Lesson 2: Vieta’s formula

Konstantin Miagkov

October 12, 2018

Definition 1.
We say that \(x_0 \) is a root of a function \(f(x) \) if \(f(x_0) = 0 \).

Problem 1.
a) Let \(ax^2 + bx + c = 0 \) be a quadratic equation. Show that if it has two distinct real roots \(x_0, x_1 \), then \(ax^2 + bx + c = a(x-x_0)(x-x_1) \). Hint: consider the difference between \(ax^2 + bx + c \) and \(a(x-x_0)(x-x_1) \). What degree is it? How many roots does it have?

b) Show that a quadratic equation cannot have more than two distinct real roots.

c) Now suppose that \(ax^2 + bx + c \) has exactly one real root \(x_0 \). Show that \(ax^2 + bx + c = a(x-x_0)^2 \).

Problem 2.
a) [Vieta’s formulas] Consider a quadratic equation \(ax^2 + bx + c = 0 \) with real roots \(x_0, x_1 \). Show that

\[
x_0 + x_1 = -\frac{b}{a}
\]

\[
x_0x_1 = \frac{c}{a}
\]

These are called Vieta’s formulas. You may use the result of problem 1 even if you did not solve it.

b) Given any two real numbers \(x_0, x_1 \) with \(x_0 + x_1 = u \) and \(x_0x_1 = v \), show that both \(x_0 \) and \(x_1 \) are roots of the quadratic equation \(x^2 - ux + v = 0 \).

Problem 3.
a) Let \(x_0, x_1 \) be roots of a quadratic equation \(ax^2 + bx + c = 0 \). Find the formula for \(x_0^2 + x_1^2 \) in terms of \(a, b, c \).

b) Let \(x_0, x_1 \) be roots of \(x^2 + bx + c = 0 \). Find the formula for \(x_0^3 + x_1^3 \) in terms of \(b, c \).
Problem 4.
Consider a circle whose diameter is the side AB of the triangle ABC. Show that if that circle contains the midpoint of AC, then $\triangle ABC$ is isosceles.

Problem 5.
Let AC be a diameter of a circle, and B be a point on the circle distinct from A and C. Let P be the foot of the perpendicular from A to the tangent to the circle at B. Show that AB is the angle bisector of $\angle PAC$.