Contest B

The MATHEMATICAL ASSOCIATION OF AMERICA
American Mathematics Competitions

1. DO NOT OPEN THIS BOOKLET UNTIL TOLD TO DO SO BY YOUR PROCTOR.
2. This is a twenty-five question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
3. The answers to the problems are to be marked on the AMC 12 Answer Form with a #2 pencil. Check the blackened circles for accuracy and erase errors and stray marks completely. Only answers properly marked on the answer form will be graded.
4. SCORING: You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered, and 0 points for each incorrect answer.
5. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor, erasers and calculators that are accepted for use on the SAT. No problems on the test will require the use of a calculator.
6. Figures are not necessarily drawn to scale.
7. Before beginning the test, your proctor will ask you to record certain information on the answer form. When your proctor gives the signal, begin working the problems. You will have 75 MINUTES working time to complete the test.
8. When you finish the exam, sign your name in the space provided on the Answer Form.

Students who score 100 or above or finish in the top 5% on this AMC 12 will be invited to take the 22nd annual American Invitational Mathematics Examination (AIME) on Tuesday, March 23, 2004 or Tuesday, April 6, 2004. More details about the AIME and other information are on the back page of this test booklet.

The Committee on the American Mathematics Competitions (CAMC) reserves the right to re-examine students before deciding whether to grant official status to their scores. The CAMC also reserves the right to disqualify all scores from a school if it is determined that the required security procedures were not followed.

The publication, reproduction, or communication of the problems or solutions of the AMC 12 during the period when students are eligible to participate seriously jeopardizes the integrity of the results. Duplication at any time via copier, telephone, eMail, World Wide Web or media of any type is a violation of the copyright law.

Copyright © 2004, Committee on the American Mathematics Competitions, Mathematical Association of America.
1. At each basketball practice last week, Jenny made twice as many free throws as she made at the previous practice. At her fifth practice she made 48 free throws. How many free throws did she make at the first practice?

(A) 3 (B) 6 (C) 9 (D) 12 (E) 15

2. In the expression $c \cdot a^b - d$, the values of a, b, c, and d are 0, 1, 2, and 3, although not necessarily in that order. What is the maximum possible value of the result?

(A) 5 (B) 6 (C) 8 (D) 9 (E) 10

3. If x and y are positive integers for which $2^x3^y = 1296$, what is the value of $x + y$?

(A) 8 (B) 9 (C) 10 (D) 11 (E) 12

4. An integer x, with $10 \leq x \leq 99$, is to be chosen. If all choices are equally likely, what is the probability that at least one digit of x is a 7?

(A) $\frac{1}{9}$ (B) $\frac{1}{5}$ (C) $\frac{19}{90}$ (D) $\frac{2}{9}$ (E) $\frac{1}{3}$

5. On a trip from the United States to Canada, Isabella took d U.S. dollars. At the border she exchanged them all, receiving 10 Canadian dollars for every 7 U.S. dollars. After spending 60 Canadian dollars, she had d Canadian dollars left. What is the sum of the digits of d?

(A) 5 (B) 6 (C) 7 (D) 8 (E) 9

6. Minneapolis-St. Paul International Airport is 8 miles southwest of downtown St. Paul and 10 miles southeast of downtown Minneapolis. Which of the following is closest to the number of miles between downtown St. Paul and downtown Minneapolis?

(A) 13 (B) 14 (C) 15 (D) 16 (E) 17

7. A square has sides of length 10, and a circle centered at one of its vertices has radius 10. What is the area of the union of the regions enclosed by the square and the circle?

(A) $200 + 25\pi$ (B) $100 + 75\pi$ (C) $75 + 100\pi$ (D) $100 + 100\pi$ (E) $100 + 125\pi$

8. A grocer makes a display of cans in which the top row has one can and each lower row has two more cans than the row above it. If the display contains 100 cans, how many rows does it contain?

(A) 5 (B) 8 (C) 9 (D) 10 (E) 11

9. The point $(-3, 2)$ is rotated 90° clockwise around the origin to point B. Point B is then reflected in the line $y = x$ to point C. What are the coordinates of C?

(A) $(-3, -2)$ (B) $(-2, -3)$ (C) $(2, -3)$ (D) $(2, 3)$ (E) $(3, 2)$
10. An **annulus** is the region between two concentric circles. The concentric circles in the figure have radii \(b \) and \(c \), with \(b > c \). Let \(OX \) be a radius of the larger circle, let \(XZ \) be tangent to the smaller circle at \(Z \), and let \(OY \) be the radius of the larger circle that contains \(Z \). Let \(a = XZ \), \(d = YZ \), and \(e = XY \). What is the area of the annulus?

(A) \(\pi a^2 \)
(B) \(\pi b^2 \)
(C) \(\pi c^2 \)
(D) \(\pi d^2 \)
(E) \(\pi e^2 \)

11. All the students in an algebra class took a 100-point test. Five students scored 100, each student scored at least 60, and the mean score was 76. What is the smallest possible number of students in the class?

