Problem 2
Based on the division problem from last lesson, any positive number \(m \) can be represented uniquely as one of \(6n, 6n + 1, 6n + 2, 6n + 3, 6n + 4, 6n + 5 \) for some nonnegative integer \(n \). If \(m \) is prime, it doesn’t have any divisors other than 1 and itself. \(6n, 6n + 2 \) and \(6n + 4 \) have divisor 2. \(6n + 3 \) has divisor 3. So they can’t be a prime greater than 3. Therefore a prime number greater than 3 must be able to be represented as either \(6n + 1 \) or \(6n + 5 \) for some nonnegative integer \(n \).