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Abstract

The Nielsen number for n-valued multimaps, defined by Schirmer, has
been calculated only for the circle. A concept of n-valued fiber map on
the total space of a fibration is introduced. A formula for the Nielsen
numbers of n-valued fiber maps of fibrations over the circle reduces the
calculation to the computation of Nielsen numbers of single-valued maps.
If the fibration is orientable, the product formula for single-valued fiber
maps fails to generalize, but a “semi-product formula” is obtained. In this
way, the class of n-valued multimaps for which the Nielsen number can
be computed is substantially enlarged.
Subject Classification 55M20, 54C60

1 Introduction

A multifunction φ : X ( Y is a function such that φ(x) is a subset
of Y for each x ∈ X. For S a subset of Y , the set φ−1(S) consists of
the points x ∈ X such that φ(x) ⊆ S and the set φ−1

+ (S) consists of
the points x ∈ X such that φ(x) ∩ S 6= ∅. A multifunction φ is said
to be upper semicontinuous if U open in Y implies φ−1(U) is open
in X. It is lower semicontinuous if U open in Y implies φ−1

+ (U) is
open in X.

An n-valued multimap φ : X ( Y is a function such that φ(x),
for each x ∈ X, is an unordered subset of n points of Y and φ
is both upper and lower semi-continuous. Schirmer introduced the
Nielsen fixed point theory of n-valued multimaps in a series of pa-
pers [16], [17], [18]. The main result, there called the “minimum
theorem”([18], Theorem 5.2) states that if φ : X ( X is an n-valued
multimap of a compact triangulated manifold of dimension at least
3, then φ is n-valued multimap homotopic to an n-valued multimap

1



ψ : X ( X that has exactly N(φ) fixed points, where N(φ) is the
Nielsen number defined in [17].

Schirmer’s papers were not concerned with the calculation of the
Nielsen number. There are only two examples in those papers, both
are 2-valued multimaps of the circle, for which the Nielsen number
is given. In [4], in addition to extending the minimum theorem to n-
valued multimaps of the circle, we determined the Nielsen numbers
for all the n-valued multimaps of the circle as follows. We defined
the degree of an n-valued multimap φ : S1 ( S1 and proved that if
φ is of degree d, then N(φ) = |n−d|. This concept of degree, which
is presented in Section 4 below, extends the classical definition for
a single-valued map f : S1 → S1 and thus the result generalizes the
well-known formula N(f) = |1− d| for f of degree d.

The purpose of this paper is to expand substantially the class
of n-valued multimaps for which the Nielsen number can be com-
puted. The type of multimap we consider, which we call an n-valued
fiber map, is Φ: E ( E, defined on the total space of a fibration
p : E → B. In Section 2, we define n-valued fiber maps and estab-
lish their basic properties. In Section 3, we show that the covering
homotopy property of fibrations holds in the setting of n-valued
multimaps. As a consequence, we extend a fix-finiteness theorem
for n-valued multimaps, due to Schirmer, to n-valued fiber maps.
The main result of the paper, presented in Section 4, concerns fi-
brations in which the base space B is the circle. Under this hypoth-
esis, we obtain an addition formula that reduces the calculation of
the Nielsen number N(Φ) to the calculation of Nielsen numbers of
single-valued functions. (The class of single-valued maps for which
the Nielsen number can be calculated is quite large; see for instance
[9] and [11].) In Section 5, we consider orientable fibrations over the
circle. Nielsen numbers of single-valued fiber maps of such fibrations
satisfy a product formula that does not hold in general for n-valued
multimaps. However, we are able to show that a “semi-product for-
mula”does hold and we find additional hypotheses under which the
product formula is valid.

I thank Daciberg Goncalves for his help with proving Theorem
5.1 and the referee for improvements in the exposition.

2 Fiber maps

Throughout the paper, we will assume that all the spaces are fi-
nite polyhedra. Projections from cartesian products will be de-
noted πX : X × Y → X. A map p : E → B is a fibration if it
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satisfies the absolute covering homotopy property. That is, given
a homotopy H : X × I → B and a map f : X × {0} → E such
that pf(x) = H(x, 0) for all x ∈ X, there exists a homotopy
F : X × I → E such that F (x, 0) = f(x) and pF (x, t) = H(x, t)
for all (x, t) ∈ X × I.

Let p : E → B and p′ : E ′ → B′ be fibrations. A pair of maps
f : E → E ′, f̄ : B → B′ such that p′f = f̄p is a morphism of fi-
brations ([6], p. 390), more commonly called a fiber map f with
induced map f̄ ([14], p. 75). If f̄(b) = b then f takes the fiber
p−1(b) to itself and the restriction of f to the fiber is denoted by
fb : p−1(b) → p−1(b). We extend the class of fiber maps to the set-
ting of n-valued multimaps in the following manner. An n-valued
multimap Φ: E ( E ′ will be called an n-valued fiber map if there is
an induced multimap, an n-valued multimap φ : B ( B′ such that
p′Φ = φp, that is, the unordered sets p′Φ(e) and φp(e) are identical
for each e ∈ E. An n-valued fiber map Φ has the properties: (1) if
e1, e2 ∈ E such that p(e1) = p(e2), then pΦ(e1) = pΦ(e2) and (2)
for each e ∈ E, if Φ(e) = {e′1, e′2, . . . , e′n}, then p(e′i) 6= p(e′j) for all
i 6= j. If p : E → B is an open map, for instance a fiber bundle, then
these properties are sufficient for an n-valued multimap Φ: E ( E ′

to be an n-valued fiber map.
An n-valued multimap ψ : X ( Y is w-split, for some w with

2 ≤ w ≤ n, if there exist nj-valued multimaps ψj : X ( Y for
j = 1, 2, . . . , w, where n1 + n2 + · · ·+ nw = n, such that

ψ(x) = {ψ1(x), ψ2(x), . . . , ψn(x)}

for all x ∈ X. If ψ is an n-split n-valued multimap so that the ψj are
single-valued maps, then ψ is just called a split n-valued multimap.

The following classical result from [2] is an important tool in the
study of n-valued multimaps.

Lemma 2.1. (Splitting Lemma) Let φ : X ( Y be an n-valued
multimap and let

Γφ = {(x, y) ∈ X × Y : y ∈ φ(x)}

be the graph of φ. Then πX : Γφ → X is a covering space. It follows
that if X is simply connected, then any n-valued multimap φ : X (
Y is split.

The Splitting Lemma permits us to relate the splitting of an n-
valued multimap to the structure of its graph, as follows.

Proposition 2.1. If the graph Γφ of an n-valued multimap φ : X (
Y has w path components, then φ is w-split.
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Proof. Let C be a path component of Γφ then, since πX : C → X is
a local homeomorphism, it is a covering space by [15], Exercise 2.4,
p. 151, with fibers of cardinality nC ≤ n. There is a multivalued
function φC : X ( Y defined by φC(x) = {y ∈ φ(x) : (x, y) ∈ C}.
To show that φC is lower semi-coninuous, suppose (x0, y0) ∈ C and U
is an open subset of Y containing y0. Since the projection πY : Γφ →
Y is continuous, there is a neighborhood V of (x0, y0) in Γφ such that
(x, y) ∈ V implies y ∈ U . Let V0 be a neighborhood of (x0, y0) in
the open subset V ∩C of Γφ such that the restriction of the covering
space πX : Γφ → X to V0 is a homeomorphism. If x is in the open
subset πX(V0) of X, then there exists y ∈ U such that (x, y) ∈ C
and we have proved that φC is lower semi-continuous. For the proof
that φC is upper semi-continuous, we assume that φC(x0) ⊂ U and,
for each (x0, yk) ∈ C, we obtain a neighborhood Vk of x0 as we did V0

above. Then for V the intersection of the Vk we have φC(V ) ⊆ U to
complete the proof that φC is a multimap. Now suppose that Γφ has
w path components {C1, C2, . . . , Cw}. Then there are finite-valued
multimaps φj : X ( Y defined by φj(x) = {y ∈ φ(x) : (x, y) ∈ Cj}
such that φ = {φ1, φ2, . . . , φw}, that is, φ is w-split.

