.

An *n*-valued homotopy is an *n*-valued multimap $\Delta \colon X \times I \multimap Y$. The *n*-valued multimaps $\phi, \psi \colon X \multimap Y$ defined by $\phi(x) = \Delta(x, 0)$ and $\psi(x) = \Delta(x, 1)$ are said to be homotopic.

The path space of maps from I to a polyhedron X, with the uniform metric topology, will be denoted by X^I . Given a fibration $p \colon E \to B$, define

$$\Lambda(p) = \{ (e, \omega) \in E \times B^I : p(e) = \omega(0) \}.$$

There is a lifting function for p, that is, a map $\lambda \colon \Lambda(p) \to E^I$ such that $p\lambda(e,\omega)(t) = \omega(t)$ or all $t \in I$. If p is a covering space, then it has the unique path lifting property, that is, if $\bar{\omega}, \bar{\omega}' \in E^I$ such that $p\bar{\omega}(t) = p\bar{\omega}'(t)$ for all $t \in I$ and $\bar{\omega}(t_0) = \bar{\omega}'(t_0)$ for some $t_0 \in I$, then $\bar{\omega}(t) = \bar{\omega}'(t)$ for all $t \in I$ ([10], Prop. 1.34, p. 62).

Generalizing Theorem 2.1 of [4], we have

Proposition 2.2. Let $\Delta: X \times I \multimap Y$ be an n-valued multimap and define $\phi, \psi: X \multimap Y$ by $\phi(x) = \Delta(x,0)$ and $\psi(x) = \Delta(x,1)$. If ϕ is w-split as $\phi = \{\phi_1, \phi_2, \dots, \phi_w\}$ then Δ is w-split as $\Delta = \{\Delta_1, \Delta_2, \dots, \Delta_w\}$ where $\Delta_j(x,0) = \phi_j(x)$. Therefore ψ is w-split as $\psi = \{\psi_1, \psi_2, \dots, \psi_w\}$, where $\psi_j(x) = \Delta_j(x,1)$, and each ϕ_j is homotopic to ψ_j by Δ_j .

Proof. We consider the covering space $\pi_{X\times I} \colon \Gamma_{\Delta} \to X \times I$ and its lifting function $\lambda \colon \Lambda(\pi_{X\times I}) \to (\Gamma_{\Delta})^I$. For $1 \leq j \leq w$, define $\Delta_j \colon X \times I \multimap Y$ as follows: if $\phi_j(x) = \{y_1, y_2, \dots, y_{n_j}\}$, then

$$\Delta_j(x,t) = \{ \pi_Y[\lambda(((x,0), y_i), x \times I)(t)] \}_{i=1}^{n_j}.$$

The unique path lifting property implies that $\Delta_j: X \times I \longrightarrow Y$ is n_j -valued and that if $j \neq k$, then $\Delta_j(x,t) \cap \Delta_k(x,t) = \emptyset$. Since $n_1 + n_2 + \cdots + n_w = n$, we see that $\{\Delta_1, \Delta_2, \ldots, \Delta_w\}$ is the required w-splitting of Δ .

Proposition 2.3. Let $p: E \to B$ and $p': E' \to B'$ be fibrations and let $\Phi: E \multimap E'$ be an n-valued fiber map with induced multimap $\phi: B \multimap B'$. If ϕ is w-split as $\phi = \{\phi_1, \phi_2, \dots, \phi_w\}$, then Φ is w-split as $\Phi = \{\Phi_1, \Phi_2, \dots, \Phi_w\}$ such that each ϕ_j is the induced multimap of the n_j -valued fiber map Φ_j .

Proof. For j = 1, 2, ..., w define $\Phi_j : E \multimap E'$ by

$$\Phi_j(e) = \Phi(e) \cap p'^{-1}(\phi_j(p(e)))$$

then $\Phi(e) = \{\Phi_1(e), \Phi_2(e), \dots, \Phi_w(e)\}$ and $p'\Phi_j = \phi_j p$. We will prove that the Φ_j are continuous. Let $e_0 \in E$ and set $b_0 = p(e_0)$. There are disjoint open subsets W'_1, W'_2, \dots, W'_w of B' such that $\phi_j(b_0) \subseteq W'_j$ for $j = 1, 2, \dots, w$. Since the ϕ_j are upper semicontinuous, there are neighborhoods V_1, V_2, \dots, V_w of b_0 such that $\phi_j(V_j) \subseteq W'_j$. Let $V = V_1 \cap V_2 \cap \dots \cap V_w$ then for $b \in V$ we have $\phi_j(b) \subseteq W'_j$ and $\phi_k(b) \cap W'_j = \emptyset$ if $k \neq j$. Now let U' be an open subset of E' such that $\Phi_j(e_0) \cap U' \neq \emptyset$. Let $U'_j = U' \cap p'^{-1}(W'_j)$. Since Φ is lower semi-continuous, there is a neighborhood \mathcal{O} of e_0 such that $e \in \mathcal{O}$ implies $\Phi(e) \cap U'_j \neq \emptyset$. If $e \in \mathcal{O} \cap p^{-1}(V)$, then it must be that $\Phi_k(e) \cap U'_j = \emptyset$ for $k \neq j$ because $\phi_k(p(e)) \cap W'_j = \emptyset$. We have proved that $\Phi_j(\mathcal{O} \cap p^{-1}(V)) \cap U'_j \neq \emptyset$ and therefore $\Phi_j(\mathcal{O} \cap p^{-1}(V)) \cap U' \neq \emptyset$ so Φ_j is lower semi-continuous. The upper semi-continuity of Φ_j is a consequence of the corresponding property of Φ in the same manner.

3 Fix-finiteness

The main result, Theorem 6, of [16], a generalization of a classical result for single-valued maps due to Hopf [13], states that an n-valued multimap $\phi \colon X \multimap X$ on a finite polyhedron can be approximated arbitrarily closely by an n-valued multimap with only finitely many fixed points, each of them in a maximal simplex of the polyhedron. According to Lemma 4.1 of [17], sufficiently close n-valued multimaps are homotopic. Thus $\phi \colon X \multimap X$ is homotopic to an n-valued multimap $\psi \colon X \multimap X$ that is fix-finite that is, it has finitely many fixed points, and each fixed point lies in a maximal simplex of X. The purpose of the present section is to prove the corresponding result in the setting of n-valued fiber maps.

We first extend the covering homotopy property to n-valued multimaps in order to obtain a tool that we will need for the study of n-valued fiber maps.

Theorem 3.1. Let X be a finite polyhedron, $p: E \to B$ a fibration, $\phi: X \multimap E$ an n-valued multimap and $\delta: X \times I \multimap B$ an n-valued multimap such that $p\phi(x) = \delta(x,0)$ for all $x \in X$, then there exists an n-valued multimap $\Delta: X \times I \multimap E$ such that $\Delta(x,0) = \phi(x)$ and $p\Delta(x,t) = \delta(x,t)$ for all $(x,t) \in X \times I$.

Proof. Choose $b_0 \in B$ and set $Y = p^{-1}(b_0)$. Define an open cover of $X \times I$ as follows. For $(x,t) \in X \times I$, write $\delta(x,t) = \{b_1, b_2, \ldots, b_n\}$ and let U_1, U_2, \ldots, U_n be n disjoint open contractible subsets of B, such that $U_j \cap \delta(x,t) = b_j$ for each $j = 1, 2, \ldots, n$. By Corollary

2.8.15 of [19], there are homotopy equivalences $\zeta_j : p^{-1}(U_j) \to U_j \times Y$ with $\pi_{U_j}\zeta_j = p$ and $\theta_j : U_j \times Y \to p^{-1}(U_j)$ with $p\theta_j = \pi_{U_j}$. Since δ is upper semi-continuous with respect to the product topology on $X \times I$, there are open subsets V of X and J of I such that $(x,t) \in V \times J$ and if $(x',t') \in V \times J$ then $\delta(x',t') \subseteq U_1 \cup U_2 \cup \cdots \cup U_n$. Moreover, since X is locally contractible, we will choose $V \times J$ to be contractible. By the Splitting Lemma, the restriction of δ to $V \times J$ splits into n maps $f_j : V \times J \to B$ where we number the f_j so that $f_j(V \times J) \subseteq U_j$. Since $X \times I$ is compact, there is a finite subcover $\{V_k \times J_\mu\}$ of the cover $\{V \times J\}$. By writing open intervals in I as unions of smaller intervals open in I, if necessary, we can choose the J_μ so that each intersects at most two others and number them $\{J_1, J_2, \ldots, J_r\}$ so that J_μ intersects only $J_{\mu-1}$ and $J_{\mu+1}$. Choose $0 = t_1 < t_2 < \cdots < t_r < t_{r+1} = 1$ such that $t_\mu \in J_{\mu-1} \cap J_\mu$ for $\mu = 2, \ldots, r$.

