Comments and Solutions for Assignment 3

1. (Basic S’09) Set \(a_0 = 0 \) and define a sequence \(\{a_n\}_{n=1}^\infty \) via the recurrence

\[
a_{n+1} = \sqrt{6 + a_n} \quad \text{for all } n \geq 1.
\]

Show that this sequence converges and determine its limit.

This is a standard problem, and you can see easily that the limit must be 3. However, the problem asks you to prove that carefully. Note first that, if \(a_n < 3 \) then \(a_{n+1} < 3 \) (because \(\sqrt{6 + 3} = 3 \) and \(f(x) = \sqrt{6 + x} \) is increasing). So \(0 < a_n < 3 \) for \(n \geq 1 \). I claim that \(a_n < a_{n+1} \) for all \(n \). The easiest way to show that may be the argument that one of you suggested in class: induction. The key ingredient is just the fact mentioned above that \(f(x) = \sqrt{6 + x} \) is strictly increasing. Since \(a_0 = 0 < \sqrt{6} = a_1 \), the induction hypothesis is \(a_k < a_{k+1} \) for \(k < n \). Then you have

\[
a_{n+1} = \sqrt{6 + a_n} > \sqrt{6 + a_{n-1}} = a_n,
\]

where the central inequality follows from the induction hypothesis plus \(\sqrt{6 + x} \) is strictly increasing. Thus the sequence \(\{a_n\} \) is monotone increasing and bounded above. So it has a limit \(L \). Since \(f(x) = \sqrt{6 + x} \) is continuous on \([0, \infty)\), we have

\[
L = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{6 + a_n} = \sqrt{6 + L},
\]

and \(L = 3 \).

This argument works in a pretty general setting. Suppose that \(f(x) \) is any strictly increasing continuous function defined on a closed interval \(I \subset \mathbb{R} \), and define a sequence by \(a_n = f(a_{n-1}) \), \(n = 1, 2, \ldots \) – assume that \(a_n \in I \) for all \(n \) so that the sequence is defined. If \(f(a_0) = a_0 \), then \(a_n = a_0 = 0 \) for all \(n \). If \(f(a_0) \neq a_0 \), then \(a_1 < a_0 \) or \(a_1 > a_0 \). In the first case set \(a_\infty = \sup S(a_0) \), where \(S(a_0) = \{ x \in I : f(x) = x \quad \text{and} \quad x < a_0 \} \). If \(S(a_0) = \emptyset \), I claim \(\lim_{n \to \infty} a_n = -\infty \), but assume that it is not empty for now. Note that \(f(a_\infty) = a_\infty \) because \(f \) is continuous. Since \(f(x) \) is increasing and \(f(a_\infty) = a_\infty \), it follows that \(a_\infty < a_n \) for all \(n \). Since \(a_{n+1} < a_n \) by exactly the induction argument above, \(\lim_{n \to \infty} a_n = L \geq a_\infty \) and \(f(L) = L \). If \(L > a_\infty \), we have a contradiction to the definition of \(a_\infty \). So \(L = a_\infty \). Even if \(S(a_0) = \emptyset \), the sequence is monotone decreasing. If it had a limit, then the limit would be in \(S(a_0) \). So it does not have a limit and must be unbounded below.

The argument in the second case is the same except \(a_\infty = \inf \{ x : f(x) = x \quad \text{and} \quad x > a_0 \} \).

2. Determine whether \(\sum a_n \) converges for the following choices of \(a_n \).

a) \(a_n = (n^{1/n} - 1)^n \)

b) \(a_n = (1 + z^n)^{-1} \). The answer depends on the complex number \(z \).

Series a) converges. You can use the root test: \(a_n^{1/n} = n^{1/n} - 1 \) which goes to zero as \(n \to \infty \). To see that, starting from \(n^{1/n} \geq 1 \) and avoiding l’Hôpital’s rule, let \(x = n^{1/n} - 1 \). Then by the binomial theorem

\[
n = (1 + x)^n = 1 + nx + n(n - 1)x^2/2 + \cdots + x^n \geq n(n - 1)x^2/2.
\]
So $0 \leq x \leq 2/\sqrt{n-1}$. That use of the binomial theorem came from Rudin.

