1.
 a)
 i.) 50
 ii.) Yes
 iii.) No
 iv.) Yes
 b.) \(500\)
 c.) \(\frac{1}{2}\) the number of flips
 d.)
 i.) The number of ways to get heads
 ii.) The total number of outcomes on a coin
 iii.) \(\frac{1}{2}\)
2.)
 a.) HH TH HT TT
 b.) \(\frac{1}{4}\)
 c.) \(100\)
 d.) \(\frac{1}{4}\) of \(400\)
3.)
 a.) HHH HHT HTH HTT
 THH THT TTH TTT
 b.) \(\frac{1}{8}\)
 c.) \(\frac{3}{8}\)
 d.) \(\frac{3}{8}\)
 e.) \(\frac{1}{8}\)
 f.) \(\frac{4}{8}\)
 g.) \(\frac{4}{8}\)
 h.) Equivalent
4.)
 a.) \(1, 2, 3, 4, 5, 6\)
 b.) \(\frac{1}{6}\)
 c.) \(\frac{3}{6}\)
 d.) \(\frac{3}{6}\)
 e.) Equivalent
 f.) \(\frac{4}{6}\)
 g.) \(\frac{2}{6}\)
 h.) Answer g is \(\frac{1}{2}\) answer h
 i.) They sum to \(1\)
5.)
 a.) No
 b.) \(\frac{4}{6}\) and \(\frac{2}{6}\) for red and blue respectively
6.)
 Answers may vary
7.)
 1,1 1,2 1,3 1,4 1,5 1,6
 2,1 2,2 2,3 2,4 2,5 2,6
 3,1 3,2 3,3 3,4 3,5 3,6
b.) \(\frac{1}{36} \)

c.) \(\frac{1}{36} \)

d.) \(\frac{6}{36} \)

e.) \(\frac{(5+4+3+2+1)}{36} \) or \(\frac{15}{36} \)

f.) \(\frac{3}{6} \)

g.) \(\frac{1}{2} \times \frac{1}{2} \) or \(\frac{1}{4} \)

8.) Yes, you are twice as likely to win the car if you switch.

Explanation: The likelihood of the car being behind any specific door is \(\frac{1}{3} \) at the start. Let us group the doors now into two distinct groups—the door we chose and the doors we did not choose. There is a \(\frac{1}{3} \) chance it is behind our door; there is a \(\frac{2}{3} \) chance it is behind the other door (*This never changes). When the host opens one of the other doors we still know that the sum of the probability of the two doors is \(\frac{2}{3} \), but we also know that the probability of one of the doors is exactly \(\frac{0}{3} \) now. Therefore the probability of the door we did not choose is \(\frac{2}{3} \) and is the best choice.