Lesson 3: More tilings and some algebra.

Konstantin Miagkov

October 18, 2017

Problem 1.
What’s the biggest number of 1×4 rectangles that can be fit into a 6×6 square without overlaps?

Problem 2.
99 2×2 squares were cut out of a 29×29 board. Prove that it is possible to cut out at least one more.

Problem 3.
Prove that 8999999 is not a prime number.

Problem 4.
Expand $(a + b - 2c)^3$.

Problem 5.
Factor the following polynomials:

a) $ac + ad + bc + bd$.
b) $ac + bc - ad - bd$.
c) $1 + a + a^2 + a^3$.
d) $1 + a + a^2 + a^3 + \ldots + a^{14}$.
e) $x^4 - x^3 + 2x - 2$.