The series b) converges for $|z| > 1$ and diverges for $|z| \leq 1$. If $|z| \leq 1$, then

$$|a_n| \geq \frac{1}{1 + |z|^n} \geq \frac{1}{1 + |z|} \geq \frac{1}{2}.$$

So the terms do not go to zero, and the series diverges. Of course, if $z^n = -1$ for some n, the series isn’t even defined.

If $|z| > 1$, then

$$\frac{1}{1 + z^n} < \frac{1}{|z|^n - 1} = \frac{1}{|z|^n}(\frac{1}{1 - |z|^{-n}}) < \frac{2}{|z|^n}$$

for n sufficiently large. So the series converges by comparison with the geometric series.

3. Suppose that $a_n \geq 0$ and $\sum a_n = \infty$, i.e. the partial sums are unbounded. Show that

$$\sum \frac{a_n}{1 + a_n} = \infty.$$

What about

$$\sum \frac{a_n}{1 + n^2 a_n} \text{ and } \sum \frac{a_n}{1 + n a_n}?$$

The first question is pretty easy: if there is a subsequence $\{a_{n_k}\}$ such that $\lim_{k \to \infty} a_{n_k} = \infty$, then $\lim_{k \to \infty} \frac{a_{n_k}}{1 + a_{n_k}} = 1$ and the series diverges because the terms do not go to zero. If there is no subsequence going to infinity, there is a B such that $a_n \leq B$ for all n, and $a_n/(1 + a_n) \geq a_n/(1 + B)$. Then the series diverges by comparison with $\sum a_n/(1 + B)$.

Since $a_n/(1 + n^2 a_n) < 1/n^2$ for all n, the series $\sum a_n/(1 + n^2 a_n)$ always converges by comparison with $\sum 1/n^2$.

The interesting case is the last one which can converge or diverge: if $a_n = 1$ for all n, it becomes $\sum 1/(n + 1)$ which diverges. However, if $a_{2^m} = 1$ and $a_n = 0$ for $n \neq 2^m$, then

$$\sum_{n=1}^{\infty} \frac{a_n}{1 + n a_n} = \sum_{m=0}^{\infty} \frac{1}{1 + 2^m}$$

which converges.

4. Suppose that $\sum a_n$ converges, $\{b_n\}$ is monotonic increasing and bounded above. Show that $\sum a_n b_n$ converges. [This is not as easy as it might sound remember that these are not necessarily series with nonnegative terms.]

This one works by summation by parts: with $s_n = \sum_{k=1}^{n} a_k$ the summation by parts formula gives

$$\sum_{n=M+1}^{N} a_n b_n = \sum_{n=M+1}^{N-1} s_n (b_n - b_{n+1}) + s_{N} b_{N} - s_{M} b_{M+1}. $$
Note that both \(\{s_n\} \) and \(\{b_n\} \) are convergent sequences: by assumption \(\lim_{n \to \infty} s_n \) is \(\sum a_n \), and \(\lim_{n \to \infty} b_n = \sup \{b_n\} \). So \(\{s_n\} \) must be bounded, and we have \(|s_n| \leq C \) for all \(n \). Also, given \(\epsilon > 0 \), there is an \(R \) such that \(|s_N b_N - s_M b_{M+1}| < \epsilon \) when \(N, M \geq R \). So for \(N > M \geq R \) we have

\[
|\sum_{n=1}^{N} a_n b_n - \sum_{n=1}^{M} a_n b_n| \leq C \sum_{M+1}^{N-1} (b_n - b_{n+1}) + \epsilon = C(b_N - b_{M+1}) + \epsilon.
\]

Taking \(R \) larger if necessary, we can assume \(C(b_N - b_{M+1}) < \epsilon \) for \(N, M \geq R \). Thus the partial sums of \(\sum a_n b_n \) form a Cauchy sequence, and this series converges.

5. (Basic S’07) Suppose that \(A \) is a symmetric, real, \(n \times n \) matrix with eigenvalues \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \). Find the sets

\[
X = \{ x \in \mathbb{R}^n : \lim_{k \to \infty} (x^t A^{2k} x)^{1/k} \text{ exists } \}, \text{ and } \]

\[
L = \{ \lim_{k \to \infty} (x^t A^{2k} x)^{1/k} : x \in X \}.
\]

You get to assume everything that you know about linear algebra here.