Now $\Delta(x, t_1) = \phi(x)$ is defined by hypothesis, so we assume that $\Delta \colon X \times [0, t_{\mu}] \multimap E$ has been defined and we will extend Δ over $X \times [t_{\mu}, t_{\mu+1}]$. Subdivide X so that the mesh of the triangulation is less than the Lebesgue number of the cover $\{V_k\}$. Let x be a vertex, then the restriction of δ to $x \times [t_{\mu}, t_{\mu+1}]$ splits as maps $d_j \colon x \times [t_{\mu}, t_{\mu+1}] \to B$ for $j = 1, 2, \ldots, n$. Since $x \times [t_{\mu}, t_{\mu+1}]$ is contained in $V_k \times J_{\mu}$ for some V_k , each $d_j(x \times [t_{\mu}, t_{\mu+1}]) \subset U_j$ for disjoint contractible neighborhoods U_j . Define $\Delta \colon x \times [t_{\mu}, t_{\mu+1}] \multimap E$ by

$$\Delta(x,t) = \{\theta_j[d_j(x,t), \pi_Y \zeta_j(\Delta(x,t_{\mu}) \cap p^{-1}(U_j))]\}_{j=1}^n.$$

Note that $\Delta(x,t)$ is well-defined because $\delta(x,t_{\mu}) \cap U_j$ is a single point for each j. In this way, Δ is extended to $[t_{\mu},t_{\mu+1}]$ over the zero-skeleton of X. Now assume that Δ has been extended over the (m-1)-skeleton of X and let σ be an m-simplex. There is a retraction ρ : $\sigma \times [t_{\mu},t_{\mu+1}] \to T$ where

$$T = (\sigma \times t_{\mu}) \cup (\partial \sigma \times [t_{\mu}, t_{\mu+1}]).$$

The restriction of δ to T splits as maps $\{d_j: T \to U_j\}$ to disjoint contractible neighborhoods U_j . We extend Δ to $\sigma \times [t_{\mu}, t_{\mu+1}]$ by setting

$$\Delta(x,t) = \{\theta_j[d_j(x,t), \pi_Y \zeta_j(\Delta(\rho(x,t)) \cap p^{-1}(U_j))]\}_{j=1}^n.$$

The required *n*-valued multimap $\Delta \colon X \times I \multimap E$ is thus defined by induction.

An *n*-valued fiber map $\Delta \colon E \times I \multimap E$ is an *n*-valued fiber homotopy. We say that the *n*-valued fiber maps $\Phi, \Psi \colon E \multimap E$ defined by $\Phi(e) = \Delta(e, 0), \Psi(e) = \Delta(e, 1)$ are fiber homotopic.

Theorem 3.2. Let $p: E \to B$ be a fibration and let $\Phi: E \multimap E$ be an n-valued fiber map, then there is a fix-finite n-valued fiber map $\Psi: E \multimap E$ fiber homotopic to Φ .

Proof. As noted above, Theorem 6 of [16] and Lemma 4.1 of [17] imply that there is an n-valued homotopy $\delta \colon B \times I \multimap B$ such that $\delta(b,0) = \phi(b)$, where ϕ is the induced multimap of Φ , and $\delta(b,1) = \psi(b)$ defines a fix-finite n-valued multimap. By Theorem 6 of [16], the fixed points of ψ lie in maximal simplices of B. By Theorem 3.1, there is an n-valued multimap $\Delta \colon E \times I \multimap E$ such that $\Delta(e,0) = \Phi(e)$ and $p\Delta(e,t) = \delta(p(e),t)$ for all $(e,t) \in E \times I$. Then $\Gamma \colon E \multimap E$ defined by $\Gamma(e) = \Delta(e,1)$ is an n-valued fiber map with induced multimap ψ so it has fixed points only in finitely many fibers. Since Γ is fiber homotopic to Φ , we may assume, to simplify the notation, that the n-valued fiber map Φ of the statement of the theorem has fixed points only in finitely many fibers.

Let $p^{-1}(b)$ be one such fiber, that is, $b \in \phi(b)$ is a fixed point of ϕ . Let U be a contractible neighborhood of b containing no other fixed point of ϕ . By the Splitting Lemma, $\phi = \{\phi_1, \phi_2, \dots, \phi_n\} \colon U \multimap B$ and so, by Proposition 2.3, $\Phi = \{\Phi_1, \Phi_2, \dots, \Phi_n\} \colon p^{-1}(U) \multimap E$. We may assume $\phi_1(b) = b$, so $\Phi_1(p^{-1}(b)) \subset p^{-1}(b)$. Let $h \colon p^{-1}(b) \times I \to p^{-1}(b)$ such that $h(e, 0) = \Phi_1(e)$ and $h_1(e) = h(e, 1)$ is a fix-finite map. Let V be a neighborhood of b whose closure lies in U and define a subset T of $p^{-1}(U) \times I$ by

$$T = (p^{-1}(U) \times \{0\}) \cup (p^{-1}(U \setminus V) \times I) \cup (p^{-1}(b) \times I).$$

Define $H: T \to E$ by

$$H(e,t) = \begin{cases} \Phi_1(e) & \text{if } t = 0 \text{ or } e \in p^{-1}(U \setminus V) \\ h(e,t) & \text{if } e \in p^{-1}(b) \end{cases}$$

By the fiber homotopy extension theorem ([1], Theorem 2.2), we can extend H to a fiber-preserving homotopy $H: p^{-1}(U) \times I \to E$. Define $\Gamma_1: p^{-1}(U) \to E$ by $\Gamma_1(e) = H(e,1)$. Noting that $\Gamma_1(e) = \Phi_1(e)$ for $e \in p^{-1}(U \setminus V)$, we define $\Psi: E \multimap E$ by setting

$$\Psi(e) = \{\Gamma_1(e), \Phi_2(e), \dots, \Phi_n(e)\}\$$

for $e \in p^{-1}(U)$ and $\Psi(e) = \Phi(e)$ otherwise. In the same way, the homotopy may be extended to an n-valued fiber homotopy between the n-valued fiber maps Ψ and Φ . Repeating this construction for each of the finite number of fixed points of ϕ completes the proof. \square

4 An addition formula

Throughout the rest of the paper, all spaces are finite polyhedra that are connected.

In [17], Schirmer used the Splitting Lemma to generalize Nielsen's definition of equivalence of fixed points of maps in the following way. For an n-valued multimap $\phi \colon X \multimap X$, let $Fix(\phi) = \{x \in X \colon x \in \phi(x)\}$. Then $x_0, x_1 \in Fix(\phi)$ are equivalent if there is a path $c \colon I \to X$ with $c(0) = x_0$ and $c(1) = x_1$ and a map $\phi_j \colon I \to X$ of the splitting $\phi c = \{\phi_1, \phi_2, \dots, \phi_n\} \colon I \multimap X$ such that $\phi_j(0) = x_0, \phi_j(1) = x_1$ and ϕ_j is homotopic to c relative to the endpoints. An equivalence class is called a fixed point class.

The fixed point index of ϕ at an isolated fixed point x, denoted $ind(\phi, x)$ is defined in [17], page 210 in terms of the classical fixed point index by $ind(\phi, x) = ind(\phi_j, x)$ where $\phi = \{\phi_1, \phi_2, \dots, \phi_n\}$ is a splitting of ϕ in a neighborhood of x and $\phi_j(x) = x$. Let U be a neighborhood of a fixed point class \mathbf{F} , then Theorem 6 of [16] approximates the restriction of ϕ to U by a fix-finite n-valued multimap and the index $ind(\mathbf{F})$ of the fixed point class \mathbf{F} is defined to be the sum of the indices of the fixed points of the approximation. The Nielsen number $N(\phi)$ is the number of essential fixed point classes, that is, those of nonzero index.