Splitting takes place for n-valued fiber maps, in the following
manner.

Lemma 2.2. Let p : E → B and p′ : E ′ → B′ be fibrations, let
Φ: E ( E ′ be an n-valued fiber map and let b ∈ B, then the restric-
tion Φb : p−1(b) ( E ′ of Φ to p−1(b) is split.

Proof. For φ : B ( B′ the induced multimap of Φ, let φ(b) =
{b′1, b′2, . . . , b′n}. Define fbj : p−1(b) → p′−1(b′j) by fbj(e) = Φ(e) ∩
p′−1(b′j), then

Φ(e) = {fb1(e), fb2(e), . . . , fbn(e)}

and we must show that the fbj are continuous. Let e0 ∈ p−1(b)
and let u′ be a neighborhood of fbj(e0) in p′−1(b′j). Let U ′ be an

open subset of E ′ such that U ′ ∩ p′−1(b′j) = u′. Let W ′ ⊆ B′ be
an open subset such that W ′ ∩ φ(b) = b′j. Since Φ is lower semi-
continuous, there is an open subset V of E containing e0 such that
Φ(e) ∩ (U ′ ∩ p′−1(W ′)) 6= ∅ for all e ∈ V . If e ∈ V ∩ p−1(b) = v
then W ′ ∩ φ(b) = b′j implies that no point of Φ(e) other than fbj(e)

is in U ′ ∩ p′−1(W ′) and since fbj(e) ∈ p′−1(b′j), then it must be
that fbj(e) ∈ u′. Thus fbj(v) ⊆ u′ and we conclude that fbj is
continuous.

If Φ: E ( E is an n-valued multimap and b is a fixed point of
the induced multimap φ : B ( B, then fbj : p−1(b)→ p−1(b) for one
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of the j = 1, 2, . . . , n. We set fb = fbj for that j and we have shown
that fb is continuous.

An n-valued homotopy is an n-valued multimap ∆: X × I ( Y .
The n-valued multimaps φ, ψ : X ( Y defined by φ(x) = ∆(x, 0)
and ψ(x) = ∆(x, 1) are said to be homotopic.

The path space of maps from I to a polyhedron X, with the
uniform metric topology, will be denoted by XI . Given a fibration
p : E → B, define

Λ(p) = {(e, ω) ∈ E ×BI : p(e) = ω(0)}.

There is a lifting function for p, that is, a map λ : Λ(p) → EI such
that pλ(e, ω)(t) = ω(t) or all t ∈ I. If p is a covering space, then it
has the unique path lifting property, that is, if ω̄, ω̄′ ∈ EI such that
pω̄(t) = pω̄′(t) for all t ∈ I and ω̄(t0) = ω̄′(t0) for some t0 ∈ I, then
ω̄(t) = ω̄′(t) for all t ∈ I ([10], Prop. 1.34, p. 62).

Generalizing Theorem 2.1 of [4], we have

Proposition 2.2. Let ∆: X × I ( Y be an n-valued multimap
and define φ, ψ : X ( Y by φ(x) = ∆(x, 0) and ψ(x) = ∆(x, 1).
If φ is w-split as φ = {φ1, φ2, . . . , φw} then ∆ is w-split as ∆ =
{∆1,∆2, . . . ,∆w} where ∆j(x, 0) = φj(x). Therefore ψ is w-split
as ψ = {ψ1, ψ2, . . . , ψw}, where ψj(x) = ∆j(x, 1), and each φj is
homotopic to ψj by ∆j.

Proof. We consider the covering space πX×I : Γ∆ → X × I and
its lifting function λ : Λ(πX×I) → (Γ∆)I . For 1 ≤ j ≤ w, define
∆j : X × I ( Y as follows: if φj(x) = {y1, y2, . . . , ynj

}, then

∆j(x, t) = {πY [λ(((x, 0), yi), x× I)(t)]}nj

i=1.

The unique path lifting property implies that ∆j : X × I ( Y is
nj-valued and that if j 6= k, then ∆j(x, t) ∩ ∆k(x, t) = ∅. Since
n1 +n2 + · · ·+nw = n, we see that {∆1,∆2, . . . ,∆w} is the required
w-splitting of ∆.

Proposition 2.3. Let p : E → B and p′ : E ′ → B′ be fibrations
and let Φ: E ( E ′ be an n-valued fiber map with induced multimap
φ : B ( B′. If φ is w-split as φ = {φ1, φ2, . . . , φw}, then Φ is w-split
as Φ = {Φ1,Φ2, . . . ,Φw} such that each φj is the induced multimap
of the nj-valued fiber map Φj.

Proof. For j = 1, 2, . . . , w define Φj : E ( E ′ by

Φj(e) = Φ(e) ∩ p′−1(φj(p(e)))
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then Φ(e) = {Φ1(e),Φ2(e), . . . ,Φw(e)} and p′Φj = φjp. We will
prove that the Φj are continuous. Let e0 ∈ E and set b0 = p(e0).
There are disjoint open subsets W ′

1,W
′
2, . . . ,W

′
w of B′ such that

φj(b0) ⊆ W ′
j for j = 1, 2, . . . , w. Since the φj are upper semi-

continuous, there are neighborhoods V1, V2, . . . , Vw of b0 such that
φj(Vj) ⊆ W ′

j . Let V = V1 ∩ V2 ∩ · · · ∩ Vw then for b ∈ V we have
φj(b) ⊆ W ′

j and φk(b)∩W ′
j = ∅ if k 6= j. Now let U ′ be an open sub-

set of E ′ such that Φj(e0)∩U ′ 6= ∅. Let U ′j = U ′∩p′−1(W ′
j). Since Φ

is lower semi-continuous, there is a neighborhood O of e0 such that
e ∈ O implies Φ(e)∩U ′j 6= ∅. If e ∈ O∩p−1(V ), then it must be that
Φk(e)∩U ′j = ∅ for k 6= j because φk(p(e))∩W ′

j = ∅. We have proved

that Φj(O∩p−1(V ))∩U ′j 6= ∅ and therefore Φj(O∩p−1(V ))∩U ′ 6= ∅
so Φj is lower semi-continuous. The upper semi-continuity of Φj is
a consequence of the corresponding property of Φ in the same man-
ner.

3 Fix-finiteness

The main result, Theorem 6, of [16], a generalization of a classi-
cal result for single-valued maps due to Hopf [13], states that an
n-valued multimap φ : X ( X on a finite polyhedron can be ap-
proximated arbitrarily closely by an n-valued multimap with only
finitely many fixed points, each of them in a maximal simplex of
the polyhedron. According to Lemma 4.1 of [17], sufficiently close
n-valued multimaps are homotopic. Thus φ : X ( X is homotopic
to an n-valued multimap ψ : X ( X that is fix-finite that is, it has
finitely many fixed points, and each fixed point lies in a maximal
simplex of X. The purpose of the present section is to prove the
corresponding result in the setting of n-valued fiber maps.