(A) 10
(B) 11
(C) 12
(D) 13
(E) 14

12. In the sequence 2001, 2002, 2003, ..., each term after the third is found by subtracting the previous term from the sum of the two terms that precede that term. For example, the fourth term is \(2001 + 2002 - 2003 = 2000 \). What is the 2004th term in this sequence?

(A) −2004
(B) −2
(C) 0
(D) 4003
(E) 6007

13. If \(f(x) = ax + b \) and \(f^{-1}(x) = bx + a \) with \(a \) and \(b \) real, what is the value of \(a + b \)?

(A) −2
(B) −1
(C) 0
(D) 1
(E) 2
14. In \(\triangle ABC \), \(AB = 13 \), \(AC = 5 \) and \(BC = 12 \). Points \(M \) and \(N \) lie on \(AC \) and \(BC \), respectively, with \(CM = CN = 4 \). Points \(J \) and \(K \) are on \(AB \) so that \(MJ \) and \(NK \) are perpendicular to \(AB \). What is the area of pentagon \(CMJKN \)?

(A) 15 (B) \(\frac{81}{5} \) (C) \(\frac{205}{12} \) (D) \(\frac{240}{13} \) (E) 20

15. The two digits in Jack’s age are the same as the digits in Bill’s age, but in reverse order. In five years Jack will be twice as old as Bill will be then. What is the difference in their current ages?

(A) 9 (B) 18 (C) 27 (D) 36 (E) 45

16. A function \(f \) is defined by \(f(z) = i\bar{z} \), where \(i = \sqrt{-1} \) and \(\bar{z} \) is the complex conjugate of \(z \). How many values of \(z \) satisfy both \(|z| = 5 \) and \(f(z) = z \)?

(A) 0 (B) 1 (C) 2 (D) 4 (E) 8

17. For some real numbers \(a \) and \(b \), the equation

\[8x^3 + 4ax^2 + 2bx + a = 0 \]

has three distinct positive roots. If the sum of the base-2 logarithms of the roots is 5, what is the value of \(a \)?

(A) \(-256\) (B) \(-64\) (C) \(-8\) (D) 64 (E) 256

18. Points \(A \) and \(B \) are on the parabola \(y = 4x^2 + 7x - 1 \), and the origin is the midpoint of \(AB \). What is the length of \(AB \)?

(A) \(2\sqrt{5} \) (B) \(5 + \frac{\sqrt{2}}{2} \) (C) \(5 + \sqrt{2} \) (D) 7 (E) \(5\sqrt{2} \)

19. A truncated cone has horizontal bases with radii 18 and 2. A sphere is tangent to the top, bottom, and lateral surface of the truncated cone. What is the radius of the sphere?

(A) 6 (B) \(4\sqrt{5} \) (C) 9 (D) 10 (E) \(6\sqrt{3} \)

20. Each face of a cube is painted either red or blue, each with probability \(1/2 \). The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color?

(A) \(\frac{1}{4} \) (B) \(\frac{5}{16} \) (C) \(\frac{3}{8} \) (D) \(\frac{7}{16} \) (E) \(\frac{1}{2} \)
21. The graph of $2x^2 + xy + 3y^2 - 11x - 20y + 40 = 0$ is an ellipse in the first quadrant of the xy-plane. Let a and b be the maximum and minimum values of $\frac{y}{x}$ over all points (x, y) on the ellipse. What is the value of $a + b$?

(A) 3 \hspace{1cm} (B) $\sqrt{10}$ \hspace{1cm} (C) $\frac{7}{2}$ \hspace{1cm} (D) $\frac{9}{2}$ \hspace{1cm} (E) $2\sqrt{14}$

22. The square

<table>
<thead>
<tr>
<th>50</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>g</td>
<td>h</td>
<td>2</td>
</tr>
</tbody>
</table>

is a multiplicative magic square. That is, the product of the numbers in each row, column, and diagonal is the same. If all the entries are positive integers, what is the sum of the possible values of g?

(A) 10 \hspace{1cm} (B) 25 \hspace{1cm} (C) 35 \hspace{1cm} (D) 62 \hspace{1cm} (E) 136

23. The polynomial $x^3 - 2004x^2 + mx + n$ has integer coefficients and three distinct positive zeros. Exactly one of these is an integer, and it is the sum of the other two. How many values of n are possible?

(A) 250,000 \hspace{1cm} (B) 250,250 \hspace{1cm} (C) 250,500 \hspace{1cm} (D) 250,750 \hspace{1cm} (E) 251,000

24. In $\triangle ABC$, $AB = BC$, and BD is an altitude. Point E is on the extension of AC such that $BE = 10$. The values of $\tan \angle CBE$, $\tan \angle DBE$, and $\tan \angle ABE$ form a geometric progression, and the values of $\cot \angle DBE$, $\cot \angle CBE$, $\cot \angle DBC$ form an arithmetic progression. What is the area of $\triangle ABC$?

\[\begin{array}{c}
A \\
D \\
C \\
E
\end{array}\]

(A) 16 \hspace{1cm} (B) $\frac{50}{3}$ \hspace{1cm} (C) $10\sqrt{3}$ \hspace{1cm} (D) $8\sqrt{5}$ \hspace{1cm} (E) 18

25. Given that 2^{2004} is a 604-digit number whose first digit is 1, how many elements of the set $S = \{2^0, 2^1, 2^2, \ldots, 2^{2003}\}$ have a first digit of 4?

