The Vitali Covering Lemma and an Application

These notes are based on portions of Chapter 5 of Royden’s *Real Analysis*. Given a set \(E \subset \mathbb{R}^d \), a Vitali covering of \(E \) is a set \(\mathcal{B} \) of closed balls of positive radius such that every point in \(E \) is contained in balls in \(\mathcal{B} \) of arbitrarily small radius. When you have such a cover, it is possible to choose disjoint balls from \(\mathcal{B} \) which cover almost all of \(E \):

Vitali’s Covering Lemma: If \(m_*(E) < \infty \), given \(\epsilon > 0 \), there are disjoint \(B_j \in \mathcal{B}, \ j = 1, \ldots, N \), such that

\[
m_*(E \cap (\bigcup B_j)^c) < \epsilon.
\]

Note that by the subadditivity of outer measure this implies that \(m_*(E \cap (\bigcup B_j)) > m_*(E) - \epsilon \), and hence the \(B_j \)'s cover “most” of \(E \).

Proof. First choose an open set \(\mathcal{O} \) containing \(E \) such that \(m(\mathcal{O}) < m_*(E) + 1 \). Remove all balls from \(\mathcal{B} \) that are not contained in \(\mathcal{O} \). Note that the remainder of \(\mathcal{B} \) is still a Vitali cover of \(E \). Intuitively, one ought to be able to find disjoint \(B_1, \ldots, B_N \) covering most of \(E \) because any points of \(E \) not already in a finite set of \(B_j \in \mathcal{B} \) are contained in balls disjoint from \(\bigcup B_j \). The trick is finding a systematic way to choose the \(B_j \)'s. Here is the procedure. For each \(n \), choose \(B_n \in \mathcal{B} \) disjoint from \(\bigcup_{k=1}^{n-1} B_k \) such that the radius of \(B_n \) is greater than

\[
\frac{1}{2} \sup \{ \text{radii of } B \in \mathcal{B}, \text{ such that } B \cap (\bigcup_{k=1}^{n-1} B_k) = \emptyset \}
\]

This supremum is not infinite because \(B \in \mathcal{B} \) implies \(B \subset \mathcal{O} \). If there is no \(B \in \mathcal{B} \) such that \(B \cap (\bigcup_{k=1}^{n-1} B_k) = \emptyset \), then \(E \subset \bigcup_{k=1}^{n-1} B_k \), and we are done. So suppose that we have \(B_n \) for all \(n \). Since the \(B_n \)'s are disjoint and contained in \(\mathcal{O} \),

\[
\sum_{k=1}^{\infty} |B_k| \leq m(\mathcal{O}) < \infty, \text{ and we have } \sum_{k=N}^{\infty} |B_k| < \epsilon
\]

for \(N \) sufficiently large. If \(x \in E \) is not contained in \(\bigcup_{k=1}^{\infty} B_k \), then there is a ball \(B_0 \in \mathcal{B} \) such that \(x \in B_0 \), and, if \(B_0 \cap B_k = \emptyset \) for \(k = 1, \ldots, l-1 \), then the radius of \(B_0 \) must be less than twice the radius of \(B_l \). Since the radii of the \(B_k \)'s go to zero, there will be a first \(B_l \) which intersects \(B_0 \). If you multiply the radius of that \(B_l \) by 5, it will contain \(B_0 \) (draw a picture here). From this you conclude that the part of \(E \) not contained in \(\bigcup_{k=1}^{N} B_k \), is contained in \(\bigcup_{k=N+1}^{\infty} \tilde{B}_k \), where \(\tilde{B}_k \) has the same center as \(B_k \) and 5 times the radius. Since \(E \cap (\bigcup_{k=1}^{N} B_k)^c \subset \bigcup_{k=N+1}^{\infty} \tilde{B}_k \), we have

\[
m_*(E \cap (\bigcup_{k=1}^{N} B_k)^c) < 5^d \epsilon,
\]

and the proof is complete.
We can apply this covering lemma to generalize the theorem proven earlier on differentiability of real-valued functions.

Theorem 1 Suppose that \(f(x) \) is a nondecreasing, real-valued function on \([a, b]\), \(-\infty < a < b < \infty\). Then \(f \) is differentiable almost everywhere.

Remark. This proof is the same as the proof on pages 123-4 in Stein & Shakarchi, but one uses the Vitali Covering Lemma in place of the Rising Sun Lemma. When you combine Theorem 1 with the result that any function in \(BV[a, b]\) can be written as the difference of two monotone functions, you obtain Theorem 3.4 (and eliminate Section 3.3).

Proof of Theorem 1. As before it will suffice to show that \(m(E_{r, R}) = 0 \) for all \(r, R \in \mathbb{Q} \), where

\[
E_{r, R} = \{ x \in (a, b) : D^+ f(x) > R > r > D_- f(x) \}.
\]

Suppose that \(m_*(E_{r, R}) = s > 0 \), and choose an open set \(\mathcal{O} \subset (a, b) \) such that \(E_{r, R} \subset \mathcal{O} \) and \(m(\mathcal{O}) < s + \epsilon \). For all \(x \in E_{r, R} \) there are arbitrarily small \(h > 0 \) such that \(f(x) - f(x - h) < rh \). The intervals \([x-h, x]\) in \(\mathcal{O} \) where this holds form a Vitali cover of \(E_{r, R} \). Use the covering lemma to get disjoint \(I_k = [x_k - h_k, x_k], \ k = 1, \ldots, N \), contained in \(\mathcal{O} \) such that \(f(x_k) - f(x_k - h_k) < rh_k \) and \(m_*(E \cap (\cup_{k=1}^N I_k)) > s - \epsilon \).

Note that \(\sum_{k=1}^N h_k < s + \epsilon \). Letting \(\hat{I}_k \) denote the interior of \(I_k \), for all \(x \in \hat{I}_k \cap E_{r, R} \) there are arbitrarily small \(h > 0 \) such that \(f(x + h) - f(x) > Rh \). These again form a Vitali covering. So we can choose disjoint intervals \(J_j = [x_j, x_j + h_j], \ j = 1, \ldots, M \), such that each \(J_j \) is contained in one of the \(\hat{I}_k \)'s, \(f(x_j + h_j) - f(x_j) > Rh_j \) and \(m_*(E_{r, R} \cap (\cup J_j)) > s - 2\epsilon \). Now we can put this together to reach a contradiction to \(s > 0 \) essentially the same way as we did before: since \(f \) is monotone nondecreasing we have

\[
R(s - 2\epsilon) < \sum_{j=1}^M f(x_j + h_j) - f(x_j) \leq \sum_{k=1}^N f(x_k) - f(x_k - h_k) < r(s + \epsilon).
\]

Since \(\epsilon \) is arbitrary and \(r < R \), this is only possible if \(s = 0 \).