We first extend the covering homotopy property to n-valued mul-
timaps in order to obtain a tool that we will need for the study of
n-valued fiber maps.

Theorem 3.1. Let X be a finite polyhedron, p : E → B a fibration,
φ : X ( E an n-valued multimap and δ : X × I ( B an n-valued
multimap such that pφ(x) = δ(x, 0) for all x ∈ X, then there exists
an n-valued multimap ∆: X × I ( E such that ∆(x, 0) = φ(x) and
p∆(x, t) = δ(x, t) for all (x, t) ∈ X × I.

Proof. Choose b0 ∈ B and set Y = p−1(b0). Define an open cover of
X × I as follows. For (x, t) ∈ X × I, write δ(x, t) = {b1, b2, . . . , bn}
and let U1, U2, . . . , Un be n disjoint open contractible subsets of B,
such that Uj ∩ δ(x, t) = bj for each j = 1, 2, . . . , n. By Corollary
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2.8.15 of [19], there are homotopy equivalences ζj : p−1(Uj)→ Uj×Y
with πUj

ζj = p and θj : Uj × Y → p−1(Uj) with pθj = πUj
. Since

δ is upper semi-continuous with respect to the product topology
on X × I, there are open subsets V of X and J of I such that
(x, t) ∈ V ×J and if (x′, t′) ∈ V ×J then δ(x′, t′) ⊆ U1∪U2∪· · ·∪Un.
Moreover, since X is locally contractible, we will choose V ×J to be
contractible. By the Splitting Lemma, the restriction of δ to V × J
splits into n maps fj : V × J → B where we number the fj so that
fj(V × J) ⊆ Uj. Since X × I is compact, there is a finite subcover
{Vk × Jµ} of the cover {V × J}. By writing open intervals in I as
unions of smaller intervals open in I, if necessary, we can choose
the Jµ so that each intersects at most two others and number them
{J1, J2, . . . , Jr} so that Jµ intersects only Jµ−1 and Jµ+1. Choose
0 = t1 < t2 < · · · < tr < tr+1 = 1 such that tµ ∈ Jµ−1 ∩ Jµ for
µ = 2, . . . , r.

Now ∆(x, t1) = φ(x) is defined by hypothesis, so we assume that
∆: X × [0, tµ] ( E has been defined and we will extend ∆ over
X × [tµ, tµ+1]. Subdivide X so that the mesh of the triangulation is
less than the Lebesgue number of the cover {Vk}. Let x be a vertex,
then the restriction of δ to x × [tµ, tµ+1] splits as maps dj : x ×
[tµ, tµ+1] → B for j = 1, 2, . . . , n. Since x × [tµ, tµ+1] is contained
in Vk × Jµ for some Vk, each dj(x × [tµ, tµ+1]) ⊂ Uj for disjoint
contractible neighborhoods Uj. Define ∆: x× [tµ, tµ+1] ( E by

∆(x, t) = {θj[dj(x, t), πY ζj(∆(x, tµ) ∩ p−1(Uj))]}nj=1.

Note that ∆(x, t) is well-defined because δ(x, tµ) ∩ Uj is a single
point for each j. In this way, ∆ is extended to [tµ, tµ+1] over the
zero-skeleton of X. Now assume that ∆ has been extended over
the (m − 1)-skeleton of X and let σ be an m-simplex. There is a
retraction ρ : σ × [tµ, tµ+1]→ T where

T = (σ × tµ) ∪ (∂σ × [tµ, tµ+1]).

The restriction of δ to T splits as maps {dj : T → Uj} to disjoint
contractible neighborhoods Uj. We extend ∆ to σ × [tµ, tµ+1] by
setting

∆(x, t) = {θj[dj(x, t), πY ζj(∆(ρ(x, t)) ∩ p−1(Uj))]}nj=1.

The required n-valued multimap ∆: X × I ( E is thus defined by
induction.

An n-valued fiber map ∆: E× I ( E is an n-valued fiber homo-
topy. We say that the n-valued fiber maps Φ,Ψ: E ( E defined by
Φ(e) = ∆(e, 0),Ψ(e) = ∆(e, 1) are fiber homotopic.
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Theorem 3.2. Let p : E → B be a fibration and let Φ: E ( E be
an n-valued fiber map, then there is a fix-finite n-valued fiber map
Ψ: E ( E fiber homotopic to Φ.

Proof. As noted above, Theorem 6 of [16] and Lemma 4.1 of [17]
imply that there is an n-valued homotopy δ : B × I ( B such
that δ(b, 0) = φ(b), where φ is the induced multimap of Φ, and
δ(b, 1) = ψ(b) defines a fix-finite n-valued multimap. By Theorem
6 of [16], the fixed points of ψ lie in maximal simplices of B. By
Theorem 3.1, there is an n-valued multimap ∆: E × I ( E such
that ∆(e, 0) = Φ(e) and p∆(e, t) = δ(p(e), t) for all (e, t) ∈ E × I.
Then Γ: E ( E defined by Γ(e) = ∆(e, 1) is an n-valued fiber map
with induced multimap ψ so it has fixed points only in finitely many
fibers. Since Γ is fiber homotopic to Φ, we may assume, to simplify
the notation, that the n-valued fiber map Φ of the statement of the
theorem has fixed points only in finitely many fibers.

Let p−1(b) be one such fiber, that is, b ∈ φ(b) is a fixed point of φ.
Let U be a contractible neighborhood of b containing no other fixed
point of φ. By the Splitting Lemma, φ = {φ1, φ2, . . . , φn} : U ( B
and so, by Proposition 2.3, Φ = {Φ1,Φ2, . . . ,Φn} : p−1(U) ( E. We
may assume φ1(b) = b, so Φ1(p−1(b)) ⊂ p−1(b). Let h : p−1(b)× I →
p−1(b) such that h(e, 0) = Φ1(e) and h1(e) = h(e, 1) is a fix-finite
map. Let V be a neighborhood of b whose closure lies in U and
define a subset T of p−1(U)× I by

T = (p−1(U)× {0}) ∪ (p−1(U \V )× I) ∪ (p−1(b)× I).

Define H : T → E by

H(e, t) =

{
Φ1(e) if t = 0 or e ∈ p−1(U\V )

h(e, t) if e ∈ p−1(b)

By the fiber homotopy extension theorem ([1], Theorem 2.2), we
can extend H to a fiber-preserving homotopy H : p−1(U)× I → E.
Define Γ1 : p−1(U) → E by Γ1(e) = H(e, 1). Noting that Γ1(e) =
Φ1(e) for e ∈ p−1(U \V ), we define Ψ: E ( E by setting

Ψ(e) = {Γ1(e),Φ2(e), . . . ,Φn(e)}

for e ∈ p−1(U) and Ψ(e) = Φ(e) otherwise. In the same way, the
homotopy may be extended to an n-valued fiber homotopy between
the n-valued fiber maps Ψ and Φ. Repeating this construction for
each of the finite number of fixed points of φ completes the proof.
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4 An addition formula

Throughout the rest of the paper, all spaces are finite polyhedra
that are connected.