The following result is a consequence of Theorem 4.1 of [12]. ¹

Proposition 4.1. Let $p: E \to S^1$ be a fibration and let $f: E \to E$ be a fiber map with induced map $\bar{f}: S^1 \to S^1$ of degree d. If d = 1, then N(f) = 0. Otherwise, let $b_1, b_2, \ldots, b_{|1-d|}$ be points of S^1 such that each b_j is in a different essential fixed point class of \bar{f} , then

$$N(f) = \sum_{j=1}^{|1-d|} N(f_{b_j}).$$

Let $p: E \to B$ be a fibration. Since B is a polyhedron, there is a regular lifting function for p, that is, a map $\lambda \colon \Lambda(p) \to E^I$ such that $p\lambda(e,\omega)(t) = \omega(t)$ for all $t \in I$ and, in addition, if ω is a constant path, so also is $\lambda(e,\omega)$. For a path $\omega \in B^I$ there is a map $\tau_\omega \colon p^{-1}(\omega(0)) \to p^{-1}(\omega(1))$, called the fiber translation obtained from ω , defined by $\tau_\omega(e) = \lambda(e,\omega)(1)$. If $\omega' \in B^I$ such that $\omega'(0) = \omega(0), \omega'(1) = \omega(1)$ and ω and ω' are homotopic relative to the endpoints, then the fiber translations τ_ω and $\tau_{\omega'}$ are homotopic. Therefore a fiber translation τ_ω is a homotopy equivalence with homotopy inverse $\tau_{\bar{\omega}}$ where $\bar{\omega}(t) = \omega(1-t)$.

 $^{^1\}mathrm{A}$ thorough survey of the Nielsen theory of single-valued fiber maps is presented by Heath in [11].

Lemma 4.1. Let $p: E \to B$ be a fibration and let $\Phi: E \multimap E$ be an n-valued fiber map with induced multimap $\phi: B \multimap B$. If $b_0, b_1 \in Fix(\phi)$ are equivalent, then $N(f_{b_0}) = N(f_{b_1})$.

Proof. Since b_0 and b_1 are equivalent, there is a path $c \in B^I$ with $c(0) = b_0$ and $c(1) = b_1$ and a splitting $\phi c = \{\phi_1, \phi_2, \dots, \phi_n\} \colon I \multimap B$ with a path ϕ_j such that $\phi_j(0) = b_0, \phi_j(1) = b_1$ and ϕ_j is homotopic to c relative to the endpoints. For $t \in I$, define a path $\phi_j^{[t]} \colon I \to B$ by $\phi_j^{[t]}(s) = \phi_j(s+t)$ for $0 \le s \le 1 - t$ and $\phi_j^{[t]}(s) = \phi_j(1) = b_1$ for $1 - t \le s \le 1$. Define $H \colon p^{-1}(b_0) \times I \to p^{-1}(b_1)$ by

$$H(e,t) = \lambda([\Phi(\lambda(e,c)(t)) \cap p^{-1}(\phi_j(t))], \phi_j^{[t]})(1).$$

The function H is well-defined because

$$p(\Phi(\lambda(e,c)(t)) = \phi(p(\lambda(e,c)(t)) = \phi c(t)$$

and it is continuous by Lemma 2.2. Now

$$H(e,0) = \lambda([\Phi(\lambda(e,c)(0) \cap p^{-1}(\phi_j(0))], \phi_j^{[0]})(1)$$

= $\lambda([\Phi(e) \cap p^{-1}(b_0)], \phi_j)(1)$
= $\lambda(f_{b_0}(e), \phi_j)(1) = \tau_{\phi_j} f_{b_0}(e)$

and

$$H(e,1) = \lambda([\Phi(\lambda(e,c)(1) \cap p^{-1}(\phi_j(1))], \phi_j^{[1]})(1)$$

$$= \lambda([\Phi(\tau_c(e)) \cap p^{-1}(b_1)], \phi_j^{[1]})(1)$$

$$= \lambda(f_{b_1}\tau_c(e), \phi_j^{[1]})(1) = f_{b_1}\tau_c(e)$$

so $\tau_{\phi_j} f_{b_0}$ and $f_{b_1} \tau_c$ are homotopic. Since ϕ_j is homotopic to c, then $\tau_{\phi_j} f_{b_0}$ is homotopic to $\tau_c f_{b_0}$ and therefore f_{b_0} is homotopic to $\tau_{\bar{c}} f_{b_1} \tau_c$. By Theorem 5.4 of [14], this implies that $N(f_{b_0}) = N(f_{b_1})$.

Lemma 4.2. Let $p: E \to B$ be a fibration and let $\Phi, \Psi: E \to E$ be fiber homotopic n-valued fiber maps with induced multimaps $\phi, \psi: B \to B$. There is a one-to-one correspondence between the essential fixed point classes of ϕ and ψ such that if $b_0 \in Fix(\phi)$ and $b_1 \in Fix(\psi)$ are in corresponding essential fixed point classes, then $N(f_{b_0}) = N(g_{b_1})$ where $f_{b_0}: p^{-1}(b_0) \to p^{-1}(b_0)$ and $g_{b_1}: p^{-1}(b_1) \to p^{-1}(b_1)$ are defined by $f_{b_0}(e) = \Phi(e) \cap p^{-1}(b_0)$ and $g_{b_1}(e) = \Psi(e) \cap p^{-1}(b_1)$.

Proof. Let $D: E \times I \multimap E$ be an *n*-valued fiber map with induced multimap $d: B \times I \multimap B$ such that $D(e, 0) = \Phi(e), D(e, 1) = \Psi(e)$

and d is an n-valued homotopy between ϕ and ψ . Define $\mathbf{D} \colon E \times I \to E \times I$ as follows: if $D(e,t) = \{e_1,e_2,\ldots e_n\}$, then $\mathbf{D}(e,t) = \{(e_1,t),(e_2,t),\ldots(e_n,t)\}$. Then \mathbf{D} is an n-valued fiber map of the fibration $p_\times \colon E \times I \to B \times I$ defined by $p_\times(e,t) = (p(e),t)$ with induced multimap $\mathbf{d} \colon B \times I \to B \times I$. Let \mathbf{F}_0 be an essential fixed point class of ϕ then, by Lemma 6.3 of [17], there is a unique fixed point class \mathbf{F} of \mathbf{d} such that $\mathbf{F}_0 = \{b \in B \colon (b,0) \in \mathbf{F}\}$. By Lemmas 6.2 and 6.4 of [17], there is an essential fixed point class \mathbf{F}_1 , the corresponding class, such that $\mathbf{F}_1 = \{b \in B \colon (b,1) \in \mathbf{F}\}$. Let $b_0 \in \mathbf{F}_0$ and $b_1 \in \mathbf{F}_1$ then $(b_0,0)$ and $(b_1,1)$ are equivalent fixed points of \mathbf{d} . Applying Lemma 4.1 to $\mathbf{D} \colon E \times I \to E \times I$, we conclude that $N(\delta_{b_0}) = N(\delta_{b_1})$ where, for v = 0, 1, the map δ_{b_v} is defined by $\delta_{b_v}(e,v) = \mathbf{D}(e,v) \cap p_\times^{-1}(b_v,v)$. Since $\mathbf{D}(e,0) = (\Phi(e),0)$ and $p_\times^{-1}(b_0) = p^{-1}(b_0) \times \{0\}$, then $N(\delta_{b_0}) = N(f_{b_0})$. Similarly, $N(\delta_{b_1}) = N(g_{b_1})$, so $N(f_{b_0}) = N(g_{b_1})$.

In [4], the degree $deg(\phi)$ of an n-valued multimap $\phi \colon S^1 \multimap S^1$ is defined as follows. Let $\eta \colon \mathbf{R} \to S^1$ be the universal covering space defined by $\eta(t) = e^{i2\pi t}$. There is a splitting $\{f_0, f_1, \ldots, f_{n-1}\}$ of $\phi\eta \colon \mathbf{R} \multimap S^1$ where the f_j are ordered so that $f_j(0) = \eta(t_j)$ for $0 \le t_0 < t_1 < \cdots < t_{n-1} < 1$. Let \tilde{f}_0 be the lift of f_0 to t_0 , then $\tilde{f}_0(1) = v + t_J$ for some integer v and $0 \le J \le n - 1$. The degree of ϕ is defined by $deg(\phi) = nv + J$.

