1 Cutting Cakes

1. Imagine you are a teacher. Your class of 10 students is on a field trip to the bakery. At the end of the tour, the baker gives you 6 round cakes to be divided evenly among the 10 students.

 (a) Let each circle below represent one cake. Show how you would cut the cakes into pieces. Represent one cut with a straight line through the center of the cake.

```
  O   O   O
  O   O   O
```

This is a textual representation of the diagram provided in the document.
(b) How many pieces would each student receive?

(c) What amount of cake would each student receive?

(d) Suppose it would take you 1 minute to hand out each piece of cake. How long would it take to hand out cake to all students?
If you’re like me, you split each cake into 10 pieces, each piece having size $\frac{1}{10}$ of a cake. Then, you gave each student 6 of these pieces. This is one solution, but it is not perfect. This solution involves lots of small pieces for each student. Lots of small pieces are time-consuming to distribute and also produce lots of crumbs. There is another way to solve the problem with fewer, larger pieces for each student (and less crumbs)!

2. Again, suppose we have 6 cakes to divide evenly among 10 students. We will try to give each student fewer, and thus larger, pieces. In order to ensure all pieces are even, the only cuts we make are straight lines through the center of the cake.

(a) The largest piece we could give to a student is one whole cake. This is accomplished with zero cuts. Is there enough cake to do this?

(b) The second largest piece we could give to a student is $\frac{1}{2}$ of a cake. Is there enough cake to do this?
(c) On the circles below, draw straight lines to represent how you would cut the cakes in order to give each student \(\frac{1}{2} \) of a cake. Shade in all of the pieces you hand out.

(d) How many cakes would be left over?
(e) How can you split the leftovers evenly among the 10 students? Draw a picture or write down the appropriate fraction of cake that each student receives.

(f) What is the total amount of cake that each student receives? Give your answer as the sum of two fractions.

(d) Again, suppose it takes you one minute to hand out each piece of cake. How long would it take to hand out cake to all students?
2 Unit Fractions and Ancient Egyptians

When an object is divided into equal pieces, we call each of these equal pieces a unit fraction of the original object. The unit fractions are the fractions that can be written as $\frac{1}{n}$ for some integer n. $\frac{1}{2}$, $\frac{1}{10}$, and $\frac{1}{67}$ are all examples of unit fractions. To better understand unit fractions, we will examine what kinds of fractions we can make out of them.

3. Compute the following sums of unit fractions.

(a) $\frac{1}{2} + \frac{1}{10} =$

(b) $\frac{1}{5} + \frac{1}{10} =$

(c) $\frac{1}{3} + \frac{1}{5} + \frac{1}{6} =$
(d) \[\frac{1}{2} + \frac{1}{15} + \frac{1}{100} = \]

(e) \[\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} = \]
4. (a) Examine the unit fraction pieces in front of you. Using the pieces, find two different unit fractions whose sum is a unit fraction.
 • Draw a picture to show your solution.
 • Add up the two fractions to show that your solution works.

(b) Find another example of two different unit fractions whose sum is a unit fraction.

(c) Find at least two pairs of unit fractions whose difference is a unit fraction.
As you can see, many different fractions can be represented by sums of distinct unit fractions. Representing fractions in this way has benefits, as we saw in our cake-cutting problem. It provides bigger pieces which are easier to distribute (and don’t make so many crumbs).

The Ancient Egyptians, famous for their mathematics, wrote all of their fractions as sums of distinct unit fractions. Their notation for unit fractions went like this:

\[\frac{\hat{2}}{2}, \quad \frac{\hat{3}}{3}, \quad \frac{\hat{100}}{100} \]

and so on. For the remainder of this packet, we will use the modern notation for unit fractions as to avoid confusion.

For fractions like \(\frac{3}{4} \), an Egyptian would use a sum of unit fractions, and write \(\frac{1}{2} + \frac{1}{4} \). Notice, one would not write \(\frac{3}{4} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \). The Ancient Egyptians were very smart, and knew that repeating the same fraction more than once would only result in a longer representation, and never a shorter one. We will prove this result in Part II of this packet.

A representation of a fraction as a sum of distinct unit fractions is said to be an Egyptian Fraction Representation (EFR) for the given fraction. Note that it is not necessarily the EFR for a given fraction. We have not yet determined whether each fraction has a single unique EFR. We will work to answer the following BIG QUESTIONS:

1) Does every fraction have at least one EFR? If so, we must prove this. If not, we must find an example of a fraction which has no EFR.

2) How do we find an EFR for a given fraction?

3) Are there several EFRs for a single given fraction?