In [17], Schirmer used the Splitting Lemma to generalize Nielsen’s
definition of equivalence of fixed points of maps in the following
way. For an n-valued multimap φ : X ( X, let Fix(φ) = {x ∈
X : x ∈ φ(x)}. Then x0, x1 ∈ Fix(φ) are equivalent if there is a
path c : I → X with c(0) = x0 and c(1) = x1 and a map φj : I → X
of the splitting φc = {φ1, φ2, . . . , φn} : I ( X such that φj(0) =
x0, φj(1) = x1 and φj is homotopic to c relative to the endpoints.
An equivalence class is called a fixed point class.

The fixed point index of φ at an isolated fixed point x, denoted
ind(φ, x) is defined in [17], page 210 in terms of the classical fixed
point index by ind(φ, x) = ind(φj, x) where φ = {φ1, φ2, . . . , φn}
is a splitting of φ in a neighborhood of x and φj(x) = x. Let
U be a neighborhood of a fixed point class F, then Theorem 6 of
[16] approximates the restriction of φ to U by a fix-finite n-valued
multimap and the index ind(F) of the fixed point class F is defined
to be the sum of the indices of the fixed points of the approximation.
The Nielsen number N(φ) is the number of essential fixed point
classes, that is, those of nonzero index.

The following result is a consequence of Theorem 4.1 of [12]. 1

Proposition 4.1. Let p : E → S1 be a fibration and let f : E → E
be a fiber map with induced map f̄ : S1 → S1 of degree d. If d = 1,
then N(f) = 0. Otherwise, let b1, b2, . . . , b|1−d| be points of S1 such
that each bj is in a different essential fixed point class of f̄ , then

N(f) =

|1−d|∑
j=1

N(fbj ).

Let p : E → B be a fibration. Since B is a polyhedron, there
is a regular lifting function for p, that is, a map λ : Λ(p) → EI

such that pλ(e, ω)(t) = ω(t) for all t ∈ I and, in addition, if ω is
a constant path, so also is λ(e, ω). For a path ω ∈ BI there is
a map τω : p−1(ω(0)) → p−1(ω(1)), called the fiber translation ob-
tained from ω, defined by τω(e) = λ(e, ω)(1). If ω′ ∈ BI such that
ω′(0) = ω(0), ω′(1) = ω(1) and ω and ω′ are homotopic relative
to the endpoints, then the fiber translations τω and τω′ are homo-
topic. Therefore a fiber translation τω is a homotopy equivalence
with homotopy inverse τω̄ where ω̄(t) = ω(1− t).

1A thorough survey of the Nielsen theory of single-valued fiber maps is presented by Heath
in [11].
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Lemma 4.1. Let p : E → B be a fibration and let Φ: E ( E
be an n-valued fiber map with induced multimap φ : B ( B. If
b0, b1 ∈ Fix(φ) are equivalent, then N(fb0) = N(fb1).

Proof. Since b0 and b1 are equivalent, there is a path c ∈ BI with
c(0) = b0 and c(1) = b1 and a splitting φc = {φ1, φ2, . . . , φn} : I ( B
with a path φj such that φj(0) = b0, φj(1) = b1 and φj is homotopic

to c relative to the endpoints. For t ∈ I, define a path φ
[t]
j : I → B

by φ
[t]
j (s) = φj(s + t) for 0 ≤ s ≤ 1 − t and φ

[t]
j (s) = φj(1) = b1 for

1− t ≤ s ≤ 1. Define H : p−1(b0)× I → p−1(b1) by

H(e, t) = λ([Φ(λ(e, c)(t)) ∩ p−1(φj(t))], φ
[t]
j )(1).

The function H is well-defined because

p(Φ(λ(e, c)(t)) = φ(p(λ(e, c)(t)) = φc(t)

and it is continuous by Lemma 2.2. Now

H(e, 0) = λ([Φ(λ(e, c)(0) ∩ p−1(φj(0))], φ
[0]
j )(1)

= λ([Φ(e) ∩ p−1(b0)], φj)(1)

= λ(fb0(e), φj)(1) = τφj
fb0(e)

and

H(e, 1) = λ([Φ(λ(e, c)(1) ∩ p−1(φj(1))], φ
[1]
j )(1)

= λ([Φ(τc(e)) ∩ p−1(b1)], φ
[1]
j )(1)

= λ(fb1τc(e), φ
[1]
j )(1) = fb1τc(e)

so τφj
fb0 and fb1τc are homotopic. Since φj is homotopic to c, then

τφj
fb0 is homotopic to τcfb0 and therefore fb0 is homotopic to τc̄fb1τc.

By Theorem 5.4 of [14], this implies that N(fb0) = N(fb1).

Lemma 4.2. Let p : E → B be a fibration and let Φ,Ψ: E (
E be fiber homotopic n-valued fiber maps with induced multimaps
φ, ψ : B ( B. There is a one-to-one correspondence between the
essential fixed point classes of φ and ψ such that if b0 ∈ Fix(φ) and
b1 ∈ Fix(ψ) are in corresponding essential fixed point classes, then
N(fb0) = N(gb1) where fb0 : p−1(b0) → p−1(b0) and gb1 : p−1(b1) →
p−1(b1) are defined by fb0(e) = Φ(e) ∩ p−1(b0) and gb1(e) = Ψ(e) ∩
p−1(b1).

Proof. Let D : E × I ( E be an n-valued fiber map with induced
multimap d : B × I ( B such that D(e, 0) = Φ(e), D(e, 1) = Ψ(e)
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and d is an n-valued homotopy between φ and ψ. Define D : E ×
I ( E × I as follows: if D(e, t) = {e1, e2, . . . en}, then D(e, t) =
{(e1, t), (e2, t), . . . (en, t)}. Then D is an n-valued fiber map of the
fibration p× : E × I → B × I defined by p×(e, t) = (p(e), t) with
induced multimap d : B × I ( B × I. Let F0 be an essential
fixed point class of φ then, by Lemma 6.3 of [17], there is a unique
fixed point class F of d such that F0 = {b ∈ B : (b, 0) ∈ F}. By
Lemmas 6.2 and 6.4 of [17], there is an essential fixed point class
F1, the corresponding class, such that F1 = {b ∈ B : (b, 1) ∈ F}.
Let b0 ∈ F0 and b1 ∈ F1 then (b0, 0) and (b1, 1) are equivalent
fixed points of d. Applying Lemma 4.1 to D : E × I ( E × I, we
conclude that N(δb0) = N(δb1) where, for v = 0, 1, the map δbv is
defined by δbv(e, v) = D(e, v) ∩ p−1

× (bv, v). Since D(e, 0) = (Φ(e), 0)
and p−1

× (b0) = p−1(b0) × {0}, then N(δb0) = N(fb0). Similarly,
N(δb1) = N(gb1), so N(fb0) = N(gb1).

In [4], the degree deg(φ) of an n-valued multimap φ : S1 ( S1 is
defined as follows. Let η : R → S1 be the universal covering space
defined by η(t) = ei2πt. There is a splitting {f0, f1, . . . , fn−1} of
φη : R ( S1 where the fj are ordered so that fj(0) = η(tj) for

0 ≤ t0 < t1 < · · · < tn−1 < 1. Let f̃0 be the lift of f0 to t0, then
f̃0(1) = v + tJ for some integer v and 0 ≤ J ≤ n− 1. The degree of
φ is defined by deg(φ) = nv + J .

