Fun and Games on a Chess Board

Olga Radko

November 19, 2017

I Names of squares on the chess board

Color the following squares on the chessboard below:

c3, c4, c5, c6, d5, e4, f3, f4, f5, f6

What letter do these squares form together? N
II How many squares are there on a chessboard?

A chessboard itself is a square with side 8.

1. The number of 1×1 squares on the chess board is 64.

2. What about bigger squares?
 Let's first count squares of size 2×2:

 ![Diagram of 2x2 squares]

 Idea: Instead of counting 2×2 squares, we will count the small 1×1 squares which can serve as the left lower corners of the 2×2 squares that fit on the chessboard.

 First, shade the left lower corner of the 2×2 square above.
For each of the squares below, decide if it can be a left lower corner of a 2×2 square:

Remember, the 2×2 squares on the chessboard can overlap. Like this:

(a) square c3

(b) square g6

(c) square f8

(d) square h2
Now color all 1 × 1 squares that can serve as the left lower corners of a 2 × 2 square:

How many 2 × 2 squares can you fit onto a chessboard?

\[7 \times 7 = 49 \]
3. For each of the squares below, decide if it can be a left lower corner of a 3×3 square:

(a) square e6 \[\text{Yes} \quad \text{No} \]

(b) square g3 \[\text{Yes} \quad \text{No} \]

(c) square a7 \[\text{Yes} \quad \text{No} \]

(d) square f6 \[\text{Yes} \quad \text{No} \]

Now color \textit{all} 1×1 squares that can serve as the left lower corners of a 3×3 square:

How many 3×3 squares can you fit onto a chessboard?

\[6 \times 6 = 36 \]
Now you can fill out the table below:

<table>
<thead>
<tr>
<th>Type of Square</th>
<th>Number of such squares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$8 \times 8 = 64$</td>
</tr>
<tr>
<td></td>
<td>$7 \times 7 = 49$</td>
</tr>
<tr>
<td></td>
<td>$6 \times 6 = 36$</td>
</tr>
</tbody>
</table>

Homework

Count the number of 4×4, 5×5, 6×6 and 7×7 squares on the chessboard in the same way. In each case, use a chessboard picture to shade all the 1×1 squares that can be left lower corners of the bigger squares that fit completely onto the chessboard.
Now color all 1×1 squares that can serve as the left lower corners of a 4×4 square:

Color all 1×1 squares that can serve as the left lower corners of a 5×5 square:
Color all 1×1 squares that can serve as the left lower corners of a 6×6 square:

Color all 1×1 squares that can serve as the left lower corners of a 7×7 square:
Fill out the table below with the numbers of squares:

<table>
<thead>
<tr>
<th>size of the square</th>
<th># of squares of this size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 × 1</td>
<td>(8 \times 8 = 64)</td>
</tr>
<tr>
<td>2 × 2</td>
<td>(7 \times 7 = 49)</td>
</tr>
<tr>
<td>3 × 3</td>
<td>(6 \times 6 = 36)</td>
</tr>
<tr>
<td>4 × 4</td>
<td>(5 \times 5 = 25)</td>
</tr>
<tr>
<td>5 × 5</td>
<td>(4 \times 4 = 16)</td>
</tr>
<tr>
<td>6 × 6</td>
<td>(3 \times 3 = 9)</td>
</tr>
<tr>
<td>7 × 7</td>
<td>(2 \times 2 = 4)</td>
</tr>
<tr>
<td>8 × 8</td>
<td>(1 \times 1 = 1)</td>
</tr>
</tbody>
</table>

Now add up all the numbers in the right column to find the total number of squares of all sizes.

\[1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 = 204\]