To illustrate the definition, represent S^1 as the unit circle in the complex plane and define $\phi \colon S^1 \multimap S^1$ by $\phi(z) = \{z^{3/2}\}$. In terms of the covering space η ,

$$\phi(\eta(t)) = \{\eta(\frac{3}{2}t), \eta(\frac{3}{2}t + \frac{1}{2})\}$$

so $\phi \eta = \{f_0, f_1\}$ where $f_0(t) = \eta(\frac{3}{2}t)$ and $f_1(t) = \eta(\frac{3}{2}t + \frac{1}{2})$ and thus $t_0 = 0$ and $t_1 = \frac{1}{2}$. Now $\tilde{f}_0(t) = \frac{3}{2}t$ so

$$\tilde{f}_1(1) = \frac{3}{2} = 1 + \frac{1}{2} = v + t_1$$

and therefore $deg(\phi) = nv + J = 2(1) + 1 = 3$.

An equivalent definition of $deg(\phi)$ that resembles the definition of degree for single-valued maps is developed in [5]. A homomorphism of integer homology $\phi_* \colon H_1(S^1) \to H_1(S^1)$ is induced by ϕ in such a way that $\phi_*(1) = deg(\phi) \cdot 1$, where 1 is a generator of $H_1(S^1)$. However, we will need the covering space definition of the degree to prove the following result.

Lemma 4.3. Let $p: E \to S^1$ be a fibration, let $\Phi: E \multimap E$ be an n-valued fiber map and let $b_0 \in S^1$ be a fixed point of the induced

multimap $\phi: S^1 \longrightarrow S^1$. If $deg(\phi) \neq n$, then **f** is a fixed point class of $f_{b_0}: p^{-1}(b_0) \to p^{-1}(b_0)$ if and only if there is a fixed point class **F** of Φ such that $\mathbf{F} \cap p^{-1}(b_0) = \mathbf{f}$.

Proof. Suppose e_0 and e_1 are equivalent fixed points of f_{b_0} in a fixed point class \mathbf{f} , then there exists a map $c: I \to p^{-1}(b_0)$ such that $c(0) = e_0, c(1) = e_1$ and $f_{b_0}c$ is homotopic to c relative to the endpoints. Since, by Lemma 2.2, the restriction Φ_0 of $p^{-1}(b_0)$ splits with f_{b_0} as a factor, then e_0 and e_1 are equivalent fixed points of Φ . Therefore, there is a fixed point class \mathbf{F} of Φ such that $\mathbf{f} \subseteq \mathbf{F}$.

To prove that $\mathbf{F} \cap p^{-1}(b_0) \subseteq \mathbf{f}$, let $e_0, e_1 \in \mathbf{F} \cap p^{-1}(b_0)$. Therefore there is a path $c: I \to E$ such that $c(0) = e_0, c(1) = e_1$ and a splitting $\Phi c = \{\Phi_1, \Phi_2, \dots, \Phi_n\}: I \multimap E$ such that the paths c and Φ_1 are homotopic relative to the endpoints. We must prove that e_0 and e_1 are equivalent fixed points of f_{b_0} .

We have a splitting $\{p\Phi_1, p\Phi_2, \ldots, p\Phi_n\}: I \multimap S^1$ of $p\Phi c = \phi(pc)$ such that pc is homotopic to $p\Phi_1$. We first assume pc is contractible, so there is a map $h: I \times I \to B$ that contracts pc to the constant loop at b_0 . By the covering homotopy property, we may lift h to c to obtain a homotopy $H: I \times I \to E$, relative to the endpoints, between c and a path $c_0: I \to p^{-1}(b_0)$. Let $\Phi H = \{\Phi_1^*, \Phi_2^*, \ldots, \Phi_n^*\}$ be a splitting such that the restriction of Φ_1^* is Φ_1 . Then $\Phi_1^*: I \times I \to E$ is a homotopy between Φ_1 and $f_{b_0}c_0$. Since c is homotopic to Φ_1 , we conclude that c_0 and $f_{b_0}(c_0)$ are paths in $p^{-1}(b_0)$ from e_0 to e_1 that are homotopic in E. In a fibration over S^1 , fibers are π_1 -injective into the total space, so c_0 and $f_{b_0}(c_0)$ are paths that are homotopic in $p^{-1}(b_0)$ and therefore e_0 and e_1 are equivalent fixed points of e_0 .

Now suppose that the loop pc is not contractible. We claim that if pc is homotopic to $\phi_1 = p\Phi_1$, then the degree of ϕ must be n and thus, since $deg(\phi) \neq n$ by hypothesis, no such loop exists and therefore e_0 and e_1 must have been equivalent as fixed points of f_{b_0} by the previous step, which will complete the proof. Let $\eta \colon \mathbf{R} \to S^1$ be the covering space and let $\widetilde{pc} \colon I \to \mathbf{R}$ be the lift of pc to the origin. Since pc is a loop, then $\widetilde{pc}(1) = m$ for some integer m, which is nonzero since pc is not contractible. Lifting the homotopy between pc and ϕ_1 to the origin, the lift $\widetilde{\phi}_1$ of ϕ_1 must have the property $\widetilde{\phi}_1(1) = m$ also. Since m is an integer, J = 0 in the definition of the degree of ϕ and therefore ϕ is split by Corollary 5.1 of [4]. Thus $\phi_1 \colon S^1 \to S^1$ is a well-defined map such that the homomorphism $\phi_{1\pi} \colon \pi_1(S^1, b_0) \to \pi_1(S^1, b_0)$ fixes the non-zero element $[pc] \in \pi_1(S^1, b_0)$. The map ϕ_1 must therefore be of degree one so, by Theorem 2.2 of [4], $deg(\phi) = n \cdot 1 = n$.

We may now generalize Proposition 4.1 as follows.

Theorem 4.1. (Addition Formula) Let $p: E \to S^1$ be a fibration and let $\Phi: E \multimap E$ be an n-valued fiber map with induced multimap $\phi: S^1 \multimap S^1$ of degree d. If d = n, then $N(\Phi) = 0$. Otherwise, let $b_1, b_2, \ldots, b_{|n-d|} \in S^1$, such that each b_j is in a different essential fixed point class of ϕ , then

$$N(\Phi) = \sum_{j=1}^{|n-d|} N(f_{b_j}).$$

Proof. If d=n then, by Theorem 5.1 of [4], there is a homotopy of ϕ to a fixed point free n-valued multimap ψ . By Theorem 3.1, there is an n-valued fiber map $\Psi \colon E \multimap E$ homotopic to Φ such that ψ is the induced multimap of Ψ . Since ψ has no fixed points, Ψ is also fixed point free so $N(\Psi)=0$, and therefore $N(\Phi)=0$ by Theorem 6.5 of [17].

Now we assume that $d \neq n$. By Theorems 3.1 and 4.1 of [4], ϕ is homotopic to the *n*-valued power map $\phi_{n,d} : S^1 \multimap S^1$ that has fixed points $\beta_1, \beta_2, \dots, \beta_{|n-d|}$, all of index +1 or all of index -1, such that no two of these fixed points are equivalent. By the proof of Theorem 3.2, there is a fix-finite n-valued fiber map $\Psi \colon E \longrightarrow E$ that is fiber homotopic to Φ and the induced multimap of Φ is $\phi_{n,d}$. Let β_i be a fixed point of $\phi_{n,d}$ and let $\mathbf{f} = \{e_1, e_2, \dots, e_r\}$ be an essential fixed point class of $g_{\beta_i} : p^{-1}(\beta_j) \to p^{-1}(\beta_j)$ defined by $g_{\beta_i}(e) = \Psi(e) \cap p^{-1}(\beta_i)$. By Lemma 4.3, there is a fixed point class \mathbf{F} of Ψ such that $\mathbf{F} \cap p^{-1}(\beta_j) = \mathbf{f}$. If $\mathbf{F} \cap p^{-1}(\beta_k) \neq \emptyset$ for some $k \neq j$, let $e_0 \in \mathbf{F} \cap p^{-1}(\beta_k)$, then there is a path $c: I \to E$ such that $c(0) = e_0$ and $c(1) = e_1 \in \mathbf{f}$ such that, for a splitting $\Psi c = \{\Psi_1, \Psi_2, \dots, \Psi_n\} \colon I \multimap E$, some path Ψ_u is homotopic to crelative to the endpoints, which are fixed by Ψ_u . But then there is a splitting $p\Psi c = \phi_{n,d}(pc) = \{p\Psi_1, p\Psi_2, \dots, p\Psi_n\}: I \multimap B$ such that $p\Psi_u$ is homotopic to pc relative to the endpoints β_k and β_i , which would imply that these are equivalent fixed points of $\phi_{n,d}$. Therefore, $\mathbf{f} = \mathbf{F}$ is a fixed point class of Ψ .