To illustrate the definition, represent S1 as the unit circle in the
complex plane and define φ : S1 ( S1 by φ(z) = {z3/2}. In terms
of the covering space η,

φ(η(t)) = {η(
3

2
t), η(

3

2
t+

1

2
)}

so φη = {f0, f1} where f0(t) = η(3
2
t) and f1(t) = η(3

2
t+ 1

2
) and thus

t0 = 0 and t1 = 1
2
. Now f̃0(t) = 3

2
t so

f̃1(1) =
3

2
= 1 +

1

2
= v + t1

and therefore deg(φ) = nv + J = 2(1) + 1 = 3.
An equivalent definition of deg(φ) that resembles the definition of

degree for single-valued maps is developed in [5]. A homomorphism
of integer homology φ∗ : H1(S1) → H1(S1) is induced by φ in such
a way that φ∗(1) = deg(φ) · 1, where 1 is a generator of H1(S1).
However, we will need the covering space definition of the degree to
prove the following result.

Lemma 4.3. Let p : E → S1 be a fibration, let Φ: E ( E be an
n-valued fiber map and let b0 ∈ S1 be a fixed point of the induced

11



multimap φ : S1 ( S1. If deg(φ) 6= n, then f is a fixed point class
of fb0 : p−1(b0)→ p−1(b0) if and only if there is a fixed point class F
of Φ such that F ∩ p−1(b0) = f .

Proof. Suppose e0 and e1 are equivalent fixed points of fb0 in a fixed
point class f , then there exists a map c : I → p−1(b0) such that c(0) =
e0, c(1) = e1 and fb0c is homotopic to c relative to the endpoints.
Since, by Lemma 2.2, the restriction Φ0 of p−1(b0) splits with fb0 as
a factor, then e0 and e1 are equivalent fixed points of Φ. Therefore,
there is a fixed point class F of Φ such that f ⊆ F.

To prove that F∩ p−1(b0) ⊆ f , let e0, e1 ∈ F∩ p−1(b0). Therefore
there is a path c : I → E such that c(0) = e0, c(1) = e1 and a
splitting Φc = {Φ1,Φ2, . . . ,Φn} : I ( E such that the paths c and
Φ1 are homotopic relative to the endpoints. We must prove that e0

and e1 are equivalent fixed points of fb0 .
We have a splitting {pΦ1, pΦ2, . . . , pΦn} : I ( S1 of pΦc = φ(pc)

such that pc is homotopic to pΦ1. We first assume pc is contractible,
so there is a map h : I × I → B that contracts pc to the constant
loop at b0. By the covering homotopy property, we may lift h to c to
obtain a homotopy H : I×I → E, relative to the endpoints, between
c and a path c0 : I → p−1(b0). Let ΦH = {Φ∗1,Φ∗2, . . . ,Φ∗n} be a
splitting such that the restriction of Φ∗1 is Φ1. Then Φ∗1 : I × I → E
is a homotopy between Φ1 and fb0c0. Since c is homotopic to Φ1, we
conclude that c0 and fb0(c0) are paths in p−1(b0) from e0 to e1 that
are homotopic in E. In a fibration over S1, fibers are π1-injective
into the total space, so c0 and fb0(c0) are paths that are homotopic
in p−1(b0) and therefore e0 and e1 are equivalent fixed points of fb0 .

Now suppose that the loop pc is not contractible. We claim
that if pc is homotopic to φ1 = pΦ1, then the degree of φ must be
n and thus, since deg(φ) 6= n by hypothesis, no such loop exists
and therefore e0 and e1 must have been equivalent as fixed points
of fb0 by the previous step, which will complete the proof. Let
η : R → S1 be the covering space and let p̃c : I → R be the lift
of pc to the origin. Since pc is a loop, then p̃c(1) = m for some
integer m, which is nonzero since pc is not contractible. Lifting
the homotopy between pc and φ1 to the origin, the lift φ̃1 of φ1

must have the property φ̃1(1) = m also. Since m is an integer,
J = 0 in the definition of the degree of φ and therefore φ is split
by Corollary 5.1 of [4]. Thus φ1 : S1 → S1 is a well-defined map
such that the homomorphism φ1π : π1(S1, b0) → π1(S1, b0) fixes the
non-zero element [pc] ∈ π1(S1, b0). The map φ1 must therefore be
of degree one so, by Theorem 2.2 of [4], deg(φ) = n · 1 = n.

We may now generalize Proposition 4.1 as follows.

12



Theorem 4.1. (Addition Formula) Let p : E → S1 be a fibration
and let Φ: E ( E be an n-valued fiber map with induced multimap
φ : S1 ( S1 of degree d. If d = n, then N(Φ) = 0. Otherwise, let
b1, b2, . . . , b|n−d| ∈ S1, such that each bj is in a different essential
fixed point class of φ, then

N(Φ) =

|n−d|∑
j=1

N(fbj ).

Proof. If d = n then, by Theorem 5.1 of [4], there is a homotopy of
φ to a fixed point free n-valued multimap ψ. By Theorem 3.1, there
is an n-valued fiber map Ψ: E ( E homotopic to Φ such that ψ is
the induced multimap of Ψ. Since ψ has no fixed points, Ψ is also
fixed point free so N(Ψ) = 0, and therefore N(Φ) = 0 by Theorem
6.5 of [17].

Now we assume that d 6= n. By Theorems 3.1 and 4.1 of [4], φ
is homotopic to the n-valued power map φn,d : S1 ( S1 that has
fixed points β1, β2, . . . , β|n−d|, all of index +1 or all of index -1, such
that no two of these fixed points are equivalent. By the proof of
Theorem 3.2, there is a fix-finite n-valued fiber map Ψ: E ( E
that is fiber homotopic to Φ and the induced multimap of Φ is
φn,d. Let βj be a fixed point of φn,d and let f = {e1, e2, . . . , er}
be an essential fixed point class of gβj

: p−1(βj) → p−1(βj) defined
by gβj

(e) = Ψ(e) ∩ p−1(βj). By Lemma 4.3, there is a fixed point
class F of Ψ such that F ∩ p−1(βj) = f . If F ∩ p−1(βk) 6= ∅ for
some k 6= j, let e0 ∈ F ∩ p−1(βk), then there is a path c : I → E
such that c(0) = e0 and c(1) = e1 ∈ f such that, for a splitting
Ψc = {Ψ1,Ψ2, . . . ,Ψn} : I ( E, some path Ψu is homotopic to c
relative to the endpoints, which are fixed by Ψu. But then there
is a splitting pΨc = φn,d(pc) = {pΨ1, pΨ2, . . . , pΨn} : I ( B such
that pΨu is homotopic to pc relative to the endpoints βk and βj,
which would imply that these are equivalent fixed points of φn,d.
Therefore, f = F is a fixed point class of Ψ.

Let U ⊆ S1 be a closed interval with βj in the interior and
U ∩ βk = ∅ for k 6= j. The restriction of φn,d to U splits as
{ψU1 , ψU2 , . . . , ψUn } : U ( S1. By Proposition 2.3, the restriction
of Ψ to p−1(U) splits as {ΨU

1 ,Ψ
U
2 , . . . ,Ψ

U
n } : p−1(U) ( E with each

ψUj the induced multimap of ΨU
j . Let f ⊆ p−1(βj) be an essential

fixed point class of gβj
and let ev ∈ f , then ΨU

k (ev) = ev for some k.
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By Lemma 3.1 on page 84 of [14], the index of Ψ at ev satisfies

ind(Ψ, ev) = ind(ΨU
k , ev)

= ind(ψUk , βj) · ind(gβj
, ev)

= ind(φn,d, βj) · ind(gβj
, ev).