So you can assume without proof that there is a real, orthogonal matrix such that \(O^t A O \) is diagonal. Then, for any \(x \in \mathbb{R}^n \),

\[
(x^t A^{2k} x)^{1/k} = (c_1^2 \lambda_1^{2k} + c_2^2 \lambda_2^{2k} + \cdots + c_n^2 \lambda_n^{2k})^{1/k},
\]

where \(x = \sum_{m=1}^{n} c_m v_m \) and \(\{v_m\} \) is an orthonormal basis consisting of eigenvectors of \(A \). I claim that \(X = \mathbb{R}^n \). To describe the limit define \(P_\lambda x \) to be the orthogonal projection of \(x \) onto the eigenspace belonging to the eigenvalue \(\lambda \). Note that, since we have not assumed that the eigenvalues of \(A \) are distinct, that space may have dimension greater than one. Then, for \(x = 0 \) the limit is 0 and for \(x \neq 0 \) the limit is \(\lambda_2 \), where \(\lambda_0 \) is the largest eigenvalue such that \(P_{\lambda_0} x \neq 0 \). Modulo the linear algebra, proving that is easy. Let \(\lambda_0 \) be the largest eigenvalue such that \(P_{\lambda_0} x \neq 0 \), and suppose that in our labeling, \(\lambda_0 = \lambda_{m_0} = \cdots \lambda_{m_0+k} \) and \(\lambda_m < \lambda_0 \) for \(m < m_0 \).

Then

\[
(x^t A^{2k} x)^{1/k} = \lambda_0^2 |P_{\lambda_0} x|^{2/k} ((c_1^2 (\lambda_1/\lambda_0)^{2k} + \cdots + c_{m_0-1}^2 (\lambda_{m_0-1}/\lambda_0)^{2k}) |P_{\lambda_0} x|^{-2} + 1)^{1/k}
\]

Note that

\[
((c_1^2 (\lambda_1/\lambda_0)^{2k} + \cdots + c_{m_0-1}^2 (\lambda_{m_0-1}/\lambda_0)^{2k}) |P_{\lambda_0} x|^{-2} + 1)^{1/k} = (1 + M(k))^{1/k},
\]

where \(M(k) \) goes to zero as \(k \to \infty \). Since \(x^{1/k} \) converges to 1 uniformly as \(k \to \infty \) on compact subintervals of \((0, \infty) \) – by a simpler version of the argument in problem 2.a) – we have \(\lim_{k \to \infty} (x^t A^{2k} x)^{1/k} = \lambda_0^2 \).

6. Show that the series

\[
\sum_{n=1}^{\infty} \frac{\exp(inx)}{n}
\]
converges uniformly on any compact subinterval of $(0, 2\pi)$.

Note that $s_N = \sum_{n=0}^{N} e^{inx} = \frac{1-e^{i(N+1)x}}{1-e^{ix}}$, and so for x any compact interval $I \subset (0, 2\pi)$ there is a B such that $|s_N| \leq B$ for all N and all $x \in I$. Now, as in problem 4, summation by parts gives

$$\sum_{n=M+1}^{N} \frac{e^{inx}}{n} = \sum_{n=M+1}^{N-1} s_n \left(\frac{1}{n} - \frac{1}{n+1}\right) + \frac{s_N}{N} - \frac{s_M}{M}.$$

Thus for $x \in I$ and $N > M$

$$|\sum_{n=1}^{N} \frac{e^{inx}}{n} - \sum_{n=1}^{M} \frac{e^{inx}}{n}| \leq B \sum_{n=M+1}^{N-1} \left(\frac{1}{n} - \frac{1}{n+1}\right) + B \left(\frac{1}{N} + \frac{1}{M}\right) = B (\frac{1}{M+1} + \frac{1}{M}).$$

From this one sees easily that $S_N(x) = \sum_{n=1}^{N} e^{inx}/n$ is a sequence of functions that converges uniformly on I.