Big Question 1) turns out to be more difficult than 2) or 3), so we will save it for the end of our exploration. For now, we will discover strategies for finding one, or possibly multiple, EFRs of a given fraction. Later we will tackle the question of whether every fraction can be represented in this form.
3 Greedy Greg finds EFRs

To learn more about question 1), we will go back in time to visit an Ancient Egyptian boy named Greedy Greg.

Greedy Greg is learning about fractions in school. He knows his unit fractions but has not learned to add them together. On some nights, Greg’s mother brings him a fraction of a cake for dessert. She wants Greg to learn to add fractions together, so she offers him a reward.

After dessert, if Greg can tell his mother what fraction of cake he ate (in Egyptian Fraction Representation, of course) then she will bring home more cake the following night. For example, if Greg’s mother brought home \(\frac{6}{10} \) of a cake, after he eats, Greg could earn a reward by telling his mother that he has eaten \(\frac{1}{2} + \frac{1}{10} \) of a cake.

Greedy Greg’s plan is to eat the cake in unit fraction pieces, always taking the biggest piece he can and being sure to never repeat fractions. Then, after dessert, he can simply tell his mother the sizes of the individual pieces that he ate.

For example, on Sunday night his mother brings home \(\frac{6}{10} \) of a cake. Since \(\frac{1}{2} \) is the largest unit fraction less than or equal to \(\frac{6}{10} \), Greg asks her to serve him \(\frac{1}{2} \) of a cake. After eating this first piece, he sees that there is \(\frac{1}{10} \) of a cake remaining. Since \(\frac{1}{10} \) is the largest unit fraction less than or equal to \(\frac{1}{10} \), Greg asks his mother to serve him the remaining \(\frac{1}{10} \) of a cake. He then correctly tells his mother that he has eaten \(\frac{1}{2} + \frac{1}{10} \) of a cake, earning his reward.

In Part II, we will prove that Greg’s strategy works no matter what fraction of a cake his mother brings home. This will then prove that every fraction has at least one EFR. Until we prove this, our results will only apply to fractions which have at least one EFR. We will begin by practicing Greedy Greg’s method for finding EFRs.
5. It is Monday night and this time Greedy Greg’s mother brings home $\frac{4}{5}$ of a cake.

(a) What amount of cake will Greg ask for first? Give your answer as a fraction.

(b) How much cake will there be left?
(c) Greg has eaten his first piece of cake. What amount of cake will Greg ask for next?

(d) How much cake will there be left?
(e) Greg has eaten his second piece of cake. What amount of cake will Greg ask for next?

(f) Will there be any cake left?

(g) Based on the information above, write down one EFR for \(\frac{4}{5} \).
6. It is now Tuesday night and Greedy Greg’s mother brings home \(\frac{29}{30} \) of a cake for dessert.

(a) Pretend you are Greedy Greg and come up with a plan to finish your dessert. Indicate what amount of cake you will ask for at each step.

(b) Does \(\frac{29}{30} \) have an EFR? If so, what is it?
7. For an Ancient Egyptian like Greedy Greg, it is easy to determine the largest unit fraction less than or equal to a given fraction. Those of us who have not spent our entire lives looking at unit fractions need an algorithm to find this largest possible unit fraction. For example, it’s not immediately clear what the largest unit fraction less than or equal to \(\frac{47}{901} \) is. If we are given a fraction \(\frac{a}{b} \), we would like to find the smallest integer \(n \) (and thus the largest unit fraction \(\frac{1}{n} \)) such that

\[
\frac{1}{n} \leq \frac{a}{b}
\]

This statement is equivalent to the following double inequality,

\[
\frac{1}{n} \leq \frac{a}{b} < \frac{1}{n-1}
\]

which says that \(\frac{a}{b} \) is greater than or equal to \(\frac{1}{n} \) and also less than \(\frac{1}{n-1} \).

(a) How do we know that \(\frac{a}{b} \) is less than \(\frac{1}{n-1} \)?

(b) Suppose \(\frac{1}{5} \leq \frac{a}{b} < \frac{1}{4} \). On the number line below, indicate where the fraction \(\frac{a}{b} \) may be located. Below the number line, write the largest unit fraction less than or equal to \(\frac{a}{b} \).
(c) Suppose $\frac{1}{8} \leq \frac{a}{b} < \frac{1}{7}$. On the number line below, indicate where the fraction $\frac{a}{b}$ may be located. Below the number line, write the largest unit fraction less than or equal to $\frac{a}{b}$.