Let $U \subseteq S^1$ be a closed interval with β_j in the interior and $U \cap \beta_k = \emptyset$ for $k \neq j$. The restriction of $\phi_{n,d}$ to U splits as $\{\psi_1^U, \psi_2^U, \dots, \psi_n^U\} \colon U \multimap S^1$. By Proposition 2.3, the restriction of Ψ to $p^{-1}(U)$ splits as $\{\Psi_1^U, \Psi_2^U, \dots, \Psi_n^U\} \colon p^{-1}(U) \multimap E$ with each ψ_j^U the induced multimap of Ψ_j^U . Let $\mathbf{f} \subseteq p^{-1}(\beta_j)$ be an essential fixed point class of g_{β_j} and let $e_v \in \mathbf{f}$, then $\Psi_k^U(e_v) = e_v$ for some k.

By Lemma 3.1 on page 84 of [14], the index of Ψ at e_v satisfies

$$ind(\Psi, e_v) = ind(\Psi_k^U, e_v)$$

= $ind(\psi_k^U, \beta_j) \cdot ind(g_{\beta_j}, e_v)$
= $ind(\phi_{n,d}, \beta_j) \cdot ind(g_{\beta_j}, e_v).$

Since $ind(\mathbf{f}) \neq 0$, then

$$ind(\mathbf{F}) = \sum_{v=1}^{r} ind(\Psi, e_v)$$

$$= ind(\phi_{n,d}, \beta_j) \sum_{v=1}^{r} ind(g_{\beta_j}, e_v)$$

$$= \pm \sum_{v=1}^{r} ind(g_{\beta_j}, e_v) = \pm ind(\mathbf{f}) \neq 0$$

so $\mathbf{f} = \mathbf{F}$ is also an essential fixed point class of Ψ .

Conversely, if **F** is an essential fixed point class of Ψ such that $\mathbf{F} \cap p^{-1}(\beta_j) \neq \emptyset$, then $\mathbf{f} = \mathbf{F} \cap p^{-1}(\beta_j)$ is a fixed point class of g_{β_j} by Lemma 4.3 and, again, $ind(\mathbf{F}) = \pm ind(\mathbf{f})$ so **f** is also an essential fixed point class of g_{β_j} . We conclude that the essential fixed point classes of Ψ are the essential fixed point classes of the g_{β_j} for $j = 1, 2, \ldots, |n - d|$ so

$$N(\Psi) = \sum_{j=1}^{|n-d|} N(g_{\beta_j}).$$

Since Φ is fiber homotopic to Ψ , by Lemma 4.2 there is a one-to-one correspondence between the fixed points $\beta_1, \beta_2, \ldots, \beta_{|n-d|}$ of $\phi_{n,d}$ and the essential fixed point classes of ϕ such that, if we choose $b_1, b_2, \ldots, b_{|n-d|} \in S^1$ in each of the corresponding essential fixed point classes of ϕ , then $N(f_{b_j}) = N(g_{\beta_j})$ for $j = 1, 2, \ldots, |n-d|$. Since $N(\Phi) = N(\Psi)$ by Theorem 6.5 of [17], we have proved that

$$N(\Phi) = \sum_{j=1}^{|n-d|} N(f_{b_j}).$$

To illustrate the addition formula, let \mathbf{R}^2 denote the plane and represent the Klein bottle as $K = \mathbf{R}^2/\sim$ where $(x,y)\sim(x+k,(-1)^ky)$ and $(x,y)\sim(x,y+\ell)$ for all integers k,ℓ . The projection $\tilde{p}\colon\mathbf{R}^2\to\mathbf{R}$ on the first factor induces the fibration $p\colon K\to S^1$

with fiber S^1 , where $S^1 = \mathbf{R}/\sim$ with $x \sim x + k$. Define a 2-valued multimap $\widetilde{\Phi} \colon \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ by

$$\widetilde{\Phi}(x,y) = \{(-x+1,2y), (-x+\frac{3}{2},3y)\}$$

then $\widetilde{\Phi}$ induces a 2-valued fiber map $\Phi \colon K \longrightarrow K$. The induced multimap $\phi \colon S^1 \longrightarrow S^1$ has four fixed points $v = 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$; let $f_v \colon p^{-1}(v) \to p^{-1}(v)$ be the corresponding restrictions of Φ . Since $\widetilde{\Phi}(0,y) = \{(1,2y),(\frac{3}{2},3y)\}$ and $(1,2y) \sim (0,-2y)$, the degree of f_0 is -2. Similarly, $f_{\frac{1}{4}}$ is of degree -3. Furthermore, $\widetilde{\Phi}(\frac{1}{2},y) = \{(\frac{1}{2},2y),(1,3y)\}$ so $f_{\frac{1}{2}}$ is of degree 2 and, similarly, $f_{\frac{3}{4}}$ is of degree 3. Therefore, by Theorem 2.4,

$$N(\Phi) = N(f_0) + N(f_{\frac{1}{4}}) + N(f_{\frac{1}{2}}) + N(f_{\frac{3}{4}}) = 3 + 4 + 1 + 2 = 10.$$

5 Orientable fibrations over S^1

Given a fibration $p: E \to B$, choose a basepoint $b_0 \in B$ and set $Y = p^{-1}(b_0)$. Let [Y, Y] denote the homotopy classes of homotopy equivalences and define $\tau \colon \pi_1(B, b_0) \to [Y, Y]$ by $\tau[\omega] = \tau_\omega$, the fiber translation obtained from a loop ω representing $[\omega]$. The fibration p is orientable if τ is the constant function, that is, the fiber translation τ_ω is homotopic to the identity map for all $[\omega] \in \pi_1(B, b_0)$. The definition is independent of the choice of the regular lifting function that determines τ .

The following product formula is a consequence of Theorem 5.6 of [21].

Proposition 5.1. Let $p: E \to S^1$ be an orientable fibration. If $f: E \to E$ is a fiber map with induced map $\bar{f}: S^1 \to S^1$, then $N(f) = N(\bar{f})N(f_b)$.

When we consider *n*-valued fiber maps of such fibrations, the formula fails to hold. For example, for $Y = S^1$ viewed as the unit circle in the complex plane, define a 2-valued fiber map $\Phi: S^1 \times S^1 \longrightarrow S^1 \times S^1$ by $\Phi(w, z) = \{(1, z^3), (-1, z^4)\}$, then

$$N(\Phi) = N(f_1) + N(f_{-1}) = 2 + 3 = 5$$

by Theorem 4.2 whereas, since the induced multimap ϕ is constant, $N(\phi) = 2$ by [17], Corollary 7.3.

Fibrations $p: E \to B$ and $p': E' \to B$ are fiber homotopy equivalent if there exist fiber maps $\theta: E \to E'$ and $\zeta: E' \to E$ such that $p'\theta = p, p\zeta = p'$ and $\theta\zeta$ and $\zeta\theta$ are fiber homotopic to the identity maps.

Theorem 5.1. An orientable fibration $p: E \to S^1$ with fiber $Y = p^{-1}(b_0)$ is fiber homotopy equivalent to $\pi_{S^1}: S^1 \times Y \to S^1$.

Proof. By the theorem of [8], the fibration is fiber homotopy equivalent to a bundle. Since orientability is preserved by fiber homotopy equivalence, we may assume without loss of generality that $p: E \to B$ is an orientable bundle, with fiber Y. Let $S^1 = c_+ \cup c_-$ where S^1 is the unit circle in the complex plane and c_+ and c_- are the intersections of S^1 with the closed upper and lower halfplanes, respectively. Since c_+ and c_- are contractible, by Corollary 11.6 on page 53 of [20] there are fiber-preserving homeomorphisms $h_+: c_+ \times Y \to p^{-1}(c_+)$ and $h_-: c_- \times Y \to p^{-1}(c_-)$. Let $c_+ \cap c_- = \{z_0, z_1\} = S^0$ and orient c_+ and c_- from z_0 to z_1 . For $\epsilon = +, -$ and v = 0, 1, define homeomorphisms $h_{\epsilon,v}: Y \to p^{-1}(z_v)$ by $h_{\epsilon,v}(y) = h_{\epsilon}(z_v,y)$ and also set $\mu_v = h_{-,v}^{-1}h_{+,v}: Y \to Y$. Since c_+ and c_- contract to z_1 , we may use Theorem 2.8.10 of [19] to homotope $h_{-,1}^{-1}$ and $h_{+,1}$ so that μ_1 is homotopic to the identity map, see page 102 of [19].