Since ind(f) 6= 0, then

ind(F) =
r∑

v=1

ind(Ψ, ev)

= ind(φn,d, βj)
r∑

v=1

ind(gβj
, ev)

= ±
r∑

v=1

ind(gβj
, ev) = ± ind(f) 6= 0

so f = F is also an essential fixed point class of Ψ.
Conversely, if F is an essential fixed point class of Ψ such that

F ∩ p−1(βj) 6= ∅, then f = F ∩ p−1(βj) is a fixed point class of
gβj

by Lemma 4.3 and, again, ind(F) = ± ind(f) so f is also an
essential fixed point class of gβj

. We conclude that the essential
fixed point classes of Ψ are the essential fixed point classes of the
gβj

for j = 1, 2, . . . , |n− d| so

N(Ψ) =

|n−d|∑
j=1

N(gβj
).

Since Φ is fiber homotopic to Ψ, by Lemma 4.2 there is a one-
to-one correspondence between the fixed points β1, β2, . . . , β|n−d| of
φn,d and the essential fixed point classes of φ such that, if we choose
b1, b2, . . . , b|n−d| ∈ S1 in each of the corresponding essential fixed
point classes of φ, then N(fbj ) = N(gβj

) for j = 1, 2, . . . , |n − d|.
Since N(Φ) = N(Ψ) by Theorem 6.5 of [17], we have proved that

N(Φ) =

|n−d|∑
j=1

N(fbj ).

To illustrate the addition formula, let R2 denote the plane and
represent the Klein bottle as K = R2/ ∼ where (x, y) ∼ (x +
k, (−1)ky) and (x, y) ∼ (x, y+ `) for all integers k, `. The projection
p̃ : R2 → R on the first factor induces the fibration p : K → S1
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with fiber S1, where S1 = R/ ∼ with x ∼ x+ k. Define a 2-valued

multimap Φ̃ : R2 ( R2 by

Φ̃(x, y) = {(−x+ 1, 2y), (−x+ 3
2
, 3y)}

then Φ̃ induces a 2-valued fiber map Φ: K ( K. The induced
multimap φ : S1 ( S1 has four fixed points v = 0, 1

4
, 1

2
, 3

4
; let

fv : p−1(v) → p−1(v) be the corresponding restrictions of Φ. Since

Φ̃(0, y) = {(1, 2y), (3
2
, 3y)} and (1, 2y) ∼ (0,−2y), the degree of

f0 is −2. Similarly, f 1
4

is of degree −3. Furthermore, Φ̃(1
2
, y) =

{(1
2
, 2y), (1, 3y)} so f 1

2
is of degree 2 and, similarly, f 3

4
is of degree

3. Therefore, by Theorem 2.4,

N(Φ) = N(f0) +N(f 1
4
) +N(f 1

2
) +N(f 3

4
) = 3 + 4 + 1 + 2 = 10.

5 Orientable fibrations over S1

Given a fibration p : E → B, choose a basepoint b0 ∈ B and set
Y = p−1(b0). Let [Y, Y ] denote the homotopy classes of homotopy
equivalences and define τ : π1(B, b0)→ [Y, Y ] by τ [ω] = τω, the fiber
translation obtained from a loop ω representing [ω]. The fibration p
is orientable if τ is the constant function, that is, the fiber translation
τω is homotopic to the identity map for all [ω] ∈ π1(B, b0). The
definition is independent of the choice of the regular lifting function
that determines τ .

The following product formula is a consequence of Theorem 5.6
of [21].

Proposition 5.1. Let p : E → S1 be an orientable fibration. If
f : E → E is a fiber map with induced map f̄ : S1 → S1, then
N(f) = N(f̄)N(fb).

When we consider n-valued fiber maps of such fibrations, the
formula fails to hold. For example, for Y = S1 viewed as the unit
circle in the complex plane, define a 2-valued fiber map Φ: S1×S1 (
S1 × S1 by Φ(w, z) = {(1, z3), (−1, z4)}, then

N(Φ) = N(f1) +N(f−1) = 2 + 3 = 5

by Theorem 4.2 whereas, since the induced multimap φ is constant,
N(φ) = 2 by [17], Corollary 7.3.

Fibrations p : E → B and p′ : E ′ → B are fiber homotopy equiv-
alent if there exist fiber maps θ : E → E ′ and ζ : E ′ → E such that
p′θ = p, pζ = p′ and θζ and ζθ are fiber homotopic to the identity
maps.
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Theorem 5.1. An orientable fibration p : E → S1 with fiber Y =
p−1(b0) is fiber homotopy equivalent to πS1 : S1 × Y → S1.

Proof. By the theorem of [8], the fibration is fiber homotopy equiv-
alent to a bundle. Since orientability is preserved by fiber homo-
topy equivalence, we may assume without loss of generality that
p : E → B is an orientable bundle, with fiber Y . Let S1 = c+ ∪ c−
where S1 is the unit circle in the complex plane and c+ and c−
are the intersections of S1 with the closed upper and lower half-
planes, respectively. Since c+ and c− are contractible, by Corol-
lary 11.6 on page 53 of [20] there are fiber-preserving homeomor-
phisms h+ : c+ × Y → p−1(c+) and h− : c− × Y → p−1(c−). Let
c+ ∩ c− = {z0, z1} = S0 and orient c+ and c− from z0 to z1. For
ε = +,− and v = 0, 1, define homeomorphisms hε,v : Y → p−1(zv)
by hε,v(y) = hε(zv.y) and also set µv = h−1

−,vh+,v : Y → Y . Since c+

and c− contract to z1, we may use Theorem 2.8.10 of [19] to homo-
tope h−1

−,1 and h+,1 so that µ1 is homotopic to the identity map, see
page 102 of [19].

We define a lifting function λ : Λ(p) → EI as follows. Again
let η : R → S1 be the covering space. Given (e0, ω) ∈ Λ(p) then
ω(0) = η(t0) for some 0 ≤ t0 < 1. Let ω̃ be the lift of ω to R at
t0 and define ω̃′ : I → R by ω̃′(s) = (1 − s)t0 + sω̃(1), then ω̃′ is
homotopic to ω̃ by a homotopy L keeping t0 and ω̃(1) fixed. The
path ω′ = ηω̃′ is homotopic to ω by ηL and it is a union of oriented
arcs: ω′ = α0 ·α1 ·α2 · · ·αm where αj ⊆ cεj for εj = + or εj = − and
αj ∩ αj+1 ∈ S0. Lift α0 to E by sending it to hε0(α0 × πY h−1

ε0
(e0)).

Let e1 6= e0 be the point in the lift of α0 that lies in p−1(S0) and lift
α1 to hε1(α1 × πY h−1

ε1
(e1)). In general, lift αj to E by sending it to

hεj (αj × πY h−1
εj

(ej)), where ej 6= ej−1 is the point in the lift of αj−1

that lies in p−1(S0). This construction defines the path λ(e0, ω
′).