(d) Suppose $\frac{a}{b}$ lies in the following interval:

What is the largest unit fraction less than or equal to $\frac{a}{b}$?
8. A modern day math student, Beth, thinks she’s figured out how to find the largest unit fraction less than $\frac{47}{901}$. She says:

"I want to find an integer n such that $\frac{47}{901}$ falls between $\frac{1}{n}$ and $\frac{1}{n-1}$ on the number line. This means that I am looking for an integer n such that,

$$\frac{1}{n} \leq \frac{47}{901} < \frac{1}{n-1}$$

By taking the reciprocal (switching numerator with denominator) of all three quantities, I get

$$n - 1 < \frac{901}{47} \leq n$$

This means that $\frac{901}{47}$ falls between the consecutive integers n and $n - 1$ on the number line. I know that $\frac{901}{47} \approx 19.1$, so $\frac{901}{47}$ falls in between the consecutive integers 19 and 20. I want the largest unit fraction possible so I will choose the smaller number for my denominator, which is 19. Therefore, the largest unit fraction less than or equal to $\frac{47}{901}$ is $\frac{1}{19}$.”

(a) Is Beth correct? If not, what was her mistake?
(b) Suppose we want to find an EFR for the fraction $\frac{2}{7}$. Notice that

$$3 < \frac{7}{2} < 4$$

What is the largest unit fraction less than or equal to $\frac{2}{7}$?

(c) For a fraction $\frac{a}{b}$ suppose we have found an integer n such that

$$n - 1 < \frac{b}{a} < n$$

In terms of n, what is the largest unit fraction less than $\frac{a}{b}$?
(d) Let a, b, and n be integers. Fill in the blank with one of the following symbols: $>$, $<$, or $=$.

If $\frac{1}{n} < \frac{a}{b}$, then $n \underline{\text{ }} \frac{b}{a}$.

9. Beth was very close to the correct algorithm. By correcting Beth’s mistake, we now have an algorithm for calculating the largest unit fraction less than or equal to a given fraction $\frac{a}{b}$. Practice by finding the largest unit fraction less than or equal to the following fractions.

(a) $\frac{26}{55}$
(b) $\frac{14}{1001}$

(c) $\frac{13}{71}$
10. With this tool, we can find EFRs for more complicated fractions. We are now traveling back to Ancient Egypt where it is Wednesday night, and Greedy Greg’s mother has brought him $\frac{21}{49}$ of a cake for dessert.

(a) What amount of cake will Greedy Greg ask for first? In other words, what is the largest unit fraction less than or equal to $\frac{21}{49}$?

(b) How much cake will there be left? Simplify your answer.
(c) Greg has finished his first piece of cake. What amount of cake will Greedy Greg ask for next?

(d) How much cake will there be left?
(e) Greg has finished his second piece of cake. What amount of cake will Greedy Greg ask for next?

(f) Will there be any cake left?

(g) Write down one EFR for $\frac{21}{49}$.
Now, let’s summarize these steps for finding EFRs. Suppose we’re given a fraction $\frac{a}{b}$ for which we want an EFR. At each step of our algorithm, let r symbolize the remaining fraction to be represented. Essentially, r is the amount of cake remaining to be eaten. Initially, $r = \frac{a}{b}$.

Step 1. Calculate $\frac{1}{r}$. This is $\frac{b}{a}$ for the first step.

Step 2. Find n such that $n - 1 < \frac{1}{r} \leq n$.

Step 3. Calculate $r - \frac{1}{n}$, and set r equal to the result.

Step 4. Write $\frac{1}{n}$ in your EFR. If $r > 0$, return to Step 1. If $r = 0$, your EFR is complete.

These steps form what we call a greedy algorithm. An algorithm is a sequence of steps that helps to solve a problem. In this case, the problem we want to solve is finding an EFR for a given fraction. We call it a greedy algorithm because at each step, we take the largest piece that we can.

11. Explain what is happening in Steps 2 and 3 of the greedy algorithm. Explain what these steps mean in relation to Greedy Greg’s strategy.

In Part II, we will prove that this algorithm will provide a single EFR for any given fraction. One of our other questions to answer was whether there exist multiple EFRs for a single fraction. To answer this, we will examine another “less” greedy algorithm.
12. Consider the following “less” greedy algorithm. We wish to see if it produces different EFRs. Again, start with \(r = \frac{a}{b} \).

Step 1. Calculate \(\frac{1}{r} \).

Step 2. Find \(n \) such that \(n - 1 < \frac{1}{r} \leq n \).

Step 3. If this is the first time executing Step 3 and your EFR is empty, or if \(\frac{1}{n} \) is already written in your EFR, increase \(n \) by 1.

Step 4. Calculate \(r - \frac{1}{n} \), and set \(r \) equal to the result.

