Lesson 7: Remainders, Primes and the Euclidean Algorithm

Konstantin Miagkov

November 19, 2017

Problem 1.
Compute: the remainder of $-7$ when divided by $-2$, the remainder of $-153$ when divided by 15, the remainder of 153 when divided by $-15$.

Problem 2.
Show that a prime number greater than 3 can be expressed as $6n+1$ or $6n+5$ for some nonnegative integer $n$.

Problem 3.
a) Find 3 distinct positive integers greater than 1 such that product of any two is divisible by the third.
b) Show how to construct infinitely many such examples.

Problem 4.
a) Let $a, b$ be positive integers such that $a \leq 100$ and $b \leq 100$. Show that computing gcd$(a, b)$ with the Euclidean algorithm takes at most 20 steps.
b) Show that in fact it takes at most 11 steps.