If you move counterclockwise by angle θ around the unit circle in the plane, the x coordinate of where you end up is $\cos \theta$, and the y coordinate of where you end up is $\sin \theta$.

Problem 1

What are $\sin 0^\circ$, $\sin 270^\circ$, $\sin 360^\circ$, $\cos 90^\circ$, $\cos 180^\circ$, and $\cos 360^\circ$?
When doing trigonometry, we usually use a different unit for angles; instead of degrees, where a full circle is 360°, we use radians, where a full circle is 2π radians. This system has the advantage that, when going θ radians around the unit-radius circle, the length of the arc covered is also θ.

Problem 2 Fill in these boxes with the angle in radians, and label the endpoints with $(\cos \theta, \sin \theta)$
Problem 3

Consider any right triangle, with angles $\theta, \pi/2, \text{and } \pi/2 - \theta$ (remember, we’re working in radians, and $\pi/2$ radians is 90°). If the leg opposite θ has length A, the leg adjacent to θ has length B, and the hypotenuse has length H, describe $\sin \theta$ and $\cos \theta$ in terms of $A, B,$ and H.

Problem 4 Show that the following formulas hold

(Hint: Use the unit circle)

$\sin^2 \theta + \cos^2 \theta = 1$

$\sin(\theta + \pi/2) = \cos \theta$

$\cos(-\theta) = \cos \theta$

$\sin(-\theta) = -\sin \theta$
We define the tangent function, \(\tan \theta \), as \(\tan \theta = \frac{\sin \theta}{\cos \theta} \)

Problem 5

If \(\sin \theta = \frac{3}{5} \), what are \(\cos \theta \) and \(\tan \theta \)?

If \(\tan \theta = 7 \), what are \(\cos \theta \) and \(\sin \theta \)?

If \(\cos \theta = \frac{5}{13} \), what are \(\sin \theta \) and \(\tan \theta \)?

Problem 6

Use a geometric argument to show that \(\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha \)
Problem 7

Use the equations you’ve already shown to prove the following:
\[
\sin(\alpha - \beta) = \sin \alpha \cos \beta - \sin \beta \cos \alpha
\]

\[
\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta
\]

\[
\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta
\]

Problem 8

Show that:
\[
\sin 75^\circ = \sin \frac{5\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4} \quad \text{and}
\]
\[
\cos 75^\circ = \cos \frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}
\]
Problem 9 Uniformization

Show that:

\[\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} \quad \cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} \quad \tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}} \]

Problem 10 Pythagorean Triples via Uniformization

If \((a, b, c)\) is a Pythagorean Triple, i.e. a set of positive integers such that \(a^2 + b^2 = c^2\), then there is a right triangle with legs \(a/c\) and \(b/c\), and hypotenuse 1. Thus the sine, cosine, and tangent of each acute angle of this right triangle are rational numbers. So, set \(\tan \frac{\theta}{2} = \frac{p}{q}\) for positive integers \(p, q\). Then, find the corresponding pythagorean triple.