We define a lifting function $\lambda \colon \Lambda(p) \to E^I$ as follows. Again let $\eta \colon \mathbf{R} \to S^1$ be the covering space. Given $(e_0, \omega) \in \Lambda(p)$ then $\omega(0) = \eta(t_0)$ for some $0 \le t_0 < 1$. Let $\tilde{\omega}$ be the lift of ω to \mathbf{R} at t_0 and define $\tilde{\omega}' \colon I \to \mathbf{R}$ by $\tilde{\omega}'(s) = (1-s)t_0 + s\tilde{\omega}(1)$, then $\tilde{\omega}'$ is homotopic to $\tilde{\omega}$ by a homotopy L keeping t_0 and $\tilde{\omega}(1)$ fixed. The path $\omega' = \eta \tilde{\omega}'$ is homotopic to ω by ηL and it is a union of oriented arcs: $\omega' = \alpha_0 \cdot \alpha_1 \cdot \alpha_2 \cdots \alpha_m$ where $\alpha_j \subseteq c_{\epsilon_j}$ for $\epsilon_j = +$ or $\epsilon_j = -$ and $\alpha_j \cap \alpha_{j+1} \in S^0$. Lift α_0 to E by sending it to $h_{\epsilon_0}(\alpha_0 \times \pi_Y h_{\epsilon_0}^{-1}(e_0))$. Let $e_1 \neq e_0$ be the point in the lift of α_0 that lies in $p^{-1}(S^0)$ and lift α_1 to $h_{\epsilon_1}(\alpha_1 \times \pi_Y h_{\epsilon_1}^{-1}(e_1))$. In general, lift α_j to E by sending it to $h_{\epsilon_j}(\alpha_j \times \pi_Y h_{\epsilon_j}^{-1}(e_j))$, where $e_j \neq e_{j-1}$ is the point in the lift of α_{j-1} that lies in $p^{-1}(S^0)$. This construction defines the path $\lambda(e_0, \omega')$. By the covering homotopy property, we lift the homotopy ηL to $\lambda(e_0, \omega')$ and the lifted homotopy determines $\lambda(e_0, \omega)$.

Let
$$\omega = \alpha_0 \alpha_1 = c_+ c_-^{-1}$$
 and let $e_0 \in p^{-1}(z_0)$. Then

$$e_1 = h_+(z_1, \pi_Y h_+^{-1}(e_0))$$

and

$$\lambda(e_0,\omega) = h_+(c_+ \times \pi_Y h_+^{-1}(e_0)) \cdot h_-(c_-^{-1} \times \pi_Y h_-^{-1}(e_1)).$$

Therefore,

$$\tau_{\omega}(e_0) = \tau_{\omega}(h_+(z_0, y_0)) = h_-(z_0, \pi_Y h_-^{-1} h_+(z_1, y_0)) = h_{-,0}(h_{-,1}^{-1} h_{+,1}(y))$$

and so

$$\pi_Y h_-^{-1} \tau_\omega h_{+,0}(y) = h_{-,1}^{-1} h_{+,1}(y) = \mu_1(y).$$

Since the fiber translation τ_{ω} is homotopic to the identity by the orientability assumption, then μ_1 is homotopic to

$$\pi_Y h_-^{-1} h_{+,0} = h_{-,0}^{-1} h_{+,0} = \mu_0$$

and we conclude that μ_0 is homotopic to the identity because μ_1 is. Therefore the restrictions of h_+ and h_- to $S^0 \times Y$ are homotopic and we let $h_t \colon S^0 \times Y \to p^{-1}(S^0)$ be a homotopy such that $h_0(z_v, y) = h_{-,v}(y)$ and $h_1(z_v, y) = h_{+,v}(y)$. Define

$$H: (S^0 \times Y \times I) \cup (c_- \times Y \times \{0\}) \to E$$

by

$$H(z, y, t) = \begin{cases} h_t(z, y) & \text{if } z \in S^0 \\ h_-(z, y) & \text{if } t = 0 \end{cases}$$

and extend H to $H: c_- \times Y \times I \to E$ by the fiber homotopy extension theorem [1]. Define $h'_-: c_- \times Y \to E$ by $h'_-(z,y) = H(z,y,1)$. Finally, define $h: S^1 \times Y \to E$ by

$$h(z,y) = \begin{cases} h_+(z,t) & \text{if} \quad z \in c_+ \\ h'_-(z,t) & \text{if} \quad z \in c_- \end{cases}$$

which is a well-defined fiber map because $h'_{-}(z_v, y) = h_{+}(z_v, y)$ for v = 0, 1. Since the restriction of h_{+} to $z \times Y$ for any $z \in c_{+}$ is a homotopy equivalence, [7] implies that h is a fiber homotopy equivalence.

Lemma 5.1. Let $p: E \to S^1$ be an orientable fibration and let $\Phi: E \multimap E$ be an n-valued fiber map. Let b_0 and b_1 be fixed points of the induced multimap $\phi: S^1 \multimap S^1$ so Φ induces maps $f_{b_v}: p^{-1}(b_v) \to p^{-1}(b_v)$ for v = 0, 1. If there is a path in the graph

$$\Gamma_{\phi} = \{(b, b') \in S^1 \times S^1 : b' \in \phi(b)\}\$$

from (b_0, b_0) to (b_1, b_1) , then $N(f_{b_0}) = N(f_{b_1})$.

Proof. By Theorem 5.1, there are homotopy equivalences $\theta \colon S^1 \times Y \to E$ and $\zeta \colon E \to S^1 \times Y$ such that $p\theta = \pi_{S^1}, \pi_{S^1}\zeta = p$ and $\theta \zeta$ and $\zeta \theta$ are fiber homotopic to the identity maps. Define a multivalued function $\Psi \colon S^1 \times Y \to S^1 \times Y$ as follows: for $(b, y) \in S^1 \times Y$ and $e = \theta(b, y)$, if $\Phi(e) = \{e_1, e_2, \dots, e_n\}$, then $\Psi(b, y) = \{\zeta(e_1), \zeta(e_2), \dots, \zeta(e_n)\}$. By Theorems 1 and 1' on page 113 of [3], Ψ is continuous, so Ψ is an n-valued fiber map and its induced multimap is ϕ . For v = 0, 1, let $g_{b_v} \colon \{b_v\} \times Y \to \{b_v\} \times Y$ be the restriction of Ψ . Let $\theta_{b_v} \colon \{b_v\} \times Y \to p^{-1}(b_v)$ and $\zeta_{b_v} \colon p^{-1}(b_v) \to \{b_v\} \times Y$

be the restrictions of θ and ζ respectively, then θ_{b_v} is a homotopy equivalence with homotopy inverse ζ_{b_v} . Since $g_{b_v} = \theta_{b_v} f_{b_v} \zeta_{b_v}$, Theorem 5.4 of [14] implies that $N(g_{b_v}) = N(f_{b_v})$. To prove the theorem, we will show that $N(g_{b_0}) = N(g_{b_1})$.