Step 5. Write \(\frac{1}{n} \) in your EFR. If \(r > 0 \), return to Step 1. If \(r = 0 \), your EFR is complete.

(a) Suppose we begin with the fraction \(\frac{3}{4} \). What is the largest unit fraction less than or equal to \(\frac{3}{4} \)?

(b) What is the second largest unit fraction less than or equal to \(\frac{3}{4} \)?

(c) The answer to part (b) will be the first unit fraction in this “less” greedy EFR. What is the result when you subtract your answer to part (b) from \(\frac{3}{4} \)?
(d) Continue the algorithm to produce an EFR for $\frac{3}{4}$. Remember not to repeat any unit fractions.

(e) Is this EFR different than the EFR for $\frac{3}{4}$ produced by our greedy algorithm?
4 How Many Representations?

We have just shown that EFRs are not unique by finding two EFRs for \(\frac{3}{4} \):

\[
\frac{1}{2} + \frac{1}{4} = \frac{1}{3} + \frac{1}{4} + \frac{1}{6}
\]

You may have noticed that the fraction \(\frac{1}{4} \) is repeated on both sides of the equation. By subtracting it from both sides, we get

\[
\frac{1}{2} = \frac{1}{3} + \frac{1}{6}
\]

This should look familiar. Earlier, you were asked to find two unit fractions whose sum is another unit fraction. This is an example of such fractions. \(\frac{1}{2} \) is a unit fraction with the property that it can be split into two smaller unit fractions. We would like to determine if this property is true of every unit fraction.

13. Consider the difference \(\frac{1}{3} - \frac{1}{4} \).

(a) Calculate the result.

(b) How can we write \(\frac{1}{3} \) as a sum of two smaller unit fractions?
14. Consider the difference $\frac{1}{6} - \frac{1}{7}$.

(a) Calculate the result.

(b) How can we write $\frac{1}{6}$ as a sum of two smaller unit fractions?
15. We can generalize this property as follows: for any integer n,

$$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$$

(a) Prove the property above using algebra. (Hint: Find the common denominator of the fractions $\frac{1}{n}$ and $\frac{1}{n+1}$)

(b) How can we write $\frac{1}{n}$ as a sum of two smaller unit fractions?
16. We have now shown that any unit fraction can be written as the sum of two smaller unit fractions. We will use this to show that if one EFR exists for a given fraction, then \textbf{infinitely many} EFRs exist for that fraction. Take for example, the fraction $\frac{2}{5}$. Our greedy algorithm gives us one EFR,$$
frac{2}{5} = \nfrac{1}{3} + \nfrac{1}{15}$$
(a) How can we rewrite $\frac{1}{15}$ as a sum of two smaller unit fractions?

(b) Use your answer from (a) to write a new EFR for $\frac{2}{5}$.

(c) The original EFR had length 2 because it contained two unit fractions. Is the new EFR longer or shorter than the original?
(d) Is there a longest EFR for $\frac{2}{5}$? Why or why not?

(e) Is it possible that there are only finitely many EFRs for $\frac{2}{5}$? Why or why not?
17. We will now show that any fraction with at least one EFR has infinitely many EFRs. Suppose we have a fraction \(\frac{a}{b} \) with the following EFR:

\[
\frac{a}{b} = \frac{1}{k} + \frac{1}{l} + \frac{1}{m} + \cdots + \frac{1}{n}
\]

where

\[k < l < m < \cdots < n\]

Thus, \(\frac{1}{n} \) is the smallest unit fraction in the EFR, and \(n \) is the largest denominator.

(a) How can we rewrite \(\frac{1}{n} \) as a sum of two smaller unit fractions?

(b) Use your answer from (a) to write a new EFR for \(\frac{a}{b} \).
(c) Is your new EFR longer (contains more unit fractions) or shorter than the original EFR?

(d) Is there a longest EFR for \(\frac{a}{b} \)? Why or why not?

(e) Is it possible that there are only finitely many EFRs for \(\frac{a}{b} \)? Why or why not?

We can now make our first conclusion. Any fraction which has at least one EFR will have infinitely many EFRs. Another question we wanted to answer was how do we find an EFR for a given fraction? We have our greedy algorithm, and even our “less” greedy algorithm, but we only know how to use them. We have yet to prove that they work in every situation. This is also the obstacle we must overcome to answer our first, most difficult question: does every fraction have at least one EFR? If we can prove that our algorithm for finding an EFR works for every fraction, that will mean every fraction has at least one EFR, and thus infinitely many EFRs. We will begin that exploration in the next packet by looking deeper into algorithms.