(A) 194 \hspace{1cm} (B) 195 \hspace{1cm} (C) 196 \hspace{1cm} (D) 197 \hspace{1cm} (E) 198
This page left intentionally blank.
WRITE TO US!

Correspondence about the problems and solutions for this AMC 12 should be addressed to:

Prof. David Wells, Department of Mathematics
Penn State University, New Kensington, PA 15068
Phone: 724/334-6749; Fax: 724/334-6110; email: dmw8@psu.edu

Orders for any of the publications listed below should be addressed to:

American Mathematics Competitions
University of Nebraska, P.O. Box 81606
Lincoln, NE 68501-1606
Phone: 402-472-2257; Fax: 402-472-6087; email: amcinfo@unl.edu;

2004 AIME

The AIME will be held on Tuesday, March 23, 2004 with the alternate on April 6, 2004. It is a 15-question, 3-hour, integer-answer exam. You will be invited to participate only if you score 120 or above or finish in the top 1% of the AMC 10 or receive a score of 100 or above on the AMC 12. Alternately, you must be in the top 5% of the AMC 12. Top-scoring students on the AMC 10/12/AIME will be selected to take the USA Mathematical Olympiad (USAMO) in late Spring. The best way to prepare for the AIME and USAMO is to study previous years of these exams. Copies may be ordered as indicated below.

PUBLICATIONS

MINIMUM ORDER: $10 (before shipping/handling fee), PAYMENT IN US FUNDS ONLY made payable to the American Mathematics Competitions or VISA/MASTERCARD accepted. Include card number, expiration date, cardholder name and address. U.S.A. and Canadian orders must be prepaid and will be shipped Priority Mail, UPS or Air Mail.

INTERNATIONAL ORDERS: Do NOT prepay. An invoice will be sent to you.

COPYRIGHT: All publications are copyrighted; it is illegal to make copies or transmit them on the internet without permission.

Examinations: Each price is for one copy of an exam and its solutions for one year. Specify the years you want and how many copies of each. All prices effective to September 1, 2004.

• AIME 1989-2004, $2 per copy per year (2004 available after April).
• USA and International Math Olympiads, 1989-1999, $5 per copy per year, 2000-$14, 2001-$17
• National Summary of Results and Awards, 1989-2004, $10 per copy per year.
• Problem Book I, AHSMEs 1950-60, Problem Book II, AHSMEs 1961-65, $10/ea
• Problem Book III, AHSMEs 1966-72, Problem Book IV, AHSMEs 1973-82, $13/ea
• Problem Book V, AHSMEs and AIMEs 1983-88, $30/ea
• Problem Book VI, AHSMEs 1989-1994, $24/ea
• USA Mathematical Olympiad Book 1972-86, $18/ea
• International Mathematical Olympiad Book II, 1978-85, $20/ea
• The Arbelos, Volumes I, II, III, IV, & V, and a Special Geometry Issue, $8/ea

Shipping & Handling charges for Publication Orders:

<table>
<thead>
<tr>
<th>Order Total</th>
<th>Add:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ 10.00 -- $ 40.00</td>
<td>$ 7</td>
</tr>
<tr>
<td>$ 40.01 -- $ 50.00</td>
<td>$ 9</td>
</tr>
<tr>
<td>$ 50.01 -- $ 75.00</td>
<td>$12</td>
</tr>
<tr>
<td>$ 75.01 -- up</td>
<td>$15</td>
</tr>
</tbody>
</table>
1. All information (Rules and Instructions) needed to administer this exam is contained in the TEACHER’S MANUAL, which is outside of this package. PLEASE READ THE MANUAL BEFORE FEBRUARY 25. Nothing is needed from inside this package until February 25.

2. Your PRINCIPAL or VICE PRINCIPAL must sign the Certification Form A found in the Teachers’ Manual.

3. The Answer Forms must be mailed by First Class mail to the AMC no later than 24 hours following the examination.

4. Please Note: All Problems and Solutions are copyrighted; it is illegal to make copies or transmit them on the internet or world wide web without permission.

5. The publication, reproduction or communication of the problems or solutions of this test during the period when students are eligible to participate seriously jeopardizes the integrity of the results. Duplication at any time via copier, telephone, eMail, World Wide Web or media of any type is a violation of the copyright law.

Sponsored by
The MATHEMATICAL ASSOCIATION OF AMERICA
University of Nebraska – Lincoln

Contributors
Akamai Foundation American Mathematical Association of Two Year Colleges
American Mathematical Society American Society of Pension Actuaries
American Statistical Association Art of Problem Solving
Canada/USA Mathpath & Mathcamp Casualty Actuarial Society
Clay Mathematics Institute Institute for Operations Research and the Management Sciences
Mu Alpha Theta National Council of Teachers of Mathematics
Pedagogy Software Inc. Pi Mu Epsilon
Society of Actuaries