Define a function $\widehat{\Psi}: Y \times \Gamma_{\phi} \to S^1 \times Y$ as follows: for $(y, (b, b')) \in Y \times \Gamma_{\phi}$, set

$$\widehat{\Psi}(y,(b,b')) = \Psi(b,y) \cap p^{-1}(b').$$

To prove $\widehat{\Psi}$ continuous at $(y,(b,b')) \in Y \times \Gamma_{\phi}$, write $\widehat{\Psi}(y,(b,b')) = (b',y')$ and choose a neighborhood of (b',y') which we may assume to be of the form $U \times W$ where U is open in $S^1 \subseteq \mathbf{R}^2$ and W is open in Y. Let

$$\gamma(\phi) = \inf\{|b_j - b_k| : b_j, b_k \in \phi(b), b \in S^1, b_j \neq b_k\},\$$

then $\gamma(\phi) > 0$ because S^1 is compact ([17], page 211). We will find a neighborhood of (y,(b,b')) that is mapped by $\widehat{\Psi}$ into $u\times W$ where u is a neighborhood of b' in U of diameter less than $\gamma(\phi)$. Since $\Psi: S^1 \times Y \longrightarrow S^1 \times Y$ is lower semi-continuous, there is a neighborhood of (b, y) in $S^1 \times Y$, which we may assume is of the form $V \times \mathcal{O}$ where V is open in S^1 and \mathcal{O} open in Y, such that $(\bar{b}, \bar{y}) \in$ $V \times \mathcal{O}$ implies $\Psi(\bar{b}, \bar{y}) \cap (u \times W) \neq \emptyset$. Since u is of diameter less than $\gamma(\phi)$, it must be that $\Psi(\bar{b}, \bar{y}) \cap (u \times W)$ is a single point of $S^1 \times Y$. The multimap ϕ is lower semi-continuous so there is a neighborhood \mathcal{N} of b such that $b \in \mathcal{N}$ implies $\phi(b) \cap u \neq \emptyset$, and the intersection must be a single point of B. Let $\mathcal{M} \subseteq \Gamma_{\phi}$ be the open subset consisting of all points (\bar{b}, \bar{b}') such that $\bar{b} \in \mathcal{N} \cap V$ and $\bar{b}' = \phi(\bar{b}) \cap u$. We claim that $\widehat{\Psi}$ takes the open subset $\mathcal{O} \times \mathcal{M}$ of $Y \times \Gamma_{\phi}$ into $u \times W$. To prove it, let $\bar{y} \in \mathcal{O}$ and $(\bar{b}, \bar{b}') \in \mathcal{M}$ so $\bar{b} \in \mathcal{N} \cap V$. Since $\bar{b} \in V$ and $\bar{y} \in \mathcal{O}$, then $\Psi(\bar{b}, \bar{y}) \cap (u \times W) \neq \emptyset$. On the other hand, $\bar{b} \in \mathcal{N}$ so $\phi(\bar{b}) \cap u = \bar{b}'$ which implies $\Psi(\bar{b}, \bar{y}) \subseteq p^{-1}(\bar{b}') \times Y$. Thus the single point of $\Psi(\bar{b}, \bar{y})$ that lies in $u \times W$ must be $\widehat{\Psi}(\bar{y},(\bar{b},\bar{b}')) = \Psi(\bar{b},\bar{y}) \cap p^{-1}(\bar{b}')$. We conclude that $\widehat{\Psi}(\mathcal{O} \times \mathcal{M}) \subseteq u \times W \subseteq U \times W$ so $\widehat{\Psi} : Y \times \Gamma_{\phi} \to S^1 \times Y$ is continuous.

By hypothesis, there is a path $a: I \to \Gamma_{\phi}$ such that $a(v) = (b_v, b_v)$ for v = 0, 1. Define $H: Y \times I \to Y$ by

$$H(y,t) = \pi_Y \widehat{\Psi}(y,a(t)).$$

The continuity of H follows from the continuity of $\widehat{\Psi}$ that we just established. For $b \in S^1$, define $i_b \colon Y \to p^{-1}(b) \subseteq S^1 \times Y$ by $i_b(y) =$

(b, y). For v = 0, 1 we have

$$H(y,v) = \pi_Y \widehat{\Psi}(y,(b_v,b_v)) = \pi_Y (\Psi(b_v,y) \cap p^{-1}(b_v)) = \pi_Y g_{b_v} i_{b_v}(y).$$

Thus the maps $\pi_Y g_{b_0} i_{b_0}$, $\pi_Y g_{b_1} i_{b_1}$: $Y \to Y$ are homotopic by H so $N(\pi_Y f_{b_0} i_{b_0}) = N(\pi_Y f_{b_1} i_{b_1})$. Since i_{b_j} and the restriction of π_Y to $p^{-1}(b_j)$ are homeomorphisms, $N(g_{b_j}) = N(\pi_Y g_{b_j} i_{b_j})$ by Theorem 5.4 of [14] and we conclude that $N(g_{b_0}) = N(g_{b_1})$.

Lemma 5.2. If $\phi, \psi: X \multimap Y$ are homotopic n-valued multimaps, then their graphs Γ_{ϕ} and Γ_{ψ} are the same homotopy type and thus, in particular, they have the same number of path components.

Proof. By hypothesis, there is an n-valued multimap $\Delta \colon X \times I \longrightarrow Y$ such that $\Delta(x,0) = \phi(x)$ and $\Delta(x,1) = \psi(x)$ for all $x \in X$. The strong deformation retraction $R \colon X \times I \to X \times \{0\}$ induces a strong deformation retraction of covering spaces $\widetilde{R} \colon \Gamma_{\Delta} \to \Gamma_{\phi}$ so Γ_{Δ} and Γ_{ϕ} are the same homotopy type. The strong deformation retraction of $X \times I$ to $X \times \{1\}$ establishes the same relationship between Γ_{Δ} and Γ_{ψ} and completes the proof.

For n a positive integer, we understand the greatest common divisor of 0 and n to be n.

Proposition 5.2. Let $\phi: S^1 \multimap S^1$ be an n-valued multimap of degree d, then its graph Γ_{ϕ} has w path components, where w is the greatest common divisor of n and d.

Proof. For $\eta: \mathbf{R} \to S^1$ the covering space, we represent points of S^1 by $\eta(t)$ for $0 \le t < 1$. The *n*-valued power map $\phi_{n,d} \colon S^1 \multimap S^1$ is defined by

$$\phi_{n,d}(\eta(t)) = \{\eta(\frac{d}{n}t), \eta(\frac{d}{n}t + \frac{1}{n}), \dots, \eta(\frac{d}{n}t + (n-1)\frac{1}{n})\}.$$

We will first prove that if n and $d \neq 0$ are relatively prime, then $\Gamma_{\phi_{n,d}}$ is path connected. Define $P \colon \mathbf{R}^2 \to S^1 \times S^1$ by $P(x,y) = (\eta(x), \eta(y))$. Let

$$G_{n,d} = \{(x, \frac{d}{n}x) \in \mathbf{R}^2 : 0 \le x < n\}$$

and note that $G_{n,d}$ is path connected. For $(x,y) \in G_{n,d}$, write x = t + m where $0 \le t < 1$ and $0 \le m \le n - 1$ is an integer, then

$$\eta(\frac{d}{n}x) = \eta(\frac{d}{n}t + \frac{dm}{n}) = \eta(\frac{d}{n}t + j\frac{1}{n})$$

where the integer j, with $0 \le j \le n-1$, is congruent to dm modulo n. Since $\eta(x) = \eta(t)$, we have shown that $P(G_{n,d}) \subseteq \Gamma_{\phi_{n,d}}$.

Now let $(\eta(t), \eta(\frac{d}{n}t + j\frac{1}{n})) \in \Gamma_{\phi_{n,d}}$ where $0 \le t < 1$ and $0 \le j \le n-1$ is an integer. Since d and n are relatively prime, there exist integers a, b such that 1 = ad + bn. Let $0 \le m \le n-1$ be the integer congruent to ja modulo n and let x = t + m. We find that

$$\left(\frac{d}{n}t + \frac{dm}{n}\right) - \left(\frac{d}{n}t + j\frac{1}{n}\right) = \frac{dm - j}{n}$$

$$= \frac{dm - j(ad + bn)}{n}$$

$$= \frac{d(m - ja) - jbn}{n},$$

which is an integer because m - ja is divisible by n. Therefore

$$\eta(\frac{d}{n}x) = \eta(\frac{d}{n}t + \frac{dm}{n}) = \eta(\frac{d}{n}t + j\frac{1}{n})$$

and we conclude that $\Gamma_{\phi_{n,d}} = P(G_{n,d})$ so $\Gamma_{\phi_{n,d}}$ is path connected.

