1. Differentiate
(a) $f(x)=3^{\tan ^{-1} x}$
(b) $\quad f(x)=(x+1)^{(\ln x)^{2}}$
2. Let $f(x)=e^{e^{x}}$. (a) Show that $0<f^{\prime \prime}(x) \leq 2 e$ for all x in $[-4,0]$. (Hint: What does $f^{\prime \prime \prime}(x)$ tell you?) (b) Use the Error Bound for the Midpoint Rule to determine how large N must be to approximate

$$
\int_{-4}^{0} e^{e^{x}} d x
$$

by M_{N} to within 10^{-5}. (Leave your answer in the form $N=$ an expression that could be computed with a calculator.)
3. Calculate the limits.
(a) $\lim _{x \rightarrow 0+}(\cos x)^{1 / x^{2}}$
(b) $\lim _{x \rightarrow \infty} x e^{1 / x}-x$
4. Evaluate the integrals

$$
\text { (a) } \int x \log _{3}\left(x^{2}+1\right) d x \quad \text { (b) } \quad \int(\sin x)(\sinh x) d x
$$

5. Calculate the limit

$$
\lim _{x \rightarrow 0} \frac{1}{x^{3}} \int_{0}^{x} \sin ^{-1}\left(t^{2}\right) d t
$$

Note: There is no antiderivative formula for $\sin ^{-1}\left(t^{2}\right)$, so don't try to find one.

