The circumference is the distance around a circle. A circle's circumference is proportional to its radius: Circumference \sim Radius

(1) For some radius r, the circumference of a circle is 20 feet. What is the circumference of a circle when the radius is twice as big?

40 feet
(2) The circle below has a circumference of 100. How many times bigger is the radius of a circle whose circumference is 300?

\[2\pi r \]

\[3 \text{ times} \]

Mathematicians noticed that the ratio between the circle’s circumference and the diameter is constant, so that the circumference is roughly equal to three times the diameter, or six times the radius. The Greek letter \(\pi \), the first letter in the Greek word for “perimeter,” is used to denote this mathematical constant.

\[\pi = \frac{\text{Circumference}}{\text{Diameter}} \]

\[\text{Circumference} = \pi \cdot \text{diameter} \]

\[\text{Circumference} = 2\pi \cdot \text{radius} \]

(1) Solve the following:

(a) Radius = 3. Circumference = \[6\pi \approx 18 \]

(b) Radius = 5. Circumference = \[10\pi \approx 30 \]

(c) Circumference = \(6\pi \) . Radius = 3 . Diameter = 6

(d) Circumference = 10. Radius = \(\frac{10}{2\pi} \) . Diameter = \(\frac{10}{\pi} \)
How big is π?

The figure above depicts a regular hexagon inscribed in a circle with radius r. Consider the following:

- A full circle is 360°
- Each of the angles labeled 1-6 is $\frac{360^\circ}{6} = 60^\circ$
- Each triangle is isosceles. Explain. Two sides from the center to vertex are equal.

- Angles a and b are equivalent. Explain.

Isosceles triangles have equal angles at the base

- Angle $a = \frac{(180^\circ - 60^\circ)}{2} = 60^\circ$
- Each triangle is equilateral.

What is the circumference of the above circle?

$2\pi \cdot $ side length of a triangle

What is the perimeter of the above hexagon?

$6 \cdot $ side length of a triangle

Circumference $> \text{Perimeter of the hexagon.}$

Thus, $2\pi > 6 \quad \text{and} \quad \pi > 3$.
(1) Cavemen used \(\pi = 3 \). Ancient Greeks used \(\pi = \frac{22}{7} \). For a circle of radius \(r = 7 \) meters, what is the difference between the circumferences computed by the Ancient Greeks and the cavemen.

(a) What is the circumference of the circle calculated by the cavemen?

\[\text{21 meters} \]

(b) What is the circumference of the circle calculated by the Ancient Greeks?

\[\text{22 meters} \]

(c) What is the difference between the two calculations?

\[\text{1 meter} \]

(d) Approximate the percentage difference.

\[\frac{22 - 21}{22} \approx \frac{1}{22} \approx 4.5\% \text{ difference} \]

(2) Cavemen measured the radius of a circle and computed the circumference to be 84 cm. What circumference would the Ancient Greeks have calculated?

\[\frac{84 \text{ cm}}{3} = 28 \text{ cm} \]

\[28 \text{ cm} \cdot \frac{22}{7} = 88 \text{ cm} \]

Later, \(\pi \) was computed more precisely.

\[\pi = 3.1415926535... \]

You can remember the digits using a sentence mnemonic, a phrase in which the number of letters of each successive word corresponds to a digit of pi:

"Wow. I made a great discovery!" (3.14159)

\[3.14159 = 3 + 14159/100.000 \]

For many practical purposes 3.14 is enough. In computations, keep as \(\pi \) (unless asked for a numerical value).
(1) Compute the perimeters of the following shapes:

(a)
\[2\pi \cdot 2 + 2.12 = 4\pi + 2.12\]

(b)
\[2\pi \cdot 3 + 2.6 = 6\pi + 12\]

(c) Solution
\[2\pi \cdot 1 + 4.9 + 4.3 = 2\pi + 9.2\]

(d)
\[2\pi \cdot 3 + \pi \cdot 8 - \pi \cdot 1 = 10\pi\]
(2) A vine starts at the bottom of a 28-foot tree trunk and wraps around to the top, going around exactly 7 times. If the diameter of the trunk is 3 feet, what is the length of the vine?

28 feet accounted for in vertical direction, 7 \cdot 3\pi = 21\pi feet in horizontal. Assume constant angle means \sqrt{28+21\pi} feet

Or \frac{3}{2} \cdot (2\pi \cdot 1) + 6 = \frac{3}{2} \cdot (2\pi \cdot 7) = 21\pi

\pi \cdot 8 + 8.4

= 8\pi + 28

\frac{3}{2} \cdot (2\pi \cdot 7) + 7.4

= 21\pi + 7.4

\pi \cdot 8 + 16 + 2

= 8\pi + 28
To derive the formula for the area of a circle, we use the diagram below.

We first draw three concentric circles, the largest of which has a radius of \(r \). Imagine cutting through the bold segment and "unwrapping" the circle so the edges are flattened out. This results in the isosceles triangle above. The height of the triangle, \(OH \), is the radius \(r \) and the distance between \(A_1 \) and \(A_2 \) is the unfolded circle and, thus, equals the circumference \(2\pi r \). The area of the triangle, which is also the area of the circle with radius \(r \) is:

Area of circle = Area of triangle

\[
A = \frac{1}{2} \cdot base \cdot height
\]

\[
A = \frac{1}{2} \cdot 2\pi r \cdot r
\]

\[
A = \pi r^2
\]

(1) Compute the areas of the following shapes:

(a) \(4 \cdot 12 + \pi \cdot 2^2 = 48 + 4\pi \)

(b) \(6 \cdot 6 + \pi \cdot 3^2 = 36 + 9\pi \)
\[\pi \cdot 1^2 + 2 \cdot 9 \cdot 1 + 2 \cdot 3 \cdot 1 + 3 \cdot 9 = 51 + \pi \]

\[\frac{1}{2} \cdot \pi \cdot 3^2 + \frac{1}{2} \cdot \pi \cdot 4^2 = \frac{1}{2} \cdot \pi \cdot 1^2 = 8\pi = \frac{\pi}{2} (9 + 16 - 1) = \frac{12\pi}{2} \]

\[\frac{3}{2} \left(\pi \cdot 1^2 \right) + \frac{1}{2} \left(\pi \cdot 4^2 \right) + 8 \cdot 1 = \frac{\pi}{2} (1 + 16) + 8 = \frac{17\pi}{2} + 8 \]

\[\frac{3}{2} (\pi \cdot 7^2) + 7 \cdot 7 = \frac{147\pi}{2} + 49 \]
\[
\frac{1}{2} (\pi \cdot 8^2) + 2 \cdot 8.8 = 32\pi + 128
\]