By the covering homotopy property, we lift the homotopy ηL to
λ(e0, ω

′) and the lifted homotopy determines λ(e0, ω).
Let ω = α0α1 = c+c

−1
− and let e0 ∈ p−1(z0). Then

e1 = h+(z1, πY h
−1
+ (e0))

and

λ(e0, ω) = h+(c+ × πY h−1
+ (e0)) · h−(c−1

− × πY h−1
− (e1)).

Therefore,

τω(e0) = τω(h+(z0, y0)) = h−(z0, πY h
−1
− h+(z1, y0)) = h−,0(h−1

−,1h+,1(y))

and so
πY h

−1
− τωh+,0(y) = h−1

−,1h+,1(y) = µ1(y).
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Since the fiber translation τω is homotopic to the identity by the
orientability assumption, then µ1 is homotopic to

πY h
−1
− h+,0 = h−1

−,0h+,0 = µ0

and we conclude that µ0 is homotopic to the identity because µ1 is.
Therefore the restrictions of h+ and h− to S0×Y are homotopic and
we let ht : S

0 × Y → p−1(S0) be a homotopy such that h0(zv, y) =
h−,v(y) and h1(zv, y) = h+,v(y). Define

H : (S0 × Y × I) ∪ (c− × Y × {0})→ E

by

H(z, y, t) =

{
ht(z, y) if z ∈ S0

h−(z, y) if t = 0

and extend H to H : c−×Y ×I → E by the fiber homotopy extension
theorem [1]. Define h′− : c− × Y → E by h′−(z, y) = H(z, y, 1).
Finally, define h : S1 × Y → E by

h(z, y) =

{
h+(z, t) if z ∈ c+

h′−(z, t) if z ∈ c−

which is a well-defined fiber map because h′−(zv, y) = h+(zv, y) for
v = 0, 1. Since the restriction of h+ to z × Y for any z ∈ c+

is a homotopy equivalence, [7] implies that h is a fiber homotopy
equivalence.

Lemma 5.1. Let p : E → S1 be an orientable fibration and let
Φ: E ( E be an n-valued fiber map. Let b0 and b1 be fixed points of
the induced multimap φ : S1 ( S1 so Φ induces maps fbv : p−1(bv)→
p−1(bv) for v = 0, 1. If there is a path in the graph

Γφ = {(b, b′) ∈ S1 × S1 : b′ ∈ φ(b)}

from (b0, b0) to (b1, b1), then N(fb0) = N(fb1).

Proof. By Theorem 5.1, there are homotopy equivalences θ : S1 ×
Y → E and ζ : E → S1 × Y such that pθ = πS1 , πS1ζ = p and
θζ and ζθ are fiber homotopic to the identity maps. Define a mul-
tivalued function Ψ: S1 × Y ( S1 × Y as follows: for (b, y) ∈
S1 × Y and e = θ(b, y), if Φ(e) = {e1, e2, . . . , en}, then Ψ(b, y) =
{ζ(e1), ζ(e2), . . . , ζ(en)}. By Theorems 1 and 1′ on page 113 of [3],
Ψ is continuous, so Ψ is an n-valued fiber map and its induced mul-
timap is φ. For v = 0, 1, let gbv : {bv}×Y → {bv}×Y be the restric-
tion of Ψ. Let θbv : {bv}×Y → p−1(bv) and ζbv : p−1(bv)→ {bv}×Y
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be the restrictions of θ and ζ respectively, then θbv is a homotopy
equivalence with homotopy inverse ζbv . Since gbv = θbvfbvζbv , Theo-
rem 5.4 of [14] implies that N(gbv) = N(fbv). To prove the theorem,
we will show that N(gb0) = N(gb1).

Define a function Ψ̂ : Y ×Γφ → S1×Y as follows: for (y, (b, b′)) ∈
Y × Γφ, set

Ψ̂(y, (b, b′)) = Ψ(b, y) ∩ p−1(b′).

To prove Ψ̂ continuous at (y, (b, b′)) ∈ Y × Γφ, write Ψ̂(y, (b, b′)) =
(b′, y′) and choose a neighborhood of (b′, y′) which we may assume
to be of the form U×W where U is open in S1 ⊆ R2 and W is open
in Y . Let

γ(φ) = inf{|bj − bk| : bj, bk ∈ φ(b), b ∈ S1, bj 6= bk},

then γ(φ) > 0 because S1 is compact ([17], page 211). We will

find a neighborhood of (y, (b, b′)) that is mapped by Ψ̂ into u ×W
where u is a neighborhood of b′ in U of diameter less than γ(φ).
Since Ψ: S1 × Y ( S1 × Y is lower semi-continuous, there is a
neighborhood of (b, y) in S1 × Y , which we may assume is of the
form V ×O where V is open in S1 andO open in Y , such that (b̄, ȳ) ∈
V ×O implies Ψ(b̄, ȳ)∩(u×W ) 6= ∅. Since u is of diameter less than
γ(φ), it must be that Ψ(b̄, ȳ)∩(u×W ) is a single point of S1×Y . The
multimap φ is lower semi-continuous so there is a neighborhood N
of b such that b̄ ∈ N implies φ(b̄)∩u 6= ∅, and the intersection must
be a single point of B. Let M ⊆ Γφ be the open subset consisting
of all points (b̄, b̄′) such that b̄ ∈ N ∩ V and b̄′ = φ(b̄)∩ u. We claim

that Ψ̂ takes the open subset O×M of Y ×Γφ into u×W . To prove
it, let ȳ ∈ O and (b̄, b̄′) ∈M so b̄ ∈ N ∩ V . Since b̄ ∈ V and ȳ ∈ O,
then Ψ(b̄, ȳ)∩(u×W ) 6= ∅. On the other hand, b̄ ∈ N so φ(b̄)∩u = b̄′

which implies Ψ(b̄, ȳ) ⊆ p−1(b̄′)×Y . Thus the single point of Ψ(b̄, ȳ)

that lies in u × W must be Ψ̂(ȳ, (b̄, b̄′)) = Ψ(b̄, ȳ) ∩ p−1(b̄′). We

conclude that Ψ̂(O×M) ⊆ u×W ⊆ U×W so Ψ̂ : Y ×Γφ → S1×Y
is continuous.

By hypothesis, there is a path a : I → Γφ such that a(v) = (bv, bv)
for v = 0, 1. Define H : Y × I → Y by

H(y, t) = πY Ψ̂(y, a(t)).

The continuity of H follows from the continuity of Ψ̂ that we just
established. For b ∈ S1, define ib : Y → p−1(b) ⊆ S1 × Y by ib(y) =
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(b, y). For v = 0, 1 we have

H(y, v) = πY Ψ̂(y, (bv, bv))

= πY (Ψ(bv, y) ∩ p−1(bv))

= πY gbv ibv(y).

Thus the maps πY gb0ib0 , πY gb1ib1 : Y → Y are homotopic by H so
N(πY fb0ib0) = N(πY fb1ib1). Since ibj and the restriction of πY to
p−1(bj) are homeomorphisms, N(gbj ) = N(πY gbj ibj ) by Theorem 5.4
of [14] and we conclude that N(gb0) = N(gb1).

Lemma 5.2. If φ, ψ : X ( Y are homotopic n-valued multimaps,
then their graphs Γφ and Γψ are the same homotopy type and thus,
in particular, they have the same number of path components.