Now consider $\phi_{n,d}$ for $n \geq 1$ an integer and d any nonzero integer. The power map is w-split as

$$\phi_{n,d} = \{\phi_{n,d}^{(0)}, \phi_{n,d}^{(1)}, \dots, \phi_{n,d}^{(w-1)}\},\$$

for w the greatest common divisor of n and d, where $\phi_{n,d}^{(k)}$ is the $\frac{n}{w}$ -valued multimap defined by

$$\phi_{n,d}^{(k)}(\eta(t)) = \{ \eta(\frac{d}{n}t + \frac{k}{n}), \eta(\frac{d}{n}t + \frac{k}{n} + \frac{w}{n}), \dots, \eta(\frac{d}{n}t + \frac{k}{n} + (\frac{n}{w} - 1)\frac{w}{n}) \}$$

for $k=0,1,\ldots,w-1$. Since $\Gamma_{\phi_{n,d}}$ is the union of the $\Gamma_{\phi_{n,d}^{(k)}}$, and the $\Gamma_{\phi_{n,d}^{(k)}}$ are disjoint sets that are homeomorphic to each other through rotations of $S^1\times S^1$, it is sufficient to prove that $\Gamma_{\phi_{n,d}^{(0)}}$ is path connected. Noting that $\phi_{n,d}^{(0)}=\phi_{\frac{n}{w},\frac{d}{w}}$ and that $\frac{n}{w}$ and $\frac{d}{w}$ are relatively prime, the argument above shows that $\Gamma_{\phi_{n,d}^{(0)}}$ is path connected and thus $\Gamma_{\phi_{n,d}}$ has w path components. Now let $\phi\colon S^1\multimap S^1$ be an n-valued multimap of degree $d\neq 0$. Then by Theorem 3.1 of [4], ϕ is homotopic to $\phi_{n,d}$. Therefore, by Lemma 5.2, Γ_{ϕ} also has w path components.

If d=0, then ϕ is homotopic to $\phi_{n,0}$. Since $\Gamma_{\phi_{n,0}}$ is the product $\{z_0, z_1, \ldots, z_{n-1}\} \times S^1$ where $z_j = \eta(\frac{j}{n})$, Lemma 5.2 implies that Γ_{ϕ} has w=n path components in this case also.

Theorem 5.2. (Semi-Product Formula) Let $p: E \to S^1$ be an orientable fibration and let $\Phi: E \to E$ be an n-valued fiber map with induced multimap $\phi: S^1 \to S^1$ of degree d. Let $b_1, b_2, \ldots, b_w \in S^1$, where w is the greatest common divisor of n and d, be fixed points in distinct essential fixed point classes of ϕ such that the points (b_j, b_j) are in distinct path components of Γ_{ϕ} , then

$$N(\Phi) = \left| \frac{n}{w} - \frac{d}{w} \right| \sum_{j=1}^{w} N(f_{b_j}).$$

Proof. By Proposition 5.2, Γ_{ϕ} has w path components, so ϕ is w-split by Proposition 2.1 and we may write $\phi = \{\phi_1, \phi_2, \dots, \phi_w\}$. By Theorem 3.1 of [4], ϕ is homotopic to $\phi_{n,d}$ so, by Proposition 2.2, each ϕ_j is homotopic to some $\phi_{n,d}^{(k)}$, which is homotopic to $\phi_{\frac{n}{w},\frac{d}{w}}$, and therefore, by Theorem 4.1 of [4],

$$N(\phi_j) = N(\phi_{n,d}^{(k)}) = N(\phi_{\frac{n}{w},\frac{d}{w}}) = \left| \frac{n}{w} - \frac{d}{w} \right|$$

for each j. Proposition 2.3 implies that Φ w-splits as $\Phi = \{\Phi_1, \Phi_2, \dots, \Phi_w\}$, where each Φ_j is an $\frac{n}{w}$ -valued fiber map with induced map ϕ_j . By Theorem 4.1,

$$N(\Phi_j) = \sum_{j=1}^{\lfloor \frac{n}{w} - \frac{d}{w} \rfloor} N(f_{b_j})$$

where $b_1, b_2, \ldots, b_{\left|\frac{n}{w} - \frac{d}{w}\right|}$ are fixed points, one in each essential fixed point class of ϕ_j . Since Γ_{ϕ_j} is path connected, $N(f_{b_j}) = N(f_{b_k})$ for all $j, k = 1, 2, \ldots, \left|\frac{n}{w} - \frac{d}{w}\right|$ by Lemma 5.1 so $N(\Phi_j) = \left|\frac{n}{w} - \frac{d}{w}\right| N(f_{b_j})$ where b_j is in any essential fixed point class of ϕ_j . Therefore, by the Remark on page 218 of [17],

$$N(\Phi) = \sum_{j=1}^{w} N(\Phi_j) = \sum_{j=1}^{w} \left| \frac{n}{w} - \frac{d}{w} \right| N(f_{b_j})$$

where the b_j are in distinct essential fixed point classes of ϕ such that (b_j, b_j) are in distinct path components of Γ_{ϕ} .

We obtain the following product formula result:

Corollary 5.1. Let $p: E \to S^1$ be an orientable fibration and let $\Phi: E \multimap E$ be an n-valued fiber map with induced multimap $\phi: S^1 \multimap S^1$ of degree $d \neq 0$. If d is relatively prime to n, then

$$N(\Phi) = N(\phi)N(f_b) = |n - d| N(f_b)$$

where $b \in B$ is in any essential fixed point class of ϕ .

Suppose B and Y are sets, $S = \{x_1, x_2, \ldots, x_n\}$ is an unordered subset of n points of B and $y \in Y$, then $S \times y$ will denote the unordered subset $\{(x_1, y), (x_2, y), \ldots, (x_n, y)\}$ of $B \times Y$. For $\phi \colon B \multimap B$ an n-valued function and $f \colon Y \to Y$ single-valued, define the product n-valued function $\Phi = \phi \times f \colon E = B \times Y \multimap B \times Y$ by $\Phi(b, y) = \phi(b) \times f(y)$. If ϕ and f are continuous, so also is Φ , that is, it is a product n-valued multimap. A product n-valued multimap Φ is an n-valued fiber map with respect to the product bundle $\pi_B \colon B \times Y \to B$ with induced map ϕ and $f_b = f$ for all $b \in \phi(b)$. From Theorem 5.2 we also have the product formula result

Corollary 5.2. Let $\phi \times f : S^1 \times Y \longrightarrow S^1 \times Y$ be a product n-valued multimap where ϕ is of degree d, then

$$N(\phi \times f) = N(\phi)N(f) = |n - d| N(f).$$

References

- [1] Allaud, G. and Fadell, E., A fiber homotopy extension theorem, Trans. Amer. Math. Soc., **104**, 239 - 251 (1962).
- [2] Banach, S. and Mazur, S., Über mehrdeutige stetige Abbildungen, Studia Math., 5, 174 178 (1934).
- [3] Berge, C., Topological Spaces, Oliver & Boyd (1963).
- [4] Brown, R., Fixed points of n-valued multimaps of the circle, Bull. Pol. Acad. Sci. Math., **54**, 153 162 (2006).
- [5] Brown, R., The Lefschetz number of an n-valued multimap, JP Jour. Fixed Point Theory Appl., 2, 53 60 (2007).
- [6] Dieudonne, J., A History of Algebraic and Differential Topology, 1900 1960, Birkhauser (1989).
- [7] Fadell, E., On fiber homotopy equivalence, Duke Math. J. **26**, 699 706 (1959).
- [8] Fadell, E., The equivalence of fiber spaces and bundles, Bull. Amer. Math. Soc. **66**, 50 53 (1960).
- [9] Hart, E., Algebraic techniques for calculating the Nielsen number on hyperbolic surfaces, Handbook of Topological Fixed Point Theory, Springer, 463 488 (2005).
- [10] Hatcher, A., Algebraic Topology, Cambridge U. Press (2002).

- [11] Heath, P., Fibre techniques in Nielsen theory calculations, Handbook of Topological Fixed Point Theory, Springer, 489 -544 (2005).
- [12] Heath, P., Keppelmann, E. and Wong, P., Addition formulae for Nielsen numbers and Nielsen type numbers of fiber preserving maps, Top. Appl. 67, 133 157 (1995).
- [13] Hopf, H., Über die algebraische Anzahl von Fixpunkten, Math. Z., 29, 493 - 524 (1929).
- [14] Jiang, B., Lectures on Nielsen Fixed Point Theory, Contemporary Math. 14, American Math. Soc. (1983)
- [15] Massey, W., Algebraic Topology: An Introduction, Harcourt, Brace and World (1967).
- [16] Schirmer, H., Fix-finite approximations of n-valued multifunctions, Fund. Math. 121, 73 80 (1984).
- [17] Schirmer, H., An index and Nielsen number for n-valued multifunctions, Fund. Math. 124, 207 219 (1984).
- [18] Schirmer, H., A minimum theorem for n-valued multifunctions, Fund. Math. 126, 83 92 (1985).
- [19] Spanier, E., Algebraic Topology, McGraw-Hill (1966).
- [20] Steenrod, N., The Topology of Fibre Bundles, Princeton, 1951.
- [21] You, C., Fixed point classes of a fiber map, Pacific J. Math. **100**, 217 241 (1982).