1. Suppose that \(f \) is real-valued, bounded on \([a,b]\) and \(f^3 \) is Riemann-integrable on \([a,b]\). Does it follow that \(f^2 \) is Riemann-integrable?

2. Suppose that \(f \) is Riemann-integrable on \([c,1]\) for every \(c \in (0,1] \). Define the improper Riemann integral of \(f \) on \([0,1]\) by

\[
\int_0^1 f(x) \, dx = \lim_{c \to 0} \int_c^1 f(x) \, dx
\]

if this limit exists and is finite.

(a) Show that this agrees with the Riemann integral when \(f \) is Riemann-integrable on \([0,1]\).

(b) Construct an \(f \) for which the limit in (2) exists which is not Riemann integrable, and for which the limit in (2) does not exist when \(f \) is replaced by \(|f|\).

3. (# 4 on Basic F’07, also in a more obscure version # 3 W’06) Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is twice differentiable and \(|f''(x)| \leq B\) for all \(x \).

(a) Prove that

\[
|2Af(0) - \int_{-A}^A f(x) \, dx| \leq 2BA^3/3
\]

(b) Use the result of part a) to justify the estimate

\[
\left| \int_a^b f(x) \, dx - \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + \frac{2k-1}{2n}(b-a)\right) \right| \leq \frac{C}{n^2}
\]

where \(C \) does not depend on \(n \).

4. Suppose that \(f \) on \([0,1]\) is defined by

\[
f(x) = \begin{cases}
0, & \text{if } x \text{ is irrational} \\
1/m, & \text{if } x=n/m \text{ is lowest terms}.
\end{cases}
\]

Show that \(f \) is Riemann-integrable on \([0,1]\) and its integral is 0.

5. Build a sequence of closed subintervals of \([0,1]\) as follows: set \(I_1 = [0,1] \), \(I_2 = [0,1/2] \), \(I_3 = [1/2,1] \), \(I_4 = [0,1/4] \), \(I_5 = [1/4,1/2] \), and so on, filling out \([0,1]\) over and over, and halving the length of the intervals each time you start over. Let \(f_n(x) = 1 \) on \(I_n \) and 0 elsewhere. Show that \(\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 0 \) even though \(\lim_{n \to \infty} f_n(x) \) fails to exist for any \(x \in [0,1] \).

6. (Rudin) Letting \(\{x\} \) denote the fractional part of \(x \), i.e. \(x \) minus the largest integer less than or equal to \(x \) consider \(f(x) = \sum_{n=1}^{\infty} \{nx\}/n^2 \). Find the discontinuities of \(f \) and show that they form a countable dense set in \(\mathbb{R} \). Show that \(f \) is nevertheless Riemann-integrable on every bounded interval.