Proof. By hypothesis, there is an n-valued multimap ∆: X×I ( Y
such that ∆(x, 0) = φ(x) and ∆(x, 1) = ψ(x) for all x ∈ X. The
strong deformation retraction R : X×I → X×{0} induces a strong

deformation retraction of covering spaces R̃ : Γ∆ → Γφ so Γ∆ and
Γφ are the same homotopy type. The strong deformation retraction
of X × I to X × {1} establishes the same relationship between Γ∆

and Γψ and completes the proof.

For n a positive integer, we understand the greatest common
divisor of 0 and n to be n.

Proposition 5.2. Let φ : S1 ( S1 be an n-valued multimap of
degree d, then its graph Γφ has w path components, where w is the
greatest common divisor of n and d.

Proof. For η : R→ S1 the covering space, we represent points of S1

by η(t) for 0 ≤ t < 1. The n-valued power map φn,d : S1 ( S1 is
defined by

φn,d(η(t)) = {η(
d

n
t), η(

d

n
t+

1

n
), . . . , η(

d

n
t+ (n− 1)

1

n
)}.

We will first prove that if n and d 6= 0 are relatively prime, then
Γφn,d

is path connected. Define P : R2 → S1 × S1 by P (x, y) =
(η(x), η(y)). Let

Gn,d = {(x, d
n
x) ∈ R2 : 0 ≤ x < n}

and note that Gn,d is path connected. For (x, y) ∈ Gn,d, write
x = t+m where 0 ≤ t < 1 and 0 ≤ m ≤ n− 1 is an integer, then

η(
d

n
x) = η(

d

n
t+

dm

n
) = η(

d

n
t+ j

1

n
)

19



where the integer j, with 0 ≤ j ≤ n− 1, is congruent to dm modulo
n. Since η(x) = η(t), we have shown that P (Gn,d) ⊆ Γφn,d

.

Now let (η(t), η( d
n
t + j 1

n
)) ∈ Γφn,d

where 0 ≤ t < 1 and 0 ≤ j ≤
n − 1 is an integer. Since d and n are relatively prime, there exist
integers a, b such that 1 = ad+bn. Let 0 ≤ m ≤ n−1 be the integer
congruent to ja modulo n and let x = t+m. We find that(

d

n
t+

dm

n

)
−
(
d

n
t+ j

1

n

)
=

dm− j
n

=
dm− j(ad+ bn)

n

=
d(m− ja)− jbn

n
,

which is an integer because m− ja is divisible by n. Therefore

η(
d

n
x) = η(

d

n
t+

dm

n
) = η(

d

n
t+ j

1

n
)

and we conclude that Γφn,d
= P (Gn,d) so Γφn,d

is path connected.
Now consider φn,d for n ≥ 1 an integer and d any nonzero integer.

The power map is w-split as

φn,d = {φ(0)
n,d, φ

(1)
n,d, . . . , φ

(w−1)
n,d },

for w the greatest common divisor of n and d, where φ
(k)
n,d is the

n
w

-valued multimap defined by

φ
(k)
n,d(η(t)) = {η(

d

n
t+

k

n
), η(

d

n
t+

k

n
+
w

n
), . . . , η(

d

n
t+

k

n
+(

n

w
−1)

w

n
)}

for k = 0, 1, . . . , w− 1. Since Γφn,d
is the union of the Γ

φ
(k)
n,d

, and the

Γ
φ

(k)
n,d

are disjoint sets that are homeomorphic to each other through

rotations of S1 × S1, it is sufficient to prove that Γ
φ

(0)
n,d

is path con-

nected. Noting that φ
(0)
n,d = φ n

w
, d
w

and that n
w

and d
w

are relatively

prime, the argument above shows that Γ
φ

(0)
n,d

is path connected and

thus Γφn,d
has w path components. Now let φ : S1 ( S1 be an n-

valued multimap of degree d 6= 0. Then by Theorem 3.1 of [4], φ is
homotopic to φn,d. Therefore, by Lemma 5.2, Γφ also has w path
components.

If d = 0, then φ is homotopic to φn,0. Since Γφn,0 is the product

{z0, z1, . . . , zn−1} × S1 where zj = η( j
n
), Lemma 5.2 implies that Γφ

has w = n path components in this case also.
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Theorem 5.2. (Semi-Product Formula) Let p : E → S1 be an ori-
entable fibration and let Φ: E ( E be an n-valued fiber map with
induced multimap φ : S1 ( S1 of degree d. Let b1, b2, . . . , bw ∈ S1,
where w is the greatest common divisor of n and d, be fixed points in
distinct essential fixed point classes of φ such that the points (bj, bj)
are in distinct path components of Γφ, then

N(Φ) =

∣∣∣∣nw − d

w

∣∣∣∣ w∑
j=1

N(fbj ).

Proof. By Proposition 5.2, Γφ has w path components, so φ is w-
split by Proposition 2.1 and we may write φ = {φ1, φ2, . . . , φw}. By
Theorem 3.1 of [4], φ is homotopic to φn,d so, by Proposition 2.2,

each φj is homotopic to some φ
(k)
n,d, which is homotopic to φ n

w
, d
w

, and

therefore, by Theorem 4.1 of [4],

N(φj) = N(φ
(k)
n,d) = N(φ n

w
, d
w

) =

∣∣∣∣nw − d

w

∣∣∣∣
for each j. Proposition 2.3 implies that Φ w-splits as Φ = {Φ1,Φ2, . . . ,Φw},
where each Φj is an n

w
-valued fiber map with induced map φj. By

Theorem 4.1,

N(Φj) =

| n
w
− d

w
|∑

j=1

N(fbj )

where b1, b2, . . . , b| n
w
− d

w
| are fixed points, one in each essential fixed

point class of φj. Since Γφj
is path connected, N(fbj ) = N(fbk) for

all j, k = 1, 2, . . . , | n
w
− d

w
| by Lemma 5.1 so N(Φj) = | n

w
− d

w
|N(fbj )

where bj is in any essential fixed point class of φj. Therefore, by the
Remark on page 218 of [17],

N(Φ) =
w∑
j=1

N(Φj) =
w∑
j=1

∣∣∣∣nw − d

w

∣∣∣∣ N(fbj )

where the bj are in distinct essential fixed point classes of φ such
that (bj, bj) are in distinct path components of Γφ.

We obtain the following product formula result:

Corollary 5.1. Let p : E → S1 be an orientable fibration and let
Φ: E ( E be an n-valued fiber map with induced multimap φ : S1 (
S1 of degree d 6= 0. If d is relatively prime to n, then

N(Φ) = N(φ)N(fb) = |n− d|N(fb)

where b ∈ B is in any essential fixed point class of φ.
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Suppose B and Y are sets, S = {x1, x2, . . . , xn} is an unordered
subset of n points of B and y ∈ Y , then S × y will denote the
unordered subset {(x1, y), (x2, y), . . . , (xn, y)} of B×Y . For φ : B (
B an n-valued function and f : Y → Y single-valued, define the
product n-valued function Φ = φ × f : E = B × Y ( B × Y by
Φ(b, y) = φ(b)×f(y). If φ and f are continuous, so also is Φ, that is,
it is a product n-valued multimap. A product n-valued multimap Φ is
an n-valued fiber map with respect to the product bundle πB : B ×
Y → B with induced map φ and fb = f for all b ∈ φ(b). From
Theorem 5.2 we also have the product formula result

Corollary 5.2. Let φ× f : S1× Y ( S1× Y be a product n-valued
multimap where φ is of degree d, then

N(φ× f) = N(φ)N(f) = |n− d|N(f).
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